智能船舶综合能源系统及其分布式优化调度方法

滕菲1 单麒赫2 李铁山2,3

摘 要 船舶航运污染是阻碍海洋经济发展、海洋强国建设的瓶颈问题.智能船舶为航运业绿色环保发展提供了重要手段. 为进一步开发船载新能源,提升能源综合利用效率,降低船舶航运污染排放,本文构建以能量优化调度系统为核心、以能源 转换中心为枢纽的智能船舶综合能源系统;考虑其特有的动力系统负荷需求、航行低污染排放量标准以及电-热多能流耦合 供能特性,建立智能船舶综合能源系统能量优化调度目标函数及相关约束条件;并基于宽度学习、带有广义噪声的多智能体 分布式优化相关理论,提出可快速准确地预测全航程各时段负荷需求、可容纳复杂干扰的分布式优化调度方法,实现高效的 智能船舶综合能源系统能量优化调度,保障智能船舶经济、可靠、稳定航行.仿真分析验证了所提出智能船舶综合能源系统

关键词 智能船舶,综合能源系统,分布式优化调度,宽度学习,广义噪声

引用格式 滕菲, 单麒赫, 李铁山. 智能船舶综合能源系统及其分布式优化调度方法. 自动化学报, 2020, **46**(9): 1809–1817 **DOI** 10.16383/j.aas.c200176

Intelligent Ship Integrated Energy System and Its Distributed Optimal Scheduling Algorithm

TENG Fei 1 $\,$ SHAN Qi-He 2 $\,$ LI Tie-Shan $^{2,\,3}$

Abstract Shipping pollution seriously hinders the development of marine economy and becomes a key bottleneck in the construction of a powerful marine country. The emergence of intelligent ship provides an important means for the green maritime transportation and sustainable development of shipping industry. In order to further develop new energy on board, improve the comprehensive energy efficiency and reduce the emission of shipping pollution, this paper takes the energy conversion center as the hub and constructs the model of intelligent ship integrated energy system cored with the energy optimal scheduling system. Simultaneously, the objective function and relevant constraints of energy optimal scheduling, of the intelligent ship integrated energy system are established in the conditions of the special dynamical system's load demand, low pollution emission standard of navigation and the electrothermal coupling supply characteristics. On the other hand, combined with broad learning and multi-agent distributed optimization theory with generalized noise, a distributed optimal scheduling method is proposed. This method can not only predict the load demand of all periods of the whole voyage quickly and accurately, but also accommodate complex noises, which can realize the efficient energy optimal scheduling of the intelligent ship integrated energy system and ensure the economic, reliable and stable navigation of the intelligent ship. Finally, the simulation results show the effectiveness of the proposed distributed optimal scheduling method.

Key words Intelligent Ship, integrated energy system, distributed optimal scheduling, broad learning system, general noise

Citation Teng Fei, Shan Qi-He, Li Tie-Shan. Intelligent ship integrated energy system and its distributed optimal scheduling algorithm. *Acta Automatica Sinica*, 2020, **46**(9): 1809–1817

海洋是人类赖以生存与可持续发展的重要物质基础.党的十八大、十九大报告中均提出要发展海洋经济,建设海洋强国^[1-2].国务院印发的《中国制造 2025》明确把"海洋工程装备和高技术船舶"列入十大重点领域之一^[8].然而,随着海洋经济的不断发展,船舶航运污染防治成为一个焦点问题.国际海事组织 (International Maritime Organization, IMO) 在 2007 年相关调查中指出:全球船舶碳排放量当年占比为 3.3%,若不能及时控制,预计在 2050 年其占比将增长至 18%^[4].因此,着眼于当前船舶航运经济、智能、绿色的发展趋势,研究智能船

收稿日期 2020-03-31 录用日期 2020-06-28

Manuscript received March 31, 2020; accepted June 28, 2020 国家自然科学基金 (61803064), 中央高校基本科研业务费专项资 金 (3132020103, 3132020125) 资助

Supported by National Natural Science Foundation of China (61803064), the Fundamental Research Funds for the Central Universities (3132020103, 3132020125)

本文责任编委 孙秋野

Recommended by Associate Editor SUN Qiu-Ye

^{1.} 大连海事大学船舶电气工程学院 大连 116026 2. 大连海事 大学航海学院 大连 116026 3. 电子科技大学自动化工程学院 成 都 611731

^{1.} Marine Electrical Engineering College, Dalian Maritime University, Dalian 116026 2. Navigation College, Dalian Maritime University, Dalian 116026 3. College of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731

与传统船舶不同,智能船舶在结构可靠且线型 优良的船体基础上,可通过先进的传感器、信息通 讯、网络控制、大数据等技术,利用新能源及其电力 推进形式,实现远航程自主航行。6.针对智能船舶能 源系统的能量优化调度问题,考虑系统中可接入的 多种新能源形式,相关领域专家学者已经取得了一 些研究成果. 文献 [6] 提出一种配有轴带发电机的 船舶电力系统最优能量优化调度方案以及可适用于 任意船型轴带发电机的综合评价算法,以保证船舶 能效运行指数 (Energ efficiency operation index, EEOI) 符合标准, 且降低船舶航行的运行成本. 文 献 [7] 提出了一种基于光伏和储能系统的船舶电力 系统边际成本的估算方法,并从经济学角度分析该 方法的高效科学性. 文献 [8] 设计出一种可广泛适 用于带有分布式新能源的船舶电力系统自适应时变 负荷频率控制器,并采用随机多目标优化算法优化 控制器参数,以降低化石燃料的消耗量,实现航运 业的绿色发展. 然而, 智能船舶能源系统中不仅可 接入新能源、传统化石能源等多种能源形式,还包 括了电、热两种能量传输媒介和多种智能船舶负荷 需求 (如船载无人机检修设备、无人艇搜寻设备、智 能充电设备以及智能动力推进设备等),体现出明显 的多能流耦合、多时空尺度等综合能源系统的特征¹⁹, 因此为进一步提升能源的综合利用效率,降低其碳 排放量, 解决船舶航运业的环境污染问题, 需要构 建智能船舶综合能源系统,且深入研究其能量优化 调度问题.

