基于 MMTMV 方法的多变量时变扰动系统性能评估

刘春平1 王昕2 王振雷1

摘 要 工业控制系统性能评估关系到工业生产安全与企业绩效.工业过程扰动频繁且存在时变特性,多变量时变扰动系统缺少统一有效的性能评估方法.本文提出了基于多模型混合时变最小方差 (Multi-model mixing time-variant minimum variance, MMTMV) 的多变量系统性能评估方法.首先,根据扰动作用起止时间设定混合权重,基于多模型混合的思想利用 混合权重与每一时变扰动特性设计多变量 MMTMV 控制器.然后,利用多变量 MMTMV 控制器得出各被控变量输出方差,将多变量 MMTMV 控制器下被控变量的平均方差作为性能评估的基准.最后,本文通过在裂解过程和精馏过程中的控制性能评估应用,验证了多变量 MMTMV 评估方法的有效性.

关键词 多变量,时变扰动,多模型混合,最小方差

引用格式 刘春平, 王昕, 王振雷. 基于 MMTMV 方法的多变量时变扰动系统性能评估. 自动化学报, 2015, **41**(5): 928-935 **DOI** 10.16383/j.aas.2015.c140719

Performance Assessment of MIMO System with Time-variant Disturbances Based on MMTMV Method

LIU Chun-Ping¹ WANG Xin² WANG Zhen-Lei¹

Abstract Performance assessment of industrial processes is related to industrial production safety and benefit. It is widely acknowledged that most of the industry processes are time-varying and influenced by several disturbances. There is no available method to assess the performance of the MIMO system with time-variant disturbances. A multi-model mixing time-variant minimum variance (MMTMV) method of MIMO is proposed in this paper to solve the problem. First, a multivariable MMTMV controller is obtained based on the properties of time-variant disturbances and the weights gained by the action times of disturbances. Then each output variance of the MIMO system employing the multivariable MMTMV controller is derived and the average variance of all controlled variables is utilized as the benchmark to assess the performance of the MIMO system with time-variant disturbances. Finally, the effectiveness of MMTMV is verified in the CPA of a cracking process and a distillation process.

Key words Multivariable, time-variant disturbances, multi-model mixing, minimum variance

Citation Liu Chun-Ping, Wang Xin, Wang Zhen-Lei. Performance assessment of MIMO system with time-variant disturbances based on MMTMV method. Acta Automatica Sinica, 2015, **41**(5): 928–935

工业生产过程中,各控制变量之间存在着相互 耦合的现象,采用简单控制回路并不能满足工业生

收稿日期 2014-10-24 录用日期 2015-01-19

Manuscript received October 24, 2014; accepted January 19, 2015

Recommended by Associate Editor YANG Chun-Hua

1. 华东理工大学化工过程先进控制和优化技术教育部重点实验室 上海
 200237
 2. 上海交通大学电工与电子技术中心 上海 200240

产需求.复杂的工业过程大多采用多变量控制系统, 并且工业过程普遍存在多个时变扰动.如在乙烯裂 解炉生产过程中,乙烯裂解炉的进料量、汽烃比、平 均出口温度、油品的属性等因素都在一定的范围内 波动;随着乙烯裂解炉投入运行时间的增加,乙烯裂 解炉因发生结焦反应而管壁变厚,裂解炉扰动特性 会发生变化.因此,对具有多个扰动且特性时变的多 变量控制系统进行性能评估,并在此基础上设计自 适应控制器使多变量控制系统运行在最佳状态,对 提高工业过程的生产安全与经济效益具有重要意义.

Harris 在 1989 年首次提出利用最小方差控制 得到的方差作为性能评估的基准^[1].在此基础上, Huang 等提出了基于最小方差的多变量系统性能评 估方法^[2].多模型可以有效解决系统动态特性随工 况发生变化的复杂工业过程控制问题^[3-5].从文献 [6-8] 中可知,多模型切换方法虽能有效解决多个扰 动的系统控制问题,但当同一时刻有多个扰动时,多 模型切换方法在实际间歇切换时会产生较大的暂态

国家重点基础研究发展计划 (973 计划) (2012CB720500),国家自然科学基金 (61134007, 61222303),上海市科技攻关项目 (12dz1125100),上海市科学技术委员会 (13111103800),上海市自然科学基金 (14ZR1421800),流程工业综合自动化国家重点实验室开放课题基金 (PAL-N201404) 资助

Supported by National Basic Research Program of China (973 Program) (2012CB720500), National Natural Science Foundation of China (61134007, 61222303), Shanghai Science and Technology Research Project (12dz1125100), Shanghai Science and Technology Committee (13111103800), Shanghai Natural Science Foundation (14ZR1421800), and State Key Laboratory of Synthetical Automation for Process Industries (PAL-N201404) 本文责任编委 阳春华

^{1.} Key Laboratory of Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology, Shanghai 200237 2. Center of Electrical & Electronic Technology, Shanghai Jiao Tong University, Shanghai 200240

误差.为此,文献 [9-10] 提出了多模型混合方法,用 以解决多个模型切换时存在暂态误差的问题.2014 年张巍等将多模型混合最小方差控制的时变扰动控 制系统性能评估方法^[11].文献 [11] 表明了多模型混 合评估方法评估结果与多模型切换评估方法评估结 果基本相同,又很好地解决了多模型切换方法因间 歇切换产生的暂态误差问题.但该文献只解决了单 变量系统存在多个非时变特性扰动时的性能评估问 题,并未解决多变量系统并且多个扰动具有时变特 性时的性能评估问题.对于多变量系统,当采用矩阵 形式进行表示时,因矩阵的乘法不满足交换性,因此 在最小方差控制器的设计、Diophantine 方程的求 解等方面目前尚需进一步研究.

