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Reliability-based Robust Optimization Design Based on
Specular Reflection Algorithm
Qisong Qi1 Jun Wang1 Gening Xu1 Xiaoning Fan1

Abstract In this paper, a novel global optimization method — specular reflection algorithm (SRA) is proposed, which simulates the
unique optical property of mirror — reflection function. Combining the computing features of the SRA with traditional mathematical
theories, the global convergence ability of the SRA is verified. The reasonable value of the SRA’s control parameter is analysed, so
that the best control parameter which is suitable for current optimization problems can be acquired. Four numerical examples are
researched using the SRA and other 4 classical intelligent optimization methods, such as particle swarm optimization, Kalman swarm
optimization, etc. Simulation results of numerical examples demonstrated the effectiveness and superiority of the SRA, especially its
suitability for solving high dimensional, multi-peak complex functions. Finally the structure of general bridge crane is investigated
and designed by SRA for robust reliability optimization design. The results illustrate that the SRA is reasonable, accurate and can
be treated as an effective analysis technique in reliability-based robust optimization design. It can be predicted that the SRA can
be widely used in engineering for creating more value.
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1 Introduction

With the increasingly complicated engineering problems
during the past few years, many researchers devote them-
selves to researching new intelligent optimization algo-
rithms. In 2011, a new heuristic optimization algorithm
named fruit fly optimization algorithm (FOA) is proposed
by Pan [1] who is inspired by the feeding behaviors of
drosophila. FOA is easy to be understood, and it can deal
with the optimization problems with fast speed and high
accuracy, while, the results are influenced a lot by the ini-
tial solutions [2]. Based on the phototropic growth char-
acteristics of plants, a new global optimization algorithm
called plant growth simulation algorithm is proposed by
Li et al., which is a kind of bionic random algorithm and
suitable for large-scale, multi-modal and nonlinear integer
programming [3], however, for its complex calculation the-
ory, the algorithm is not widely applied in industry and
scientific research. Artificial bee colony algorithm [4] is a
new application of swarm intelligence, which simulates the
social behaviors of bees, whose defects are slow convergence
speed and easy to trap into local optimum [5].

Mirror is a common necessity, which plays an important
role in daily life. Inspired by the optical function of mirror,
a new algorithm called specular reflection algorithm (SRA)
is raised by this paper. SRA, similar to genetic algorithm
[6]−[8], particle swarm optimization [9]−[11], simulated an-
nealing algorithm [12], [13], differential evolution algorithm
[14], [15], etc, can be widely used in science and engineering.
The SRA has many outstanding advantages, such as simple
principle, easy programming, high precision and fast calcu-
lation speed, and its unique non-population searching mode
distinguishes itself from original swarm algorithm. Further-
more, the global searching ability is significantly improved
by the specific acceptance criterion of the new solution. In
order to verify above mentioned features of SRA, a great
deal of comparative experiments are adopted in this paper.
At last, the reliability based design and robust design are
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combined with the SRA, in order to evaluate the ability of
SRA in reliability based robust optimization design.

2 SRA

2.1 Introduction of SRA

Mirror is a life necessity and a product of human civi-
lization, which can change the direction of propagation of
light. There are various kinds of mirrors, such as magni-
fying glass, microscope, etc. With the help of mirror, a
great deal of stuff can be observed, even if they are out
of the range of visibility. For example, the submarine sol-
dier is able to catch sight of the object above the water by
periscope. This reflection property of mirror is simulated
by the SRA.

Object, suspected target, eyes and mirror are the four
basic elements of specular reflection system.

Object is the objective function of optimization. Getting
its exact coordinate is the purpose of the SRA. It is not
involved in the optimization procedure for the location of
the object is unpredictable.

Suspected target is the coordinate of the object observed
by eyes, which is approximate to the optimal solution.
There is an error between the suspected target and ob-
ject, because the coordinate of the object observed by eyes
is not accurate. The suspected target is located around the
object, and it is the element nearest to the object.

Mirror can change the direction of propagation of light.
The vision of eyes can be broaden by mirror. All the things
that can reflect light (glass, water, etc.) are taken as mirror.

Eyes are the subject of the SRA, which can acquire the
approximate coordinate of the object. And it is the element
farthest from the object.