综合能源系统能量优化调度问题根本上是一种 带有约束的复杂系统的规划问题[10],其主要考虑基 于多能源主体的综合能源系统多能流耦合、多时空 尺度特征[11], 面向多种负荷需求响应[12], 以及新能源 供能的间歇性、波动性等影响[13],以最小化系统运行 成本或者最大化系统运行效益为目标,遵循系统的 物理约束,利用优化方法,制定系统的最优运行方 案[14-15]. 考虑综合能源系统接入大规模新能源所产 生的强分布式特点, 传统的集中式优化调度方法已 不再适用于解决其能量优化调度问题,基于多智能 体系统[16]的分布式优化调度方法引起了国内外学 者的广泛关注[17-18]. 文献 [19] 首次提出一种新的多 智能体一致性算法,以全分布式模式解决传统的经 济分配问题.考虑成本函数为非二次型的能源系统, 文献 [20] 基于投影梯度方法提出一种分布式优化 调度方法. 文献 [21] 针对经济分配问题中存在能量 传输损耗展开研究. 文献 [22] 和文献 [23] 分别提出 考虑频率恢复及有限时间条件下的分布式优化调度 方法.考虑综合能源系统多能流耦合这一特征,文 献 [24] 基于交替方向乘子法提出一种新的全分布 式优化调度方法.然而,不同于上述常规综合能源 系统能量优化调度问题,智能船舶综合能源系统中 需要特别考虑复杂海洋环境、动力系统供能需求保 障、低污染排放量标准等对能量优化调度的影响^[25].

综上所述,本文以船舶电力系统、热力系统、动 力系统为物理实体构建智能船舶综合能源系统,利 用新能源与传统化石能源等多种能源形式供能,考 虑其物理设备呈现出的分布式特性,基于智能船舶 能量优化调度系统实现高效的电-热多能流分布式 优化调度,保证实际海况下智能船舶经济、可靠、稳 定地完成航行任务.本文的创新点在于:

1)结合目前智能船舶电力、热力等能源系统的 工作原理和特点,构建以能量优化调度系统为核 心、以能源转换中心为枢纽的新型智能船舶综合能 源系统,以实现电-热多能流的合理分配及高效利 用,满足复杂海洋环境下面向各种航行任务的智能 船舶动力系统高质量供能、低污染排放量等需求.

2) 以智能船舶航行的全航程耗能经济性为目标,考虑智能船舶综合能源系统特有的动力系统负荷需求响应、智能船舶航行低污染排放量标准、电-热多能流耦合供能等需求及特点,建立适用于智能船舶综合能源系统的优化调度目标函数及其相关约束条件.

3) 基于航运业船舶航行能耗数据,利用宽度学 习人工智能算法,快速预测全航程各时段智能船舶 电、热负荷需求.考虑分布式优化调度过程中存在 通讯及计算等噪声干扰,基于带有广义噪声的随机 多智能体噪声--状态稳定性分析理论框架,提出能 够容纳复杂噪声干扰的智能船舶综合能源系统分布 式优化调度算法.

1 智能船舶综合能源系统基础框架

智能船舶综合能源系统可被解读为以能量优化 调度系统为核心、以能源转换中心为枢纽,采用多 智能体分布式优化、宽度学习人工智能算法等先进 理论,紧密结合传统船舶电力系统、热力系统、动力 系统等系统,充分利用新能源,来满足智能船舶经 济、可靠、稳定航行过程中多种负荷需求的一种新 型船舶能源系统,其基本框架如图1所示.

从图 1 中可以看出,智能船舶综合能源系统以 能量优化调度系统为核心,可基于船载分布式能源 设备间信息交互实现智能船舶的能量分布式优化调 度;以能源转换中心为多种能源间相互转换的枢纽, 可利用各种能量转换装置完成电-热多能流转换; 此外,该中心也是能量优化调度系统的物理载体.

图 1 智能船舶综合能源系统基本结构框图 Fig.1 The typical architecture of intelligent ship integrated energy system

在实际复杂海洋环境下,智能船舶综合能源系统通 过能量转换中心,并行处理、融合能源流与信息流, 基于所设计的分布式优化调度方法实现多种能源的 合理分配、高效利用,以满足各种航行任务的能量 需求.与传统船舶能源系统相比,其具体特点可阐 述如下:

1) 不同于传统独立的各类船舶能源系统, 智能 船舶综合能源系统紧密耦合电力系统、热力系统以 及动力系统等, 能量优化调度中体现出电、热多能 流耦合特性, 且所面向的电力、热力、动力等负荷需 求响应的优先等级实时变化. 因此, 智能船舶综合 能源系统需要设计高效的能量优化调度方法, 可以 迅速、准确、稳定地响应智能船舶的各类复杂负荷 需求.

2)智能船舶综合能源系统接入许多新能源供 能设备,呈现出明显的分布式特性,导致传统船舶 能源系统集中式优化调度方法不再适用,因此需要 采用分布式优化调度方法.此外,该系统集成大量 的频率、电压、电流、温度、压力等相关传感器、执行 器和分布式计算设备,可以实时感知并反馈智能船 舶各物理供能设备能源供需、转换以及利用率等信 息,通过各分布式供能设备的协同工作,高效完成 智能船舶的动态控制和能量生产-调度-供给服务, 体现出明显的信息-物理融合特性.