本文针对具有多个时变扰动的多变量扰动系 统,通过基于扰动作用的起止时间设置各扰动混合 权重,将多模型混合思想引入到多变量时变扰动 系统性能评估,提出了基于多模型混合时变最小 方差 (Multi-model mixing time-variant minimum variance, MMTMV) 的多变量时变扰动系统性能 评估方法. 首先, 根据每一个多变量扰动的时变特 性设计每一时间段的单模型时变最小方差 (Single model time-variant minimum variance, SMTMV) 控制器. 然后, 基于多模型混合的思想在每个时间点 混合成多变量 MMTMV 控制器,将 MMTMV 控制 器作用下输出变量的平均方差作为性能评估基准以 评估多变量时变扰动系统的性能.最后,本文通过数 值仿真和应用研究,证明了上述方法的有效性.该方 法特点包括:1) 不仅能评估具有单个扰动的多变量 系统的性能,也能评估具有多个扰动的多变量系统 的性能; 2) 不仅能评估具有多个非时变扰动的多变 量系统的性能,又能评估具有多个时变扰动的多变 量系统的性能; 3) 该性能评估方法能有效解决多变 量多模型切换性能评估方法存在的暂态误差问题.

1 被控对象描述

被控对象输入的扰动传递函数矩阵可通过左乘 被控对象传递函数矩阵转化为被控对象输出的扰动 传递函数矩阵,因此在被控对象输入的扰动均可转 化为被控对象输出的扰动.本文将被控对象的所有 扰动均转换为被控对象输出的扰动,并采用式(1)所 示的 Box-Jenkins 模型对多变量时变扰动系统进行 描述,其闭环控制系统方框图如图 1 所示.

$$\boldsymbol{Y}_{t} = T\boldsymbol{U}_{t} + \sum_{i=1}^{n} N_{i,t}\boldsymbol{a}_{i,t}$$
(1)

图 1 多扰动的多变量时变扰动反馈控制系统 Fig.1 MIMO feedback control system with multivariable time-varying disturbances

图 1 中, *T* 为有时滞的多变量传递函数矩阵. *Q* 为多变量控制器传递函数矩阵. 被控对象存在 *n* 个多变量时变扰动,每个扰动作用时间段分别 为 $T_1, T_2, \dots, T_n, T_1, T_2, \dots, T_n$ 两两之间可重叠且 $T_{\text{Total}} = \bigcup T_i, i = 1, 2, \dots, n.$ 被控对象输出的所有 扰动表示为 $\sum_{i=1}^{n} N_{i,t} a_{i,t}$. 其中, $N_{i,t}$ 为第*i* 个扰动 在*t* 时刻通过变换后在被控对象输出的扰动传递函 数矩阵且当 $t \notin T_i$ 时, $N_{i,t} = 0; a_{i,t}$ 为第*i* 个扰动在 *t* 时刻的白噪声矩阵. 若被控对象为 *l* 个输入 *m* 个 输出的多变量被控对象,则 *T*、*Q*、*N_{i,t} 与 a_{i,t} 的形 式如下:*

$$T = \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1l} \\ T_{21} & T_{22} & \cdots & T_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ T_{m1} & T_{m2} & \cdots & T_{ml} \end{bmatrix}$$
(2)
$$Q = \begin{bmatrix} Q_{11} & Q_{12} & \cdots & Q_{1m} \\ Q_{21} & Q_{22} & \cdots & Q_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ Q_{l1} & Q_{l2} & \cdots & Q_{lm} \end{bmatrix}$$
(3)
$$N_{i,t} = \begin{bmatrix} N_{i,t}^{11} & N_{i,t}^{12} & \cdots & N_{i,t}^{1m} \\ N_{i,t}^{21} & N_{i,t}^{22} & \cdots & N_{i,t}^{2m} \\ \vdots & \vdots & \ddots & \vdots \\ N_{i,t}^{m1} & N_{i,t}^{m2} & \cdots & N_{i,t}^{mm} \end{bmatrix}$$
(4)
$$\boldsymbol{a}_{i,t} = \begin{bmatrix} a_{i,t,1} & a_{i,t,2} & \cdots & a_{i,t,m} \end{bmatrix}^{\mathrm{T}}$$
(5)

 $a_{i,t,j}$ 为方差为 1 的白噪声序列,其中, $i = 1, 2, \cdots, n; j = 1, 2, \cdots, m.$

2 多模型混合时变最小方差 (MMTMV) 控 制器

本文根据每一时刻每个扰动的特性制定多变量 SMTMV 控制器, 然后通过多模型混合的方法利用 多变量 SMTMV 控制器得到多变量 MMTMV 控制 器.

2.1 单模型时变最小方差 (SMTMV) 控制器

在控制系统中,当扰动特性发生变化,依据变化 前扰动特性设计的最小方差控制器不能使扰动特性 变化后的控制系统实现最小方差控制.基于自适应 思想,多变量 SMTMV 控制器被提了出来.

当设定值为**0**、单个多变量时变扰动 $N_{i,t}$ 作用 于系统时,根据 Box-Jenkins 模型,其输出响应为

$$\boldsymbol{Y}_{t} = T\boldsymbol{U}_{t} + N_{i,t}\boldsymbol{a}_{i,t} = D^{-1}T\boldsymbol{U}_{t} + N_{i,t}\boldsymbol{a}_{i,t} \quad (6)$$

式中, D 为 T 的关联矩阵. \tilde{T} 为没有时滞的多变量 传递函数矩阵, 且满足 $\tilde{T} = DT$. 当 D 取单位关联 矩阵时, D 按文献 [12] 进行求解. 令 d 为 D 的阶 数, 式 (6) 两边同时左乘 $q^{-d}D$, 有:

$$q^{-d}D\boldsymbol{Y}_t = q^{-d}\widetilde{T}\boldsymbol{U}_t + q^{-d}DN_{i,t}\boldsymbol{a}_{i,t}$$
(7)

令
$$\tilde{\boldsymbol{Y}}_{t} = q^{-d} D \boldsymbol{Y}_{t}, \, \tilde{N}_{i,t} = q^{-d} D N_{i,t}, \,$$
则式 (7) 化为

$$\mathbf{Y}_t = q^{-d} T \boldsymbol{U}_t + N_{i,t} \boldsymbol{a}_{i,t}$$
(8)