2.2 Definition

min f(X), X = (x1, x2, . . . , xN ), X ∈ RN

s.t. gj(x) = 0, j = 1, 2, . . . , m

hk(x) ≤ 0, k = 1, 2, . . . , l. (1)

Taking the constrained optimization problem showed in
(1) as an example, the definition of SRA will be drawn as
following:

Set the specular reflection system as a 4×N dimensional
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Fig. 1. Coordinate update of the specular reflection system.

Euclidean space, where N is the number of design variables.
The elements in the system are defined as Xi (x1

i , x
2
i , . . .,

xN
i ), i = (0, 1, 2, 3), and XObject = X0, XSuspect = X1,

XMirror = X2, XEyes = X3. Where xn
i (n = 1, 2, . . . , N) is

the position of the ith variable in the N dimensional space.
The four elements of SRA can be defined as f(Xi), and the
relationship among the four elements is f(X0) ≤ f(X1) ≤
f(X2) ≤ f(X3).

Searching the new coordinate: the coordinates of XNew1

and XNew2 can be acquired by (2), and the new coordinate
of XNew can be got by (2).

{
Xn

New1 = xn
1 + ξ(2rand− 1)(xn

1 − xn
3 )

Xn
New2 = xn

1 + ξ(2rand− 1)(2xn
1 − xn

2 − xn
3 )

(2)

where ξ is coefficient, which is determined by (11).

{
XNew = XNew1, f(XNew1) ≤ f(XNew2)

XNew = XNew2, f(XNew1) ≥ f(XNew2).
(3)

Updating the specular reflection system: Once the coor-
dinate of XNew is acquired, the eyes will change its place
to continue searching for the “object”, the four elements of
the system are X0X1X2 and XNew under the current situ-
ation. The specular reflection system will be adjusted by
the modification of the four elements, the system will be
changed by the rules shown in Fig. 1.

The optimization steps of the SRA are shown as follows:
Step 1: Define the initial value Xi, i = 0, 1, 2, 3, and the

maximum iteration number Itermax.
Step 2: If the precision or the maximum iteration num-

ber reaches the design requirements, the coordinate of
XObject will be output which is the optimum solution. Oth-
erwise, execute the next step continually.

Step 3: Search the coordinate of XNew by (2) and (3),
the new iteration process will begin, then go back to Step
2 and Continue to calculate.

In conclusion, the optimization flow chart of the SRA is
given by Fig. 2.

2.3 Optimization Flow Chart of the SRA

Theorem 1: The constraint optimization problem pre-
sented in (1) can converge to the global extremum with
100% probability by the SRA.

Proof: Provided that XObject = min f(X), X ∈ D which
is the global optimal solution, where f(XObject) is the opti-
mal value of objective function, D is the feasible region and
D = {X|gj(XObject) = 0, j = 1, 2, . . . , m; hk(XObject) ≤ 0,
k = 1, 2, . . ., l; XObject ∈ Rn} and D ∈ RN .

First, get the feasible initial solutions X0
Suspect, X0

Mirror

and X0
Eyes randomly among the searching space, where

X0
Suspect, X0

Mirror, X0
Eyes ∈ RN , and the correspond-

ing values of objective function f(X0
Suspect), f(X0

Mirror)

and f(X0
Eyes) can be worked out, where f(X0

Suspect) ≤
f(X0

Mirror) ≤ f(X0
Eyes).

Fig. 2. Optimization flow chart of the SRA.

Second, the new solutions f(Xk
Suspect), f(Xk

Mirror) and

f(Xk
Eyes) can be acquired according to the new specu-

lar reflection system, where f(Xk
Suspect) ≤ f(Xk

Mirror) ≤
f(Xk

Eyes) are the randomly produced solutions which are

uniformly distributed in [Xk
min, Xk

max], Xk
Suspect is the solu-

tion of the kth (k = 1, 2, . . . , Itermax) iteration, Xk
min and

Xk
max are the boundaries of design variable in the current it-

eration, and the maximum iteration number Itermax should
be big enough. Therefore, under the uniform distribution,
the probability of generating the feasible solutions is:

pk =

∫ XObject+ε

XObject−ε

1

Xk
max −Xk

min

dX =
2ε

Xk
max −Xk

min

≥ 2ε

Xmax −Xmin
> 0 (4)

where ε is a real number which is sufficiently small; Xmax

and Xmin are the extreme values of the 4×N dimensional
Euclidean space.