综上所述,智能船舶综合能源系统能够高效综合利用传统化石能源和分布式新能源,以电能、热能等形式进行能量的传输与使用,基于分布式优化

调度方法对各个供能设备进行协调控制,保证智能 船舶的经济、高效、可靠、稳定航行.本文所构建的 智能船舶综合能源系统为未来智能船舶能效优化技 术的发展奠定了基础.

2 智能船舶综合能源系统优化调度模型

与传统船舶能源系统优化调度问题不同,智能 船舶综合能源系统中接入许多新能源供能设备,且 需要考虑电-热多能流耦合供能特性.然而,考虑智 能船舶全航程动力系统动态负荷需求响应、低污染 排放量标准等特点,现有的综合能源系统优化调度 模型不再适用.

2.1 目标函数

智能船舶综合能源系统能量优化调度的目标是 在保障智能船舶可靠稳定运行和其综合能源系统内 能量供需平衡的基础上,使得其全航程耗能经济成 本(即总体供能成本)最小化,可描述为

$$\min \sum_{t=1}^{T} \left\{ \sum_{i=1}^{N_{P}} C_{i,t}^{P} \left(p_{i,t}^{P} \right) + \sum_{i=1}^{N_{C}} C_{i,t}^{C} \left(p_{i,t}^{C}, h_{i,t}^{C} \right) \right\} , \\ p_{i,t}^{P}, p_{i,t}^{C}, h_{i,t}^{C} \in \Omega$$
 (1)

其中, $p_{i,t}^P$ 为新能源供能设备 $i \neq t$ 时段内的供电量, $C_{i,t}^P(p_{i,t}^P)$ 为新能源供能设备 $i \neq t$ 时段内的供电成 本函数, $p_{i,t}^C, h_{i,t}^C$ 分别为内燃机 $i \neq t$ 时段内的供电 和供热量, $C_{i,t}^C(p_{i,t}^C, h_{i,t}^C)$ 为内燃机 $i \neq t$ 时段内的电 -热耦合供能成本函数, N_P, N_C 分别为新能源供能

报

设备数量和内燃机数量, T 为智能船舶航行航线全 航程运行时段总数, Ω 为变量 $p_{i,t}^P, p_{i,t}^C, h_{i,t}^C$ 的可行 范围.

不同于传统船舶能源系统优化调度问题中只考 虑船舶航行耗电成本 (即内燃机供电成本),智能船 舶综合能源系统优化调度中要综合考虑接入的新能 源供电设备的供电成本 $C_{i,t}^{P}(p_{i,t}^{P})$ 和电-热耦合供能 模式下内燃机的供能成本 $C_{i,t}^{C}(p_{i,t}^{C},h_{i,t}^{C})$.上述两部 分供能成本共同决定了智能船舶全航程航行的耗能 成本.

2.2 约束条件

针对上述所构建的智能船舶综合能源系统优化 调度目标函数,变量可行域Ω依赖于船舶电力系 统、热力系统、动力系统紧密耦合后形成的物理约 束条件以及智能船舶航行中需要遵守的相关国际标 准,其具体体现如下:

 1)供需平衡约束.考虑智能船舶中动力系统、 照明设备、通讯导航设备、燃料预热装置和其他生 活用能装置等,结合供能设备的总输出功率得到的 约束为

$$\sum_{i=1}^{N_P} p_{i,t}^P + \sum_{i=1}^{N_C} p_{i,t}^C = L_{p,t} + \Delta L_{p,t}$$
(2)

$$\sum_{i=1}^{N_C} h_{i,t}^{\rm C} + \Delta L_{h,t} = L_{h,t}, \ \Delta L_{h,t} = \zeta_i \Delta L_{p,t}$$
(3)

其中, $L_{p,t}+\Delta L_{p,t}, L_{h,t}$ 为智能船舶综合能源系统在 t 时段内电、热负荷需求总量, $\Delta L_{h,t}$ 为在t 时段需 以电能供给的热负荷量, $\Delta L_{p,t}$ 为在t 时段内被转 化的电负荷量, ζ_i 为电-热负荷转换系数.

2) 输出功率约束.为保证各供能设备正常运行. 考虑智能船舶实际航行环境对供能设备输出功率的 影响,各设备的输出功率得到的约束为

$$P_{i,\min}^{P} \le p_{i,t}^{P} \le P_{i,\max}^{P}, P_{i,\min}^{C} \le p_{i,t}^{C} \le P_{i,\max}^{C}$$

$$H_{i,\min}^{C} \le h_{i,t}^{C} \le H_{i,\max}^{C}$$
(4)

其中, $P_{i,\min}^{P}$, $P_{i,\max}^{P}$, $P_{i,\min}^{C}$, $P_{i,\max}^{C}$, $H_{i,\min}^{C}$, $H_{i,\max}^{C}$ 分别为 智能船舶正常航行中允许新能源供能设备 i 输出电 能的下限、上限, 内燃机 i 输出电能的下限、上限以 及输出热能的下限、上限.

3) 船舶能效运行指数 (EEOI) 约束. 为降低船 舶航行污染排放量, 国际海事组织 (IMO) 海洋环境 保护委员会 (Marine Environment Protection Committee, MEPC) 制定了船舶能效运行指数的 评价标准, 旨在有效约束航行过程中所产生的二氧 化碳排放量

$$EEOI \le EEOI_{set}$$

$$EEOI = \frac{CO_2}{m_{load} \times Dist} = \frac{\sum_{i=1}^{N_C} b_{2,i} \times (p_{i,t}^C)^2 + b_{1,i} \times p_{i,t}^C + b_{0,i}}{m_{load} \times Dist}$$
(6)

其中, CO_2 为二氧化碳排放量 (g), m_{load} 为船舶总 载重量 (kg), Dist 为航行海里数 (海里), $b_{2,i}$, $b_{1,i}$, $b_{0,i}$ 为 CO_2 排放量函数系数, $EEOI_{\text{set}}$ 为船舶能效运行 指数上限.