对 $\widetilde{N}_{i,t}$ 采用丢番图方程分解, 有:

$$\widetilde{N}_{i,t} = \underbrace{F_{0,i,t} + \dots + F_{d-1,i,t}q^{-d+1}}_{F_{i,t}} + R_{i,t}q^{-d} \quad (9)$$

将式 (9) 代入式 (8) 得:

$$\widetilde{\boldsymbol{Y}}_{t} = \widetilde{T}\boldsymbol{U}_{t-d} + R_{i,t}\boldsymbol{a}_{i,t-d} + F_{i,t}\boldsymbol{a}_{i,t} \qquad (10)$$

式(10)中最后一项不受控制作用的影响,则:

$$\operatorname{Var}(\widetilde{\boldsymbol{Y}}_{t}) = \operatorname{E}(\widetilde{\boldsymbol{Y}}_{t}\widetilde{\boldsymbol{Y}}_{t}^{\mathrm{T}}) \geq \operatorname{Var}(F_{i,t}\boldsymbol{a}_{i,t})$$
(11)

式 (11) 中等式当且仅当 $\tilde{T}\boldsymbol{U}_{t-d} + R_{i,t}\boldsymbol{a}_{i,t-d} = \boldsymbol{0}$ 成 立,则:

$$\boldsymbol{U}_t = -\widetilde{T}^{-1} R_{i,t} \boldsymbol{a}_{i,t} \tag{12}$$

将式 (12) 代入式 (10), 可得:

$$\boldsymbol{a}_{i,t} = F_{i,t}^{-1} \widetilde{\boldsymbol{Y}}_t \tag{13}$$

将式 (13) 代入式 (12), 得:

$$\boldsymbol{U}_{t} = -\widetilde{T}^{-1}R_{i,t}F_{i,t}^{-1}\widetilde{\boldsymbol{Y}}_{t} = -\widetilde{T}^{-1}R_{i,t}F_{i,t}^{-1}(q^{-d}D)\boldsymbol{Y}_{t}$$
(14)

则基于 $N_{i,t}$ 的多变量 SMTMV 控制器为

$$Q_{i,t} = \widetilde{T}^{-1} R_{i,t} F_{i,t}^{-1}(q^{-d}D)$$
(15)

并将基于 $N_{i,t}$ 的多变量 SMTMV 控制器作用下的被控变量的平均方差作为基于 $N_{i,t}$ 的多变量 SMTMV 评估方法的基准.

2.2 多模型混合时变最小方差 (MMTMV) 控制器

由于多变量 SMTMV 控制器只考虑了某一个 扰动而忽略其他扰动,当系统存在多个扰动时,多变 量 SMTMV 性能评估方法并不能准确评估多变量 时变扰动系统性能. 多模型切换方法常用来解决具 有多个扰动的控制系统的控制问题. 多变量系统的 多模型切换时变最小方差 (Multi-model switching time-variant minimum variance, MSTMV) 控制器 与基准通过以下方式得到:在每一工作时刻,从该时 刻存在的多变量 SMTMV 控制器中,选取对多变量 时变扰动系统性能评估效果最好的多变量 SMTMV 控制器作为多变量 MSTMV 控制器,并将多变量 MSTMV 控制器作用下的被控变量的平均方差作为 多变量 MSTMV 评估方法的基准.

当忽略工业过程时滞与延迟等因素对性能评估 的影响,多变量 MSTMV 控制器作用下的被控过程 平均输出方差即为相应时间段被控过程在每一多变 量 SMTMV 控制器作用下对应的平均输出方差中 最小的平均输出方差.但工业过程对象普遍为延迟 对象.当被控对象的输出与输入具有时间延迟,控 制器切换时参数跳变易导致控制器输出产生跳变, 相当于给被控过程加了一个额外的输入,而时滞过 程暂态性能差,从而导致整个回路将会产生多余的 暂态误差.多余的暂态误差使过程实际平均输出方 差大于根据扰动输入输出数据计算得到的 MSTMV 基准,导致 MSTMV 基准与实际过程不相符而影响 MSTMV 基准的准确性.

为解决实际控制中多模型切换方法存在暂态误 差这一问题,通常采用控制器缓慢变化的方法.本文 根据多模型混合思想,基于每个扰动作用的时间建 立混合权重,利用多变量 SMTMV 控制器加权得到 多变量的 MMTMV 控制器,并将其作用下的被控 变量的平均输出方差作为多变量 MMTMV 性能评 估方法的基准,以评估多变量时变扰动控制系统性 能.

当多个时变扰动 $N_{1,t}, N_{2,t}, \dots, N_{n,t}$ 作用于多 变量系统, T_1, T_2, \dots, T_n 为每个扰动作用时间段, 两两之间可重叠且 $T_{\text{Total}} = \cup T_i, i = 1, 2, \dots, n.$ 若针对第 i 个扰动在 t 时刻的特性设计的多变量 SMTMV 控制器为 $Q_{i,t}$, 则基于每个时变扰动的多 变量 SMTMV 控制准则分别为

$$\boldsymbol{u}_{t} = -Q_{1,t}\boldsymbol{Y}_{t}, \quad t \in T_{1}$$
$$\boldsymbol{u}_{t} = -Q_{2,t}\boldsymbol{Y}_{t}, \quad t \in T_{2}$$
$$\vdots$$
$$\boldsymbol{u}_{t} = -Q_{n,t}\boldsymbol{Y}_{t}, \quad t \in T_{n}$$
$$(16)$$

设多变量 MMTMV 控制器为 Q_t ,则其应满足

$$U_{t} = -Q_{t}Y_{t}$$
(17)

$$Q_{t} = \alpha_{1}(t)Q_{1,t} + \alpha_{2}(t)Q_{2,t} + \dots + \alpha_{n}(t)Q_{n,t}$$
(18)