The probability that the feasible solution X0
Suspect is op-

timal is P 1, and the probability that X0
Suspect is not optimal

is Q1, both P 1 and Q1 are expressed as follows:
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TABLE I
Judgement of ξ

N = 2 N = 10 N = 20 N = 50 N = 100

Value of ξ
Optimal

solution

(10−6)

Iteration

times

Optimal

solution

(10−6)

Iteration

times

Optimal

solution

(10−6)

Optimal

solution

(103)

Optimal

solution

(10−6)

Optimal

solution

(103)

Optimal

solution

(10−6)

Optimal

solution

(104)

0.4 4.7776 402.70 7.1895 1103 7.2883 2.0369 8.9324 6.1015 9.5844 1.4945

0.5 3.3845 341.04 6.4267 940.12 7.3111 1.8001 8.4771 5.3149 9.6383 1.2586

0.6 3.9884 737.76 5.4844 936.46 7.2327 1.6802 9.0155 4.8292 9.3691 1.1344

0.7 3.5625 515.18 6.9587 810.24 7.2858 1.5971 8.5419 4.4544 9.5971 1.0679

0.8 4.2770 509.46 6.7379 747.90 7.5046 1.4992 8.8811 4.2697 9.3384 1.0741

0.9 4.0589 259.08 6.3850 732.90 7.4304 1.4562 8.3421 4.2036 9.4009 1.0976

1.0 4.9287 193.26 5.9257 694.18 6.8977 1.3677 8.3414 4.3603 9.5947 1.1404

1.1 4.6702 142.60 6.1496 674.28 8.0852 1.2946 9.4538 4.2854 9.4944 1.1889

1.2 4.6250 142.42 5.8875 626.54 7.7654 1.3608 8.6969 4.4775 9.6771 1.2434

1.3 5.1501 139.08 6.5208 654.72 7.2172 1.4050 8.9588 4.5342 9.5792 1.3215

1.4 5.4409 131.02 5.6072 695.40 6.9556 1.4699 8.9053 4.6930 9.6898 1.3675

1.5 4.7099 103.72 5.7050 675.02 7.6612 1.4740 9.0472 4.8329 9.5134 1.4173

1.6 4.7625 93.82 5.8038 713.20 6.4546 1470 8.9756 4.8634 9.7748 1.4768

1.7 4.9327 91.94 4.9871 783.90 5.8034 1.6036 9.1825 5.0851 9.6612 1.4985

1.8 5.9076 87.32 5.4104 856.30 7.1143 1.6917 8.7372 5.3202 9.4446 1.5536

1.9 4.9402 82.44 5.5724 832.12 6.4092 1.8641 8.7754 5.5962 9.6617 1.6423

2.0 4.7168 89.08 4.8307 998.300 5.7508 2.0544 8.1780 6.3700 9.4975 2.5117





P 1 = P{X0
Suspect ⊆ [XObject − ε, XObject + ε]}

P 1 = P

Q1 = P{X0
Suspect 6⊂ [XObject − ε, XObject + ε]}

Q1 = P

(5)

where X0
Suspect is the feasible solution gotten for the first

time.
The probability that the feasible solution gotten for the

second time still failing to be the optimal value is:

Q2 = Q1(1− P ) = (1− P )2. (6)

So, the probability that the solution is optimal is:

P 2 = 1− (1− P )2. (7)

After n times iteration, the probability of getting the op-
timum solution can be acquired by the following inference.