值得注意的是, EEOI 约束是一个二次型非线 性约束条件,本文通过对其一定程度的放大可以找 到一组 α_i 和 β_i 使式 (6) 的分子部分不大于 $\sum_{i=1}^{N_C} \alpha_i \times p_{i,t}^C + \beta_i$.

4) 可靠航行约束. 常规综合能源系统中出现供 能设备故障时, 可允许采取局部短时断电检修操作 等措施, 然而考虑到实际航行复杂海况中存在的 风、浪、流等多种不确定性因素, 会对重要设备处于 断电检修状态时智能船舶的航行安全性产生严重威 胁, 因此必须保障智能船舶综合能源系统中动力系 统、通讯导航设备、应急照明设备等重要负荷的持 续性供能, 因此建立智能船舶可靠运行约束如下:

$$\sum_{i=1}^{N_P} p_{i,t}^P + \sum_{j=1}^{N_C} p_{j,t}^C - L_{RL} \ge \max\left\{p_{i,t}^P, p_{j,t}^C\right\},\$$
$$i = 1, \cdots, N_P, \ j = 1, \cdots, N_C \quad (7)$$

其中, L_{RL}为智能船舶需要保障供能的重要负荷.

除上述约束条件外,智能船舶综合能源系统仍 需满足传输线路功率约束等常规综合能源系统约束 条件.

3 智能船舶综合能源系统分布式优化 调度算法

针对构建的智能船舶综合能源系统优化调度模型,为获得有效的能量优化调度结果,需要对其约 束条件中未知的参数(如智能船舶全航程各时段负 荷需求)进行快速且准确的预测.由于新能源供能 设备的接入,传统的集中式优化调度方法已不再适 用于智能船舶综合能源系统能量优化调度问题,因 此需要研究分布式优化调度方法.

3.1 基于宽度学习算法的全航程负荷预测

为保障智能船舶可靠、稳定运行,必须要降低 其综合能源系统中新能源的供能随机性及复杂海况 下风、浪、流等不确定性对智能船舶安全自主航行 的负面影响,保证航行全航程对其动力系统的实时 负荷需求响应.因此,为在智能船舶安全自主离泊、 行驶、避障、靠泊等过程中快速地优化满足其动力 系统的负荷需求,需要对智能船舶全航程各时段负 荷需求进行预测.

本文提出利用只占用较少计算资源的宽度学习 人工智能算法[26],对全航程各时段智能船舶综合能 源系统的负荷需求进行预测.考虑智能船舶某航线 全航程各时段能耗相关数据 (如航次/实时油耗信 息、航速航向信息、航道信息、AIS 数据、气象信息、 水文信息等),将船舶能耗数据作为原始输入数据的 主体,进行数据预处理并提取其所映射的特征,生 成宽度学习系统的特征节点,即 $Z_i = \phi_i(XW_{e_i} +$ β_{e_i}), $i = 1, 2, \cdots, n$. 其中, n 为特征节点数量, W_{e_i} 和 β_{ei} 分别为随机连接权值和随机偏置. 进一步考 虑船舶自动识别系统 (Automatic identification system, AIS) 数据等外部数据以及气象、水文数据 等环境数据,对特征节点 $Z^n = [Z_1 \cdots Z_n]$ 相关特征 进行增强 (即 $H_m = \psi_m (Z^n W_{hm} + \beta_{hm})$,其中, W_{hm} 和 β_{hm} 分别为随机连接权值和随机偏置),并将生 成的增强节点 $H^m = [H_1 \cdots H_m]$ 作为新增的输入以 增量学习的方式来更新整个预测模型,所采用的宽 度学习系统模型可表示为

$$Y = [Z_1, \cdots, Z_n | \psi_1 (Z^n W_{h1} + \beta_{h1}), \cdots, \psi_m (Z^n W_{hm} + \beta_{hm})] W^m = [Z_1, \cdots, Z_n | H_1, H_2, \cdots, H_m] W^m = [Z^n | H^m] W^m$$
(8)

其中, Y 为预测的智能船舶全航程各时段电-热负 荷需求, W^m 为连接权重.

综上所述,所采用的宽度学习算法将特征节点 与增强节点结合作为输入数据,并与输出数据进行 对应连接,建立宽度学习系统模型,通过求伪逆解 出相应权值,准确快速地预测智能船舶航行航线上 全航程各时段电-热负荷需求.

3.2 带有广义噪声的分布式优化调度算法

考虑智能船舶综合能源系统呈现出的强分布式 特性,本文提出基于多智能体分布式优化理论的能 量分布式优化调度算法,以实时响应第3.1节中采 用宽度学习算法预测出的智能船舶航行航线全航程 各时段电-热负荷需求,解决在多种约束条件下最 小化智能船舶综合能源系统耗能经济成本(即各供 能设备总供能成本)的最优化问题.智能船舶综合 能源系统包含新能源供能设备和内燃机两类供能设 备,其供能成本函数多为二次型或者指数函数形式²⁴, 均为可逆凸函数.由于各供能设备的边际成本相等 时,系统总供能成本最小,因此将第2节所提出的 优化调度问题转化为下述以各供能设备边际成本为 变量的分布式优化问题

min
$$\tilde{f}(\boldsymbol{C}\boldsymbol{m}) = \sum_{i=1}^{n} f_i(\boldsymbol{C}m_i)$$

s.t. $g(\boldsymbol{C}\boldsymbol{m}) \leq 0, \quad \boldsymbol{A} \times \boldsymbol{C}\boldsymbol{m} = \boldsymbol{b}$
 $\boldsymbol{L} \times \boldsymbol{C}\boldsymbol{m} = 0, \quad \boldsymbol{C}\boldsymbol{m} \in \tilde{\Omega}$ (9)