式 中, $\alpha_1(t), \alpha_2(t), \dots, \alpha_n(t)$ 为 相 应 多 变 量 SMTMV 控制器的混合权重. 当 $t \in T_{\text{Total}}$ 时, $\alpha_i(t)$ 满足下面等式.

$$\alpha_i(t) = 0, \quad t \notin T_i, \quad i = 1, 2, \cdots, n \tag{19}$$

$$\alpha_1(t), \alpha_2(t), \cdots, \alpha_n(t) \ge 0 \tag{20}$$

$$\alpha_1(t) + \alpha_2(t) + \dots + \alpha_n(t) = 1 \tag{21}$$

$$\alpha_i(t) = \frac{\alpha_i(t)}{\widetilde{\alpha}_1(t) + \widetilde{\alpha}_2(t) + \dots + \widetilde{\alpha}_n(t)}, i = 1, 2, \dots, n$$
(22)

其中, $\tilde{\alpha}_i(t)$ 为未规范化权重因子, 必须满足连续可 微条件. 本文取

$$\widetilde{\alpha}_{i}(t) = \varphi\left(\frac{\left(t - \frac{(U_{i} + L_{i})}{2}\right)}{\left(\frac{(U_{i} - L_{i})}{2}\right)}\right),$$

$$i = 1, 2, \cdots, n \qquad (23)$$

其中, U_i , L_i 为 T_i 区间的上下限, 即 $T_i = \{t : L_i < t < U_i\}.$

为使 $\alpha_i(t)$ 满足式 (19) ~ (21)、 $\tilde{\alpha}_i(t)$ 满足连续 可微条件, 令

$$\varphi(x) = \begin{cases} e^{-\frac{1}{1-x^2}}, & |x| < 1\\ 0, & |x| \ge 1 \end{cases}$$
(24)

以获得 MMTMV 控制器 Q_t .

文献 [2] 指出: 将理想控制器作用下的被控变量 的平均输出方差作为一个基准, 将实际多变量控制 器作用下的被控变量的平均输出方差与基准进行比 值运算以得到一个介于 [0,1] 之间的比值, 通过比值 来判断实际控制器与理想控制器之间存在的提升潜 能, 从而实现多变量扰动系统的性能评估. 因此, 本 文采用性能指标:

$$\eta = \frac{\eta_1 + \eta_2 + \dots + \eta_m}{m} \tag{25}$$

$$\eta_j = \frac{\delta^2_{MV,j}}{\delta^2_{q,j}}, \quad j = 1, 2, \cdots, m$$
 (26)

式中, *m* 为多变量控制系统被控变量的个数, $\delta^2_{MV,j}$ 是多变量最小方差控制器 (SMTMV 控制器、MSTMV 控制器、MMTMV 控制器) 作用下 第 *j* 个被控变量的输出方差, $\delta^2_{y,j}$ 为实际控制器控制 作用下第 *j* 个被控变量的输出方差. 性能评估指标 η 满足 $0 \le \eta \le 1$. 因此, 通过该性能评估指标 η , 即 可实现对具有多个扰动的多变量系统进行性能评估.

- 3 仿真研究
- 3.1 数值仿真

被控对象的传递函数取

$$T = \begin{bmatrix} \frac{q^{-1}}{1 - 0.4q^{-1}} & \frac{q^{-2}}{1 - 0.1q^{-1}} \\ \frac{0.3q^{-1}}{1 - 0.1q^{-1}} & \frac{q^{-2}}{1 - 0.8q^{-1}} \end{bmatrix}$$
(27)

假设系统有三个多变量时变扰动,且扰动特性 用传递函数表达的形式分别如下

$$N_{1} = \begin{bmatrix} \frac{1 - (a_{11}(t) + 0.1)q^{-1}}{1 - 0.5q^{-1}} & \frac{1 - (a_{12}(t) + 0.1)q^{-1}}{1 - 0.5q^{-1}} \\ \frac{1 - (a_{21}(t) + 0.1)q^{-1}}{1 - 0.5q^{-1}} & \frac{1 - (a_{22}(t) + 0.1)q^{-1}}{1 - 0.5q^{-1}} \end{bmatrix}$$
(28)

$$N_{2} = \begin{bmatrix} \frac{1 - a_{11}(t)q^{-1}}{1 - 0.5q^{-1}} & \frac{1 - a_{12}(t)q^{-1}}{1 - 0.5q^{-1}} \\ \frac{1 - a_{21}(t)q^{-1}}{1 - 0.5q^{-1}} & \frac{1 - a_{22}(t)q^{-1}}{1 - 0.5q^{-1}} \end{bmatrix}$$
(29)
$$N_{3} = \begin{bmatrix} \frac{1 - (a_{11}(t) - 0.1)q^{-1}}{1 - 0.5q^{-1}} & \frac{1 - (a_{12}(t) - 0.1)q^{-1}}{1 - 0.5q^{-1}} \\ \frac{1 - (a_{21}(t) - 0.1)q^{-1}}{1 - 0.5q^{-1}} & \frac{1 - (a_{22}(t) - 0.1)q^{-1}}{1 - 0.5q^{-1}} \end{bmatrix}$$
(30)

式中, a₁₁(t), a₁₂(t), a₂₁(t), a₂₂(t) 取如下形式

$$a_{11}(t) = 0.45 + 0.00003t$$

$$a_{12}(t) = 0.75 - 0.00003t$$

$$a_{21}(t) = 0.55 - 0.00002t$$

$$a_{22}(t) = 0.50 + 0.00002t$$
 (31)

 N_1 , N_2 , N_3 作用时间分别是 1s~2000s、1000s~2000s、1500s~3000s,噪 声源为方差均为1的白噪声.本文采用的实际控制 器如下

$$Q = \begin{bmatrix} \frac{0.35 - 0.25q^{-1}}{0.85 - 0.25q^{-1} - 0.25q^{-2}} & \frac{0.35 - 0.25q^{-1}}{0.95 - 0.35q^{-1} - 0.25q^{-2}} \\ \frac{0.25 - 0.15q^{-1}}{0.85 - 0.35q^{-1} - 0.25q^{-2}} & \frac{0.25 - 0.15q^{-1}}{0.95 - 0.25q^{-1} - 0.25q^{-2}} \end{bmatrix}$$
(32)

利用多模型混合思想设计多变量 MMTMV 控制器 Q_t 时,混合权重 $\alpha_1(t)$ 、 $\alpha_2(t)$ 、 $\alpha_3(t)$ 取值曲线如图 2~图 4 所示.