P n = 1− (1− P )n = 1−
n∏

i=1

(
1− 2ε

Xi
max −Xi

min

)

≥ 1−
(

1− 2ε

Xmax −Xmin

)n

. (8)

Calculate the extreme value of (8):

lim
n→∞

P n = lim
n→∞

[
1−

n∏
i=1

(
1− 2ε

Xi
max −Xi

min

)]

≥ lim
n→∞

[
1−

(
1− 2ε

Xmax −Xmin

)n]
= 1. (9)

With the iterations going on, it is more and more likely
to achieve the optimum solution. When n → ∞, P n → 1,
it indicates that the searching process of SRA can converge
to the global extreme with 100 % probability. ¥

2.4 Selection of Control Parameter

The control parameter is closely related to the space
complexity of optimized target, which has an effect on the
capability of algorithm. The control parameters of clas-
sical optimization algorithm are gotten by experience or
experiment, such as the learning parameter c1 = c2 = 2 by
PSO [16], [17], and the crossover probability and mutation
probability of GA [18]. It is impossible that the control pa-
rameter acquired by experience is suitable for all optimiza-
tion problems. The SRA only has the control parameter ξ,
whose value will have a prominent effect on SRA. In this
section, a classical test function is used to confirm the most
appropriate value of ξ, and the results are listed in Table I.

f(x1, x2, . . . , xN ) =

N∑
j=1

j × x2
j . (10)

The test function is illustrated by (10), and its three-
dimension diagram is shown in Fig. 3. The global minimum
value in theory of this function is 0 (0, 0, . . . , 0) and the con-
straint condition is −5.12 ≤ xj ≤ 5.12, j = 1, 2, . . . , N . In
consideration of N = (2, 10, 20, 50, 100, 500) and ξ = (0.4,
0.5, . . ., 2.0), do the calculation 50 times using every possi-
ble combination of N and ξ, then put the average results in
Table I. Assume that the convergence condition is Itermax

= 105 or f(x1, x2, . . . , xN ) ≤ 10−5.
As shown in Table I, all the results fall in between 10−5

and 10−6, the optimization efficiency which is influenced by
ξ cannot be evaluated by the optimal solutions, therefore,
iteration times is the only factor to be considered.

According to the Table I, the conclusions can be drawn
as follows: when N = 2 and ξ = 1.9, the efficiency of
the optimization is highest, the corresponding iteration is
82.44; When N = 10, N = 20, N = 50 and N = 100,
the best ξ and its corresponding iteration times are 1.3 and
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654.72, 1.1 and 1.2946× 103, 0.9 and 4.2036× 103, 0.7 and
1.0679 × 104, respectively. In addition, the value of ξ will
be reduced gradually with the increasing of N , and the
relationship between ξ and N (as shown in (11)) can be
speculated by the method of data fitting.

ξ =
2.15

N
+ 0.84. (11)

Fig. 3. Three-dimensional surface of test function.

2.5 Simulation Experiments

To verify the global optimization ability of SRA, four
numerical test functions in [10] are used, each test func-
tion is listed in Table II in detail. The total iteration time
is set as 2000. The SRA will be executed 50 times, and
the average values are listed in Table III, other results are
references from [10], Figs. 4−7 show the iteration curves of
the objective functions of each test function respectively.

Fig. 4. Iteration curve of sphere.

Fig. 5. Iteration curve of griewank.

Fig. 6. Iteration curve of rosenbrock.

Fig. 7. Iteration curve of restrigin.

The results in Table IV indicate that: when n = 30,
the results of the four test functions calculated by SRA are
1.1080×10−24, 4.6629×10−15, 9.8730×10−7 and 3.9373 ×
10−21 respectively, which are 1.87 × 1015, 2.12 × 104, 2.90
× 102, 1.11× 1017 times higher than the results gotten by
new chaos PSO algorithm which possesses the highest ac-
curacy in [10]; When n = 100, the results of the four test
functions calculated by SRA are 2.3160× 10−12, 2.7978 ×
10−14, 6.1173 × 10−5, 8.7727 × 10−7 respectively, and the
computational accuracy are still 8.95×102, 3.54×103, 4.75,
4.99 × 102 times higher than the results calculated by new
chaos PSO algorithm. All in all, the SRA is an efficient
optimization algorithm.

3 Reliability Robust Optimization De-
sign

3.1 Reliability Design

According to the reliability design theory, the reliability
can be calculated by (12):

R =

∫

g(X)

fx(X)dX (12)

where fx(X) is the joint probability density of basic ran-
dom variables X = (X1, X2, . . . , Xn)T , which shows the
state of the components.