其中, Cm_i 为供能设备 *i* 的边际成本, $Cm = col \{Cm_1, \dots, Cm_n\}, g_i(Cm_i)$ 为以边际成本 Cm_i 为变量的优化调度问题的不等式约束条件, $g(Cm) = col \{g_1(Cm_1), \dots, g_n(Cm_n)\}$, 以边际成本 Cm_i 为 变量的优化调度问题的等式约束条件的矩阵参数 $A = diag \{A_1, \dots, A_n\}, b = col \{b_1, \dots, b_n\}, \tilde{\Omega} = \prod_{i=1}^n \Omega_i,$ $L = L \otimes I_d, L$ 为图 *G* 的拉普拉斯矩阵.

考虑到智能船舶综合能源系统中各供能设备供 能成本函数均为可逆凸函数,易得式(9)中以边际 成本 *Cm_i* 为变量的系统优化调度目标函数为凸函 数.此外,虽然能效运行指数(EEOI)约束条件为非 线性不等式约束条件,由第 2.2 节中对其的分析可 得 *g*(*Cm*) ≤ 0 条件完全可以转化为线性不等式约 束条件.此时,第 2 节中所提出的智能船舶综合能 源系统优化调度问题可转换为带有线性等式与不等 式混合约束的分布式凸优化问题.本文利用一种基 于 PI 控制的分布式优化算法对其求解^[27]

$$\begin{cases} \dot{x}_i \in -x_i + Cm_i - \partial f_i (Cm_i) - \\ (\partial g_i (Cm_i))^T \tilde{\mu}_i - A_i^T \tilde{\nu}_i + u_i \\ \dot{\mu}_i = -\mu_i + (\mu_i + g_i (Cm_i))^+ \\ \dot{\nu}_i = A_i Cm_i - b_i \\ Cm_i = \vartheta_{\Omega_i} (x_i) \end{cases}$$
(10)

其中, $x_i^{\mathsf{T}} = (p_i, h_i) \in \mathbf{R}^2$ 为供能设备*i* 供电/热量, u_i , ν_i 为约束条件变量, ϑ_{Ω_i} (·) 为 $\mathbf{R}^2 \to \Omega_i$ 的投影 算子, $(x)^+ = \max \{x, 0\}$, 分布式 PI 协议为

$$u_{i}(t) = k_{P} \sum_{j=1}^{n} a_{ij} \left(Cm_{j} \left(t \right) - Cm_{i} \left(t \right) \right) + k_{I} \int_{0}^{t} \sum_{j=1}^{n} a_{ij} \left(Cm_{j} \left(s \right) - Cm_{i} \left(s \right) \right) ds \quad (11)$$

其中, k_P, k_I分别为 PI 控制的比例增益和积分增益.

然而,由于智能船舶综合能源系统分布式优化 运行环境中存在大量的复杂噪声干扰,且其不能简 单地利用白噪声刻画,因此需要设计一种可同时容 纳白噪声和有色噪声的分布式优化算法,实现智能 船舶综合能源系统的高效能量优化调度,以保障复 杂噪声环境下智能船舶可靠、稳定航行.因此,本文 基于带有广义噪声的随机分布式优化理论框架^[28], 分析下述带有广义噪声的分布式 PI 协议对应的随 机多智能体系统噪声--状态稳定性:

$$u_{i}(t) = k_{P} \sum_{j=1}^{n} a_{ij} \left(Cm_{j} \left(t \right) - Cm_{i} \left(t \right) \right) + k_{I} \times \int_{0}^{t} \sum_{j=1}^{n} a_{ij} \left(Cm_{j} \left(s \right) - Cm_{i} \left(s \right) \right) ds + \zeta_{i} \left(t \right)$$
(12)

其中, $\zeta_i(t)$ 为一个随机过程,其期望需满足假设 sup_{t ≥to} E| $\zeta_i(t)$ |² < K,K > 0为常数, E|·|²为二阶矩. 经过分析可以得到,存在*KL* 类函数 $\beta(\cdot, \cdot)$ 、K 类函 数 $\gamma(\cdot)$,使得所分析的随机多智能体系统平衡点与 理想状态下智能船舶综合能源系统分布式优化调度 最优解之间误差的二阶矩满足

$$\mathbf{E}|x(t)|^{2} \leq \beta\left(|x_{0}|, t-t_{0}\right) + \gamma\left(\sup_{t_{0} \leq s \leq t} \mathbf{E}|\zeta(s)|^{2}\right)$$

基于上述误差分析结果,可以对分布式 PI 协议参数 k_P 和 k_I 进行调节,使得所提出的智能船舶 综合能源系统分布式优化调度算法能够有效容纳复 杂噪声干扰的影响.