本次仿真分别采用了基于 N₁、N₂、N₃的多变 量 SMTMV 方法、多变量 MSTMV 方法和多变量 MMTMV 方法对上述多变量时变扰动系统进行性 能评估,通过评估结果的对比验证多变量 MMTMV 方法是更有效的.基于不同评估方法在不同时间段 的输出方差与性能指标如表 1 与表 2 所示.

t/s 图 4 混合权重 $\alpha_3(t)$ 取值曲线

Fig. 4 Curve of mixed parameter $\alpha_3(t)$

表1 基于不同评估方法的输出方差

 Table 1
 The output variance based on different evaluation methods

评估方法	输出	$0 \sim$	$1000\sim$	$1500\sim$	$2000\sim$	$0 \sim$
		$1000\mathrm{s}$	$1500\mathrm{s}$	$2000\mathrm{s}$	$3000\mathrm{s}$	$3000\mathrm{s}$
$\mathrm{SMTMV}(N_1)$	y_1	1.8835	4.5984	5.4762	2.0698	2.9996
	y_2	1.9087	4.5612	5.3730	2.0104	2.9640
$\mathrm{SMTMV}(N_2)$	y_1	1.9384	4.5389	5.2773	1.9697	2.9391
	y_2	1.9394	4.5422	5.3075	1.9732	2.9463
$\mathrm{SMTMV}(N_3)$	y_1	2.0357	4.6294	5.2678	1.9432	2.9749
	y_2	1.9774	4.5653	5.2921	1.9563	2.9538
MSTMV	y_1	1.8835	4.5389	5.2678	1.9432	2.9103
	y_2	1.9087	4.5422	5.2921	1.9563	2.9278
MMTMV	$oldsymbol{y}_1$	1.8835	4.5692	5.2878	1.9432	2.9195
	$oldsymbol{y}_2$	1.9087	4.5512	5.3141	1.9563	2.9335
实际方差	y_1	4.0743	9.0414	8.9920	3.2639	5.4454
	y_2	2.4394	5.4726	5.9782	2.1835	3.4455

性能评估主要评估系统在整个工艺过程中的 控制性能.从表1与表2中看到,基于 N₁的多 变量 SMTMV 方法的评估指标基本都大于多变量 MMTMV 方法的性能评估指标,即基于 N_1 的多 变量 SMTMV 方法评估得到的系统提升潜能要小 于基于多变量 MMTMV 方法得到的提升潜能,故 基于 N_1 的多变量 SMTMV 方法效果差于多变量 MMTMV 方法;基于 N_2 的多变量 SMTMV 方法虽在 1000~1500s 与 1500~2000s 时间段的 性能指标稍小于多变量 MMTMV 方法的性能指标,但其在整个 0~3000s 的评估指标大于多变量 MMTMV 方法的性能指标,则多变量 MMTMV 方法的性能指标,则多变量 MMTMV 方法的性能指标,则多变量 MMTMV 方法也能指标,则多变量 SMTMV 方法。

表 2 基于不同评估方法的性能指标

Table 2Performance index based on different
evaluation methods

评估方法	$0 \sim$	$1000~\sim$	$1500\sim$	$2000~\sim$	$0 \sim$
	$1000\mathrm{s}$	$1500\mathrm{s}$	$2000\mathrm{s}$	$3000\mathrm{s}$	$3000\mathrm{s}$
$\mathrm{SMTMV}(N_1)$	0.6224	0.6710	0.7539	0.7774	0.7056
$\mathrm{SMTMV}(N_2)$	0.6354	0.6660	0.7373	0.7536	0.6974
$\mathrm{SMTMV}(N_3)$	0.6551	0.6731	0.7355	0.7457	0.7018
MSTMV	0.6224	0.6660	0.7355	0.7457	0.6920
MMTMV	0.6224	0.6684	0.7385	0.7457	0.6938

表 2 表明, 采用多变量 MSTMV 方法对系统进 行评估时, 能有效地评估系统各个时间段的控制性 能. 然而, 在实际工业过程中, 当多个时变扰动同时 出现对控制器进行切换时, 可能会产生较大的暂态 误差, 导致基于扰动输入输出数据得到的 MSTMV 基准与实际过程被控变量平均输出方差不一致而 影响多变量 MSTMV 方法评估结果的准确性.本 文在计算 MSTMV 基准的过程中, 相应时间段的 MSTMV 基准等价于相应时间段三个 SMTMV 基 准中最优的 SMTMV 基准, 其忽略了过程时滞带来 的影响, 因此控制器间歇切换引起的误差本文仿真 结果中并未看到.

本文提出的多变量 MMTMV 方法在整个 0~3000s 过程中评估效果都优于基于各多变量 扰动的多变量 SMTMV 方法. 此外,基于多变 量 MMTMV 方法得到的性能指标与基于多变量 MSTMV 方法得到的性能指标基本一致,这表明多 变量 MMTMV 方法的评估效果与多变量 MSTMV 方法的评估效果基本相同.由于多变量 MMTMV 方法以混合权重的方法避免了间歇切换,很好地解 决了多变量 MSTMV 方法存在的利用扰动输入输 出数据得到的基准与实际过程被控变量输出方差不 一致的问题,因此多变量 MMTMV 方法评估结果 的有效性在实际应用中优于多变量 MSTMV 性能 评估方法.