{
g(X) ≤ 0, failure

g(X) > 0, safe.
(13)

The basic random variables Xi (i = 1, 2, . . . , n) are in-
dependent of each other and follow certain distribution.
The reliability index β and the reliability R = Φ(·) can be
calculated by Monte Carlo method [19], where Φ(·) is the
standard normal distribution function.
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TABLE II
Numerical Calculation Function

Name Expression Interval of convergence Global extreme Dimension

Sphere f1 =
n∑

i=1
x2

i xi ∈ [−50, 50] 0 (0, 0, . . ., 0) n = 30 100

Griewank f2 = 1 +
n∑

i=1

(
x2

i
4000

)
−

n∏
i=1

cos
(

xi√
i

)
xi ∈ [−600, 600] 0 (0, 0, . . ., 0) n = 30 100

Rosenbrock f3 =
n−1∑
i=1

[100(xi+1 − x2
i )2 + (xi − 1)2] xi ∈ [−100, 100] 0 (1, 1, . . ., 1) n = 30 100

Restrigin f4 =
n∑

i=1
[10 + x2

i − 10 cos(2πxi)] xi ∈ [−5.0, 5.0] 0 (0, 0, . . ., 0) n = 30 100

TABLE III
Calculation Results of Test Function

Name
PSO

(n = 30) [10]

Kalman swarm

(n = 30) [10]

Chaos ant

colony optimization

(n = 30)[10]

Chaos PSO

(n = 30) [10]

New chaos PSO

(n = 30) [10]

SRA

(n = 30)

SRA

(n = 100)

Sphere 3.7004×102 4.723 3.815×10−1 2.4736×10−3 2.0729×10−9 1.1080×10−24 2.3160×10−12

Griewank 2.61×107 3.28×103 23.414 6.8481×10−2 9.9051×10−11 4.6629×10−15 2.7978×10−14

Rosenbrock 13.865 9.96×10−1 4.669×10−1 1.0404×10−2 2.9068×10−4 9.8730×10−7 6.1173×10−5

Restrigin 1.0655×102 53.293 22.6361 9.5258×10−1 4.3741×10−4 3.9373×10−21 8.7727×10−7

TABLE IV
Calculation Results

Design method Design variables (mm) Objective function (mm2) Reliability Sensitivity of reliability/(10−3)

x1 x2 x3 x4 x5 A Rv
∂Rv
∂S

∂Rv
∂F

∂Rv
∂E

∂Rv
∂ρ

Optimization 6 6 205 635 257 10 704 0.5071 14.3985 0.0017 9.15×10−9 0.0011

Reliability

Optimization
6 6 258 632 310 11 304 0.9968 13.0816 0.0015 8.77×10−9 0.0010

SRA Robust

Reliability

Optimization

6 6 324 595 376 11 652 0.9813 12.6270 0.0015 9.23×10−9 0.0010

Optimization 10 6 185 567 619 11 544 0.5314 13.0714 0.0015 9.8×10−9 0.0010

Reliability

Optimization
7 7 222 605 276 12 334 0.9806 12.9119 0.0015 9.73×10−9 0.0011

PSO Robust

Reliability

Optimization

9 6 302 534 354 12 780 0.9810 11.5262 0.0013 1.01×10−8 0.0010

Optimization 9 6 190 581 633 11 328 0.5132 13.3500 0.0016 9.64×10−9 0.0010

Reliability

Optimization
6 6 491 532 543 13 068 0.9802 11.3697 0.0013 1.01×10−8 9.95×10−4

FOA Robust

Reliability

Optimization

8 11 237 536 299 16 576 1.0 11.6479 0.0013 1.27×10−9 0.0013

Note: The index of reliability R0 = 0.98 is defined.