4 仿真分析

为验证本文提出的智能船舶综合能源系统分布 式优化调度方法的有效性,考虑如图2所示的智能 船舶综合能源系统(具体参数详见图解).智能船舶 中途停靠2个港口,航行全航程各时段船舶电-热 负荷由新能源供能机组和热电联产内燃机组共同供 应,其能量优化调度目标为

$$\min \sum_{t=1}^{24} \left\{ \sum_{i=1}^{4} C_{i,t}^{P} \left(p_{i,t}^{P} \right) + \sum_{i=1}^{3} C_{i,t}^{C} \left(p_{i,t}^{C}, h_{i,t}^{C} \right) \right\}$$

其中,智能船舶综合能源系统中各供能设备的供能

成本函数分别为

$$C_{1,t}^{P}(p_{1,t}^{P}) = 300(p_{1,t}^{P})^{2} + 19$$

$$C_{2,t}^{P}(p_{2,t}^{P}) = 291(p_{2,t}^{P})^{2} + 19$$

$$C_{3,t}^{P}(p_{3,t}^{P}) = 210(p_{3,t}^{P})^{2} + 10$$

$$C_{4,t}^{P}(p_{4,t}^{P}) = 210(p_{4,t}^{P})^{2} + 10$$

$$C_{i,t}^{C}(p_{i,t}^{C}, h_{i,t}^{C}) = 250(p_{i,t}^{C})^{2} + 2\ 000p_{i,t}^{C} + 200(h_{i,t}^{C})^{2} + 1\ 500h_{i,t}^{C} + 150p_{i,t}^{C}h_{i,t}^{C} + 20$$

其约束条件相关参数为

$$\begin{split} P^{P}_{1,\max} = P^{P}_{2,\max} = 15 \text{ MW}, \ P^{P}_{3,\max} = P^{P}_{4,\max} = 10 \text{ MW} \\ P^{C}_{i,\min} = 4 \text{ MW}, \ P^{C}_{i,\max} = 10 \text{ MW}, \quad i = 1, 2, 3 \end{split}$$

针对上述优化调度问题,基于已有的宽度学习 算法^[26],得到智能船舶航行航线全航程各时段电-热 负荷预测结果如表1所示.根据表1可知,智能船 舶航行航线全航程中,当其中途准备停靠或者离开 港口时,其电力需求会呈现出迅速降低或者增加的 趋势,直至智能船舶按照设定航速航行所对应的动 力系统负荷需求被满足.

考虑智能船舶综合能源系统全航程分布式优化 调度过程中存在如图 3 所示的广义噪声干扰,其噪 声二阶矩为 $E|\zeta_i(t)|^2 < 1$.利用本文提出的智能船舶 综合能源系统分布式优化调度算法,其带有广义噪 声干扰的分布式 PI 协议(式(12))的参数为 $k_P = 16.37, k_I = 7.09$,可以得到智能船舶综合能源 系统全航程各时段各供能设备的电-热输出功率, 以第 6~10小时航行时段为例(中途第 1 次靠离港 过程),如图 4 和图 5 所示.

从图 4 和图 5 中可以看出,根据本文所提出的

图 2 智能船舶综合能源系统仿真模型 Fig.2 The simulation model of intelligent ship integrated energy system

滕菲等:智能船舶综合能源系统及其分布式优化调度方法

知此机的人 於 租 夕 叶 凡 由 由 存 去 运 测 / 十 田

衣 1 笛舵船舶主机柱合时段电=-然贝何顶测结朱													
Table 1 The forecast results of electric and thermal load of intelligent ship in different periods of the whole voyage													
	全航程各时段热	1小时	2小时	3小时	4小时	5小时	6小时	7小时	8小时	9小时	10小时	11小时	12小时
全 负荷		19.0000	28.9889	33.0000	34.0000	32.0000	27.0000	20.0000	16.0000	18.0000	27.9780	33.0000	34.0000
	负荷预测量 (MW)	13小时	14小时	15小时	16小时	17小时	18小时	19小时	20小时	21小时	22小时	23小时	24小时
		36.0000	29.0000	20.0000	16.0000	19.0000	29.9671	30.0000	35.0000	31.0000	28.0000	19.4957	18.0000
	全航程各时段电 负荷预测量 (MW)	1小时	2小时	3小时	4小时	5小时	6小时	7小时	8小时	9小时	10小时	11小时	12小时
		29.3600	55.3255	61.6100	62.4300	60.8300	48.8500	33.7300	25.2500	32.1600	57.3885	61.0800	59.7900
		13小时	14小时	15小时	16小时	17小时	18小时	19小时	20小时	21小时	22小时	23小时	24小时
		65.1800	55.4800	35.2500	26.6000	32.7000	54.3629	54.5900	64.2400	56.6100	54.9300	32.9039	28.2700

ŧ

Fig. 3 The general noise considered in the distributed optimal scheduling during the whole voyage of intelligent ship integrated energy system

可容纳广义噪声干扰的分布式优化调度算法可获得

各供能设备电-热输出功率,其与理想状态下分布 式优化调度最优解之间的误差范围在 0.05 MW 以 内,从而说明所提出算法可以有效地容纳实际分布 式优化调度环境中存在的复杂噪声干扰.此外,智 能船舶航行的第 8 小时内中途第 1 次靠港,在 6~10小时航行时段靠离港过程中,基于本文所提 出的算法,综合能源系统电-热负荷的需求变化都 能及时、准确地响应,响应时间均在 3 min 之内.

图 6 和图 7 阐明了智能船舶综合能源系统全航 程各时段各供能设备电--热输出功率. 从图 6 和图 7 中各时段各供能设备电--热输出功率占比情况可以 看出,所考虑的智能船舶中生活所需电、热负荷由 于各时段需求变化不明显,均在 10 MW 左右波动, 而其他电--热输出功率都用于满足动力系统的负荷 需求,且其输出功率主要来源于依靠新能源发电的

图 4 船舶航行 6~10 小时时段各供能设备电输出功率

图 5 船舶航行 6~10 小时时段各供能设备热输出功率

Fig.5 Heat output of each energy supply equipment during $6 \sim 10$ hours sailing

光伏机组、风力发电机组,与传统船舶能源系统只 依靠消耗化石能源的热电联产内燃机组供能相比, 本文所提出的智能船舶综合能源系统及其分布式优 化调度方法使得智能船舶航行过程中消耗化石能源 减少 50%, EEOI 指数显著降低,在保障航行全航 程可靠性、稳定性的前提下,实现了智能船舶的绿 色、经济航行.