3.2 乙烯裂解炉扰动控制系统性能评估

乙烯裂解炉是石油化工中的龙头设备,其运行 的状态好坏关系到整个石油化工过程的生产安全与 经济效益. 在乙烯裂解炉生产过程中, 乙烯裂解炉的 进料量、汽烃比、平均出口温度、油品的属性等因素 都在一定的范围内波动: 随着乙烯裂解炉投入运行 时间的增加,乙烯裂解炉因发生结焦反应而管壁变 厚,裂解炉扰动特性会发生变化.因此,对具有多个 扰动且特性时变的乙烯裂解炉控制系统进行性能评 估,对提高整个石油化工过程的生产安全与经济效 益具有重要意义.乙烯裂解炉的乙烯、丙烯收率与 油品属性、裂解炉平均出口温度 COT、裂解炉汽烃 比、进料流量、横跨温度等因素有关[13-15].在本文 乙烯裂解炉控制系统性能评估仿真中, 被控变量为 乙烯与丙烯的收率,操作变量为裂解炉平均出口温 度 COT 与进料流量. 被控对象乙烯裂解炉模型取 与实际裂解炉过程相符的神经网络模型.

本文对裂解炉平均出口温度 COT 为 831°C、 进料流量为 40 吨/小时的裂解炉工作状态进行性能 评估.以油品属性、裂解炉汽烃比、横跨温度的波动 作为时变扰动,其可由仪器测得.三个扰动作用时间 分别为 1~2000s、1000~2000s、1500~3000s 采样时间段.因乙烯裂解炉工业生产过程呈周期性, 过程扰动的时变特性可根据经验获得.本文将乙烯 裂解炉扰动控制系统性能评估划分为基于不同方法 的乙烯裂解炉控制系统性能评估和乙烯裂解炉控制 系统采用不同控制器时的性能评估两个部分.

3.2.1 基于不同方法的乙烯裂解炉控制系统性能评估

当乙烯裂解炉控制系统控制器取式 (33) 时,多 个时变扰动影响下的乙烯裂解炉的双烯收率如图 5 所示.利用本文所提到的方法评估乙烯裂解炉控制 系统性能的结果如表 3 所示.

当性能指标大于 1, 表明提出来的基准比实际 多变量控制器作用下的被控变量的平均输出方差更 大,无法评估当前实际控制器具有的提升潜能而失 去作为基准的意义. 从表 3 的数据看到, 基于 N_1 的 多变量 SMTMV 方法在 2000~3000 s 采样时间段 性能指标大于 1. 这是因为: 表 3 的第一行为基于 N_1 的多变量 SMTMV 方法的性能评估结果; 基于 N_1 的 SMTMV 控制器只考虑了 N_1 的扰动特性, 忽略了其他扰动的特性; 在 2000~3000 s 采样时间 段裂解炉系统只存在 N_3 扰动. 故在 2000~3000 s 采样时间段基于 N_1 的 SMTMV 控制器必定不能 实现对 N_3 扰动的较理想的控制,甚至于基于 N_1 的 SMTMV 控制器比实际控制器控制效果更差,导致指标大于 1 而失去参考价值. 故基于 N_1 的多变量 SMTMV 方法不能准确评估乙烯裂解炉控制系统的性能. 本文提出的多变量 MMTMV 方法在 0~3000s 整个采样过程性能指标都比基于 N_1 、 N_2 、 N_3 的多变量 SMTMV 方法的性能指标小,故本文提出的多变量 MMTMV 方法可优于多变量 SMTMV 方法. 与多变量 MSTMV 方法相比,多变量 MMTMV 方法评估乙烯裂解炉控制系统的性能指标与多变量 MSTMV 方法的性能指标基本一致,却避免了多变量 MSTMV 方法的性能指标基本一致,却避免了多变量 MSTMV 方法控制器切换带来的不利影响,使 MMTMV 基准更符合实际乙烯裂解 炉控制系统生产过程,因此多变量 MMTMV 方法更有效.

图 5 乙烯裂解炉在时变扰动作用下的双烯收率输出 Fig. 5 The output of ethylene cracking furnace under the effect of time-varying disturbances

表 3 基于不同评估方法的乙烯裂解炉性能指标

 Table 3
 Performance index of cracking furnace based on different evaluation methods

评估方法	$0 \sim$	$1000\sim$	$1500\sim$	$2000~\sim$	$0 \sim$
	$1000{\rm s}$	$1500\mathrm{s}$	$2000\mathrm{s}$	$3000\mathrm{s}$	$3000\mathrm{s}$
$\mathrm{SMTMV}(N_1)$	0.9778	0.9931	0.9948	1.009	0.9943
$\mathrm{SMTMV}(N_2)$	0.9858	0.9901	0.9889	0.9987	0.9909
$\mathrm{SMTMV}(N_3)$	0.9981	0.9950	0.9920	0.9962	0.9951
MSTMV	0.9778	0.9901	0.9889	0.9962	0.9888
MMTMV	0.9778	0.9910	0.9915	0.9962	0.9897

3.2.2 乙烯裂解炉控制系统采用不同控制器时的性 能评估

当乙烯裂解炉扰动控制系统的控制器由式 (33) 变为式 (34),采用本文所述方法再次评估乙烯裂解 炉扰动控制系统性能,其评估结果如表 4 所示.

$$Q = \begin{bmatrix} \frac{200 \times (0.35 - 0.25q^{-1})}{0.85 - 0.25q^{-1} - 0.25q^{-2}} & \frac{200 \times (0.35 - 0.25q^{-1})}{0.95 - 0.35q^{-1} - 0.25q^{-2}} \\ \frac{50 \times (0.25 - 0.15q^{-1})}{0.85 - 0.35q^{-1} - 0.25q^{-2}} & \frac{50 \times (0.25 - 0.15q^{-1})}{0.95 - 0.25q^{-1} - 0.25q^{-2}} \end{bmatrix}$$
(34)