3.2 Reliability Robust Optimization Design

Robust design is a modern design technique that can
improve the efficiency and quality and reduce the cost of
products [20], [21]. The robust design of mechanical prod-
ucts can make the products insensitive to the changes of
design parameters. The product which is designed by ro-
bust design method has the characteristic of stability. Even

if there is an error in the designed parameters, the prod-
uct still has excellent performance. Reliability is a kind of
design method to eliminate the weaknesses, failure modes
and guard against malfunction. The reliability robust opti-
mization design is a new method by combining the robust
design and reliability design, which possess all the merits of
the two methods. The products designed by the reliability
robust optimization design method are reliable and have
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robustness.

min f(X) = ω1f1(X) + ω2f2(X)

s.t. R ≥ R0

pi(X) ≥ 0, i = 1, 2, . . . , l

qj(X) ≥ 0, j = 1, 2, . . . , m (14)

where f1(X) and f2(X) are the objective functions of the
Reliability Robust Optimization design, f1(X) = R and
f2(X) is the design criterion related to robust design which
can be acquired by (15); R is the reliability; R0 is the con-
straint condition of reliability; pi and qj are equality and
inequality constraints of the robust reliability optimization
design respectively.

f2(X) =

√√√√
n∑

i=1

(
∂R

∂Xi

)2

(15)

where ω1 and ω2 are weighting coefficients, which are re-
lated to the importance of f1(X) and f2(X), both of them
are calculated by (16), and ω1 + ω2 = 1.





ω1 =
f2(X

1∗)− f2(X
2∗)

[f1(X2∗)− f1(X1∗)] + [f2(X1∗)− f2(X2∗)]

ω2 =
f1(X

2∗)− f1(X
1∗)

[f1(X2∗)− f1(X1∗)] + [f2(X1∗)− f2(X2∗)]
(16)

where X1∗ and X2∗ are the best values when min f(X) =
f1(X) and min f(X) = f2(X) respectively.

4 Engineering Example

The bridge crane is taken as an example to verify the
capability of the SRA in solving the engineering problems.
The SRA is adopted to design the structure with optimized
design, reliability optimization design and robust reliabil-
ity optimization design, and the results are listed in Table
III together with the results calculated by PSO and FOA,
which are used for analysing the performance of the SRA.

4.1 Design Parameters

The mechanical model of the bridge crane is shown in
Fig. 8, the uniform load q and the concentrated load F are
exerted on the girder, where q is caused by the structure
deadweight and F is related to the weight of the hoisted
cargo.

Fig. 8. Mechanical model diagram and sectional dimension.

The parameters xi (i = 1, 2, 3, 4, 5) are considered to be
the design variables, where 6 ≤ x1, x2 ≤ 30, 50 ≤ x3,
x4 ≤ 5000, x5 = x3 + 2x2 + 40. The parameter S is
the span of the bridge crane. Other parameters include

the elasticity modulus E, the material density ρ, q =
g(x1, x2, x3, x4, x5). The parameters S, F , E and ρ
are independent of each other, and they are normal ran-
dom variables, S∼N(12, 0.082), F ∼N(92 100, 4652), E∼
N(206 000, 61802), ρ ∼ N(7850, 5.62).

4.2 Optimization Design

Objective function: According to the characteristics of
the structural optimization problem, the objective function
can be defined as shown in (17).

minf(x1, x2, x3, x4, x5) = 2x1x5 + 2x2x4. (17)

Constraint condition: Strength, stiffness and stability
are the three basic failure modes of bridge crane. There-
fore, the constraint condition can be defined as following:

1) Strength Constraint: The maximum stress of danger-
ous point in mid-span section must be smaller than the
ultimate stress frd;

h1(x1, x2, x3, x4, x5) = frd − σ

= frd − qS2 + 2FS

8IZ

(x4

2
+ x1

)
(18)

where frd is determined by the limit state method, and frd

= fyk/γm = 235/1.1 = 213.64MPa, f(yk) = 235 is yield
stress, γm = 1.1 is the resistance coefficient, IZ is moment
of inertia of Section 2.1, q and IZ are the functions related
to design variables xi (i = 1, 2, 3, 4, 5).