5 结论与展望

本文综合考虑智能船舶电力系统、热力系统及 动力系统的特点,构建智能船舶综合能源系统,以 提高能源的综合利用效率,降低污染排放量.根据 智能船舶全航程航行特征,建立智能船舶综合能源 系统优化调度模型,基于宽度学习算法预测智能船 舶航行航线全航程各时段动态负荷需求,提出可容 纳复杂噪声干扰的分布式优化调度算法,以保证实 际海况下智能船舶航行的经济性、可靠性和稳定性. 后期工作将重点对所提出的智能船舶综合能源系统 分布式优化调度算法参数进行抗干扰调节,使整套 系统能够尽快落地形成产品,为未来船舶能源系统 起到示范作用,促使我国航运业快速进入智能化、 无人化、清洁化时代,助力国家海洋强国战略.

References

 Sea Strategic thought at the 18th CPC National Congress [Online], available: https://www.sohu.com/a/195834582_811190, October 1, 2017 (十八大之海洋强国战略 [Online], available: https://www.sohu.com/a/

(十八人之海洋强国战略 [Online], available: https://www.sohu.com/a/ 195834582_811190, 2017 年 10 月 1 日)

- 2 The 19th National Congress of the Communist Party of China [Online], available: http://sh.people.com.cn/n2/2018/0313/ c134768-31338145.html, March 13, 2018 (十九大报告全文 [Online], available: http://sh.people.com.cn/n2/2018/ 0313/c134768-31338145.html, 2018 年 3 月 13 日)
- 3 Notice of the State Council on Issuing the "Made in China (2025)" [Online], available: http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm, May 19, 2015 (国务院印发《中国制造 2050》 [Online], available: http://www. gov.cn/zhengce/content/2015-05/19/content_9784.htm, 2015 年 5 月 19 日)
- 4 IMO Signed an Agreement to Halve Carbon Emissions of Shipping Industry in 2050 [Online], available: http://www.tanpaifang.com/jienenjianpai/2018/0416/61777.html, April 16, 2018 (IMO 签署协议: 2050 年海运业碳排放量减少一半 [Online], available: http://www.tanpaifang.com/jienenjianpai/2018/0416/61777.html, 2018 年 4 月 16 日)
- 5 Fan Ai-Long, He Ya-Peng, Yan Xin-Ping, Wang Jun-Teng. Concept and key technologies of intelligent new energy ship. *Ship Engineering*, 2020, 42(3): 9–14 (范爱龙, 贺亚鹏, 严新平, 王骏腾. 智能新能源船舶的概念及关键 技术. 船舶工程, 2020, 42(3): 9–14)
- 6 Tsekouras G J, Kanellos F D, Prousalidis J. Simplified method for the assessment of ship electric power systems operation cost reduction from energy storage and renewable energy sources integration. *IET Electrical Systems in Transportation*, 2015, 5(2): 61–69
- 7 Michalopoulos P, Kanellos F D, Tsekouras G J, Prousalidis J M. A method for optimal operation of complex ship power systems employing shaft electric machines. *IEEE Transactions on Transportation Electrification*, 2016, 2(4): 547–557
- 8 Khooban M H, Dragicevic T, Blaabjerg F, Delimar M. Shipboard microgrids: A novel approach to load frequency control. *IEEE Transactions on Sustainable Energy*, 2018, 9(2): 843–852
- Jia Hong-Jie, Wang Dan, Xu Xian-Dong, Yu Xiao-Dan. Research on some key problems related to integrated energy systems. Automation of Electric Power Systems, 2015, 39(7): 198-207
 (贾宏杰, 王丹, 徐宪东, 余晓丹. 区域综合能源系统若干问题研究.

电力系统自动化, 2015, **39**(7): 198-207)

10 Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang. Energy internet and its key control issues. Acta Automatica Sinica, 2017, 43(2): 176-194
(71-194)

(孙秋野, 滕菲, 张化光. 能源互联网及其关键控制问题. 自动化学

报, 2017, 43(2): 176-194)

- 11 Sun Hong-Bin, Pan Zhao-Guang, Guo Qing-Lai. Energy management for multi-energy flow: challenges and prospects. *Automation of Electric Power Systems*, 2016, **40**(15): 1-8 (孙宏斌,潘昭光,郭庆来. 多能流能量管理研究: 挑战与展望. 电力系统自动化, 2016, **40**(15): 1-8)
- Guo Chuang-Xin, Wang Hui-Ru, Zhang Yi-Ning, He Yu-Bin. Review of "source-grid-load" co-planning orienting to regional energy internet power system technology. Power System Technology, 2019, 43(9): 3071-3080 (郭创新, 王惠如, 张伊宁, 何宇斌. 面向区域能源互联网的"源 —网—荷"协同规划综述. 电网技术, 2019, 43(9): 3071-3080)
- 13 Wang Jia-Ying, Shi Jun-Yi, Wen Fu-Shuan, Li Ji-Hong, Zhang Li-Jun, Xu Chen-Bo. Optimal operation of CHP microgrid with concentrating solar power plants considering demand response. *Automation of Electric Power Systems*, 2019, 43(1): 176–189 (王佳颖, 史俊祎, 文福拴, 李继红, 张利军, 徐晨博. 计及需求响应 的光热电站热电联供型微网的优化运行. 电力系统自动化, 2019, 43(1): 176–189)
- 14 Sun Hong-Bin, Guo Qing-Lai, Wu Wen-Chuan, Wang Bin, Xia Tian. Integrated energy management system with multi-agent flow for energy internet: design and application. *Automation of Electric Power Systems*, 2019, **43**(12): 122–128, 171 (孙宏斌, 郭庆来, 吴文传, 王彬, 夏天. 面向能源互联网的多能流综 合能量管理系统:设计与应用. 电力系统自动化, 2019, **43**(12): 122–128, 171)
- 15 Tang Hao, Liu Chang, Yang Ming, Tang Bi-Qiang, Xu Dan, Lv Kai. Learning-based optimization of active distribution system dispatch in industrial park considering the peak operation demand of power grid. Acta Automatica Sinica, DOI: 10.16383/ j.aas.c190079, 2019. (唐昊, 刘畅, 杨明, 汤必强, 许丹, 吕凯. 考虑电网调峰需求的工业 园区主动配电系统调度学习优化. 自动化学报, DOI: 10.16383/