从表 4 看到, 当乙烯裂解炉控制系统控制器采 用式 (34), 上述所有性能评估方法均能对乙烯裂解 炉控制系统进行有效评估. 然而, 当乙烯裂解炉控 制器采用式 (33) 时, 基于 N₁ 的多变量 SMTMV 方法不能对乙烯裂解炉控制系统进行有效评估.本 文提出的多变量 MMTMV 方法均能对两者控制器 作用下的乙烯裂解炉控制系统进行有效的性能评 估. 这也表明了本文提出的多变量 MMTMV 方 法比基于 N₁ 的多变量 SMTMV 方法更有效.因 多变量 MMTMV 方法的基准比基于 N2 的多变量 SMTMV 方法的基准、基于 N₃ 的多变量 SMTMV 方法的基准更小, 多变量 MMTMV 方法也比后两 者更能避免这一情况而更有效.此外,当乙烯裂解炉 控制器采用式 (33) 时, 其基于不同评估方法的性能 指标均比采用式 (34) 时的性能指标大, 表明乙烯裂 解炉控制系统采用式 (33) 时更能运行在较优状态. 综合考虑,本文提出的多变量 MMTMV 方法评估 结果整体准确性高于本文其他方法,对乙烯裂解炉 的工业生产具有一定的指导意义.

表 4 基于不同评估方法的乙烯裂解炉性能指标 Table 4 Performance index of cracking furnace based on different evaluation methods

评估方法	$0 \sim$	$1000~\sim$	$1500\sim$	$2000~\sim$	$0 \sim$
	$1000\mathrm{s}$	$1500\mathrm{s}$	$2000{\rm s}$	$3000\mathrm{s}$	$3000\mathrm{s}$
$\mathrm{SMTMV}(N_1)$	0.9642	0.9806	0.9820	0.9975	0.9817
$\mathrm{SMTMV}(N_2)$	0.9721	0.9777	0.9762	0.9874	0.9784
$\mathrm{SMTMV}(N_3)$	0.9843	0.9825	0.9792	0.9848	0.9825
MSTMV	0.9642	0.9777	0.9762	0.9848	0.9763
MMTMV	0.9642	0.9785	0.9788	0.9848	0.9771

3.3 精馏塔扰动控制系统性能评估

精馏塔是化工生产中应用极为广泛的传质传热 过程.一般精馏装置由精馏塔塔身、冷凝器、回流罐 以及再沸器等设备组成,如图6所示.

在精馏塔中,塔顶或塔底产品之一应保证合乎 规定的纯度,另一产品的成分也应维持在规定范围, 或者塔顶和塔底的产品均应保证一定的纯度.精馏 塔是建立在物料平衡和热量平衡的基础上操作的, 一切因素均通过物料平衡和热量平衡的基础上操作的, 一切因素均通过物料平衡和热量平衡影响塔的正常 操作.影响物料平衡的因素主要是进料流量、进料组 分和采出量的变化等.影响热量平衡的因素主要是进料流量、进料组 分和采出量的变化等.影响热量平衡的因素主要是 进料温度、再沸器的加热量与冷凝器的冷却量等变 化^[16].本文的精馏塔过程模型采用式(35).其中, y₁ 为塔顶丁烷浓度, y₂ 为塔底丙烷浓度, u₁ 是回流量, u₂ 是再沸器汽化率.取进料流量、进料组分与采出 量的变化作为时变扰动,当控制器取式(36)时,采 用本文所述方法。

Fig. 6 The diagram of rectifying tower process

表 5 基于不同评估方法的精馏塔性能指标

 Table 5
 Performance index of rectifying tower based on different evaluation methods

评估方法	$0 \sim$	$1000 \sim$	$1500\sim$	$2000 \sim$	$0 \sim$
	$1000{\rm s}$	$1500\mathrm{s}$	$2000{\rm s}$	$3000\mathrm{s}$	$3000\mathrm{s}$
$\mathrm{SMTMV}(N_1)$	0.9002	0.9196	0.9226	0.9372	0.9205
$\mathrm{SMTMV}(N_2)$	0.9072	0.9168	0.9173	0.9269	0.9210
$\mathrm{SMTMV}(N_3)$	0.9190	0.9212	0.9200	0.9248	0.9173
MSTMV	0.9002	0.9168	0.9173	0.9248	0.9152
MMTMV	0.9002	0.9176	0.9195	0.9248	0.9161
$\begin{bmatrix} y_1(q^{-1}) \\ y_2(q^{-1}) \end{bmatrix}$ $Q = \begin{bmatrix} \frac{30}{0.85} \\ \frac{10}{0.85} \end{bmatrix}$	$ = \begin{bmatrix} - & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \times (0.20 - 0) \\ & & -0.35q^{-1} \end{bmatrix} $	$\frac{\begin{array}{c} 0.0305}{75+q^{-1}}\\ -\begin{array}{c} 0.0768\\7+q^{-1}\end{array}\\ \hline 30\times(0\\0.95-0.\\ 10\times(0\\0.95-0.\end{array}\end{array}$	$\frac{3}{4} \begin{bmatrix} u_1(u_2(u_3)) \\ u_2(u_3) \\ \frac{35q^{-1} - 0.5}{35q^{-1} - 0.5} \end{bmatrix}$	$ \begin{bmatrix} (q^{-1}) \\ (q^{-1}) \end{bmatrix} $ $ (35) $ $ \begin{bmatrix} \frac{-1}{25q^{-2}} \\ -1 \\ \frac{-1}{25q^{-2}} \end{bmatrix} $ $ (36) $	

通过表5可见,在0~3000s采样时间段的多变量 MMTMV 方法的性能指标比各多变量 SMTMV 方法的性能指标均小,且与多变量 MSTMV 方法的 性能指标相差不大,则各评估方法在精馏塔扰动控 制系统性能评估中的有效性结论与其在裂解炉扰动 控制系统性能评估中的结论是一致的.精馏塔扰动 控制系统性能评估研究再次验证了本文提出的多变 量 MMTMV 方法在实际工业过程中的适用性.