2) Stiffness Constraint: The maximum deflection of the
structure must be smaller than the allowable value γ0 =
S/400.

h2(x1, x2, x3, x4, x5) = γ0 − γ

= γ0 −
(

5qS4

384EIZ
+

FS3

48EIZ

)
. (19)

3) Stability Constraint: The depth-width ratio of Section
2.1 must be smaller than 3.

h3(x1, x2, x3, x4, x5) = 3− x4 + 2x1

x3 + 2x2
. (20)

In conclusion, the optimization model of the bridge crane
can be built as (21).

min f(x1, x2, x3, x4, x5)

s.t. hk(x1, x2, x3, x4, x5) ≥ 0, k = 1, 2, 3

6 ≤ x1, x2 ≤ 30

50 ≤ x3, x4 ≤ 5000. (21)

4.3 Reliability Optimization Design

The reliability constraint of structure is added to (21) to
achieve the reliability optimization design. The failure of
any mode will result in the failure of the structure, so the
reliability Rv is defined by (22). The reliability optimiza-
tion model of bridge crane can be established by (23).

Rv =

3∏

k=1

Rk (22)
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where Rk, k = 1, 2, 3 is the probability of the kth failure
mode.

min f(x1, x2, x3, x4, x5)

s.t. hk(x1, x2, x3, x4, x5) ≥ 0, k = 1, 2, 3

6 ≤ x1, x2 ≤ 30

50 ≤ x3, x4 ≤ 5000

Rv −R0 ≥ 0. (23)

4.4 Robust Reliability Optimization Design

According to the robust reliability optimization design
model which is shown in (14), the index of reliability and
robustness are taken into account, the multi-objective op-
timization model is built by (24).

min ω1 × f(x1, x2, x3, x4, x5) + w2 × f ′(x)

s.t. hk(x1, x2, x3, x4, x5) ≥ 0, k = 1, 2, 3

6 ≤ x1, x2 ≤ 30

50 ≤ x3, x4 ≤ 5000

Rv −R0 ≥ 0 (24)

where f ′(x) =

√(
∂Rv
∂S

)2
+

(
∂Rv
∂F

)2
+

(
∂Rv
∂E

)2
+

(
∂Rv
∂ρ

)2

.

4.5 Calculation Results

The three optimization models shown in (21), (23) and
(24) are calculated by the SRA, PSO and FOA, respec-
tively. And the results are presented in Table III, from
which the conclusions can be drawn as follows:

1) For structural optimization, the results obtained by
the three algorithms are 10 704, 11 544 and 11 328, the op-
timum among the three is 10 704 which is calculated by the
SRA, which proves the ability of SRA is higher than PSO
and FOA. The reliability results of the three groups of pa-
rameters are 0.5071, 0.5314 and 0.5132 respectively, which
are unable to meet the requirement of reliability design for
the reliability constraint is ignored.

2) The reliability of the structure can be ensured and
the robustness can be improved after reliability optimiza-
tion design. However, the areas of Section 2.1 are increased
to 11 652, 12 334 and 16 576 at the same time, and the best
result is also calculated by SRA.

3) With the requirements of the robustness, the relia-
bility sensitivity index of design variables are significantly
reduced, and the robustness of structure is improved no-
tably.

5 Conclusions

In this paper, a new optimization algorithm — specular
reflection algorithm (SRA) is proposed, which is inspired
by the optical property of the mirror. The SRA has a par-
ticular searching strategy which is different from the swarm
intelligence optimization algorithms. The convergence abil-
ity of the SRA is verified by the traditional mathematical
method, it converges to the global optimum value with the
probability of 100%. The reasonable values of the control
parameters are analysed, and their computational formula
is deduced by the method of data fitting, so that the con-
trol parameters will vary with the different problems and
thus the adaptation and the operability of the SRA will be
improved. Four classical numerical test functions are anal-
ysed by the SRA, and the results indicate that the ability of
the SRA is better than the traditional intelligent optimiza-
tion algorithms. Then, the theories of the reliability opti-
mization and robust design are combined to establish the

mathematical models of the optimization design, reliability
optimization design and robust reliability optimization de-
sign for the bridge crane as an example system, which are
calculated by the SRA and other two optimization meth-
ods (PSO and FOA). The conclusions are drawn after the
simulation, that the structure designed by the SRA is re-
liable and robust. The results calculated by the SRA are
superior to the PSO and the FOA. All in all, the SRA is the
latest research in the area of intelligent optimization, which
has the better calculation capability than other optimiza-
tion algorithms, and the ability for the structure design is
verified in this paper. SRA can be widely applied in other
fields and create more value.
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