j.aas.c190079, 2019.) Chen Gang, Li Zhi-Yong. Distributed fixed-time optimization

- 16 Chen Gang, Li Zhi-Yong. Distributed fixed-time optimization control for multi-agent systems with set constraints. Acta Automatica Sinica, DOI: 10.16383/j.aas.c190416, 2019. (陈刚, 李志勇. 集合约束下多智能体系统分布式固定时间优化控 制. 自动化学报, DOI: 10.16383/j.aas.c190416, 2019.)
- 17 Yin Shuang-Rui, Ai Qian, Zeng Shun-Qi, Wu Qiong, Hao Ran, Jiang Di. Challenges and prospects of multi-energy distributed optimization for Energy Internet. *Power System Technology*, 2018, **42**(5): 1359–1369 (殷爽睿, 艾芊, 曾顺奇, 吴琼, 郝然, 江迪. 能源互联网多能分布式 优化研究挑战与展望. 电网技术, 2018, **42**(5): 1359–1369)
- 18 Xi Lei, Zhou Li-Peng. Coordinated AGC algorithm for distributed multi-region multi-energy micro-network group. Acta Automatica Sinica, DOI: 10.16383/j.aas.c200105, 2020. (席磊,周礼鹏.分布式多区域多能微网群协同 AGC 算法. 自动化 学报, DOI: 10.16383/j.aas.c200105, 2020.)
- 19 Yang S P, Tan S C, Xu J X. Consensus based approach for economic dispatch problem in a smart grid. *IEEE Transactions on Power Systems*, 2013, 28(4): 4416–4426
- 20 Guo F H, Wen C Y, Mao J F, Song Y D. Distributed economic dispatch for smart grids with random wind power. *IEEE Trans*actions on Smart Grid, 2016, 7(3): 1572–1583
- 21 Binetti G, Davoudi A, Lewis F L, Naso D, Turchiano B. Distributed consensus-based economic dispatch with transmission losses. *IEEE Transactions on Power System*, 2014, 29(4): 1711–1720
- 22 Wang Z G, Wu W C, Zhang B M. A fully distributed power dispatch method for fast frequency recovery and minimal generation cost in autonomous microgrids. *IEEE Transactions on Smart Grid*, 2016, 7(1): 19–31
- 23 Chen G, Ren J H, Feng E N. Distributed finite-time economic

dispatch of a network of energy resources. *IEEE Transactions on Smart Grid*, 2017, 8(2): 822–832

- 24 Zhang H G, Li Y S, Gao D W Z, Zhou J G. Distributed optimal energy management for energy internet. *IEEE Transactions* on *Industrial Informatics*, 2017, **13**(6): 3081–3097
- 25 Kanellos F D, Tsekouras G J, Hatziargyriou N D. Optimal demand-side management and power generation scheduling in an all-electric ship. *IEEE Transactions on Sustainable Energy*, 2014, 5(4): 1166–1175
- 26 Chen C L P, Liu Z L. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. *IEEE Transactions on Neural Networks and Learning Systems*, 2018, 29(1): 10–24
- 27 Yang S F, Liu Q S, Wang J. A multi-agent system with a proportional-integral protocol for distributed constrained optimization. *IEEE Transactions on Automatic Control*, 2017, **62**(7): 3461–3467
- 28 Zhang H G, Teng F, Sun Q Y, Shan Q H. Distributed optimization based on a multiagent system disturbed by genera noise. *IEEE Transactions on Cybernetics*, 2019, **49**(8): 3209–3213

滕 菲 大连海事大学船舶电气工程 学院讲师. 主要研究方向为分布式优 化技术及其在综合能源系统领域相关 应用.

E-mail: brenda_teng@163.com (**TENG Fei** Lecturer at the Marine Electrical Engineering College,

Dalian Maritime University. Her research interest covers distributed optimization technology and its various applications in integrated energy system.)

单麒赫 大连海事大学航海学院副教授.主要研究方向为多智能体控制, 分布式优化,船舶能耗优化.本文通 信作者.

E-mail: shanqihe@dlmu.edu.cn

(SHAN Qi-He Associate professor at the Navigation College, Dalian

Maritime University. His research interest covers multi-agent control, distributed optimization, and ship energy consumption optimization. Corresponding author of this paper.)

李铁山 电子科技大学自动化工程学 院教授. 主要研究方向为智能船舶控 制理论与技术, 非线性系统智能控制 理论与应用研究.

E-mail: litieshan073@uestc.edu.cn (**LI Tie-Shan** Professor at the College of Automation Engineering,

University of Electronic Science and Technology of China. His research interest covers intelligent ship control theory and technology, nonlinear system intelligent control theory and application research.)