4 结论

本文提出的多变量 MMTMV 方法能准确评 估多变量时变扰动系统性能. 多变量 MMTMV 方 法同时考虑了多个多变量时变扰动特性设计控制 器, 与多变量 SMTMV 方法只依据某一个多变量 扰动特性设计控制器相比, 多变量 MMTMV 更具 可靠性.此外, 与多变量 MSTMV 方法相比, 多变 量 MMTMV 方法以混合权重的方式解决了多变量 MSTMV 方法存在的暂态误差问题, 使系统性能评 估的准确度与可信度都有很大提高.

目前,利用本文方法对具有多个时变扰动的多 变量系统进行性能评估尚需一定的先验知识且扰动 须均为可测扰动.为了解决基于模型的性能评估方 法对先验知识的依赖性的问题,下一阶段将进行基 于数据的时变扰动控制系统性能评估方法的研究. 但如何利用过程的数据挖掘过程的一些特性,并在 此基础上进行性能评估,相关方法有待进一步研究.

References

- 1 Harris T J. Assessment of control loop performance. The Canadian Journal of Chemical Engineering, 1989, 67(5): 856-861
- 2 Huang B, Shah S L. Performance Assessment of Control Loops: Theory and Applications. London, UK: Springer-Verlag, 1999.
- 3 Mazinan A H, Sadati N. Fuzzy predictive control based multiple models strategy for a tubular heat exchanger system. *Applied Intelligence*, 2009, **33**(3): 247–263
- 4 Aufderheide B, Prasad V, Bequette B W. A comparison of fundamental model-based and multiple model predictive control. In: Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, FL, USA: IEEE, 2001. 4863–4868
- 5 Wang X, Yue H, Chai T Y. Multivariable direct adaptive pole placement feedforward decoupling controller using multiple models. In: Proceedings of the 4th World Congress on Intelligent Control and Automation. Shanghai, China: IEEE, 2002. 852–857
- 6 Li Xiao-Tian, Wang Xin, Wang Zhen-Lei, Qian Feng. A stair-like generalized predictive control algorithm based on multiple models switching. *CIESC Journal*, 2012, **63**(1): 193–197 (李小田, 王昕, 王振雷, 钱锋. 一种基于多模型切换的阶梯式广义预 测控制算法. 化工学报, 2012, **63**(1): 193–197)
- 7 Ohnishi Y. A switching method of PID controllers based on performance assessment. In: Proceedings of the 2009 ICROS-SICE. Fukuoka, Japan: IEEE, 2009. 1907–1910
- 8 Ohnishi Y. Design of a switching nonlinear PID control system based on performance assessment. In: Proceedings of the 2011 SICE Annual Conference. Tokyo, Japan: IEEE, 2011. 2619-2623
- 9 Kuipers M, Ioannou P. Multiple model adaptive control with mixing. *IEEE Transactions on Automatic Control*, 2010, 55(8): 1822–1836
- 10 Baldi S, Ioannou P, Mosca E. Multiple model adaptive mixing control: the discrete-time case. *IEEE Transactions on Automatic Control*, 2012, 57(4): 1040–1045
- 11 Zhang Wei, Wang Xin, Wang Zhen-Lei. Performance assessment of control loop with time-variant disturbance dynamics based on multi-model mixing minimum variance control. Acta Automatica Sinica, 2014, **40**(9): 2037-2044 (张巍, 王昕, 王振雷. 基于多模型混合最小方差控制的时变扰动控制系统性能评估. 自动化学报, 2014, **40**(9): 2037-2044)

- 12 Rogozinski M, Paplinski A, Gibbard M J. An algorithm for the calculation of a nilpotent interactor matrix for linear multivariable systems. *IEEE Transactions on Automatic Control*, 1987, **32**(3): 234–237
- 13 Sadrameli S M, Green A E S. Systematics and modeling representations of naphtha thermal cracking for olefin production. Journal of Analytical and Applied Pyrolysis, 2005, 73(2): 305-313
- 14 Liu Shi-Tao, Wang Hong-Gang, Qian Feng, Hu Gui-Hua. Coupled simulation of combustion with heat transfer and cracking reaction in SL-II industrial ethylene pyrolyzer. CI-ESC Journal, 2011, 62(5): 1308-1317 (刘时涛, 王宏刚, 钱锋, 胡贵华. SL-II 型工业乙烯裂解炉内燃烧传 热与裂解反应的耦合模拟. 化工学报, 2011, 62(5): 1308-1317)
- 15 Yangzi Petrochemical Company. Process of Ethylene Plant. Nanjing: Yangzi Company Press, 2003. (扬子石油化工股份有限公司.乙烯装置工艺篇.南京:扬子公司出版社, 2003.)
- 16 Yu Jin-Shou, Gu Xing-Sheng. Process Control Engineering (4th edition). Beijing: Higher Education Press, 2012. (俞金寿, 顾幸生. 过程控制工程. 第 4 版. 北京: 高等教育出版社, 2012.)

刘春平 华东理工大学信息科学与工程 学院硕士研究生.主要研究方向为时变 扰动控制系统性能评估.

E-mail: 939176928@qq.com

(LIU Chun-Ping Master student at the School of Information Science and Engineering, East China University of Science and Technology. His research

interest covers performance assessment of control loop with time-variant disturbances.)

王 昕 上海交通大学副教授. 主要研究 方向为多模型自适应控制, 智能解耦, 复 杂工业过程建模、控制与优化.

E-mail: wangxin26@sjtu.edu.cn

(WANG Xin Associate professor at Shanghai Jiao Tong University. His research interest covers multiple models adaptive control, multivariable intelli-

gent decoupling control, modeling, control and optimization of complex industrial processes.)

王振雷 华东理工大学教授. 主要研究 方向为智能控制, 复杂系统的建模及特 征分析, 故障诊断, 智能优化算法的研究. 本文通信作者.

E-mail: wangzhen_l@ecust.edu.cn

(WANG Zhen-Lei Professor at East China University of Science and Technology. His research interest cov-

ers intelligent control, modeling and analysis the characteristics of complex systems, fault diagnosis, and intelligent optimization algorithms research. Corresponding author of this paper.)