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A Particle Swarm Optimization Algorithm with Variable

Random Functions and Mutation
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Abstract The convergence analysis of the standard particle swarm optimization (PSO) has shown that the changing of random
functions, personal best and group best has the potential to improve the performance of the PSO. In this paper, a novel strategy with
variable random functions and polynomial mutation is introduced into the PSO, which is called particle swarm optimization algorithm
with variable random functions and mutation (PSO-RM). Random functions are adjusted with the density of the population so as to
manipulate the weight of cognition part and social part. Mutation is executed on both personal best particle and group best particle
to explore new areas. Experiment results have demonstrated the effectiveness of the strategy.

Key words Particle swarm optimization, random functions, mutation, population density

Citation Zhou Xiao-Jun, Yang Chun-Hua, Gui Wei-Hua, Dong Tian-Xue. A particle swarm optimization algorithm with variable
random functions and mutation. Acta Automatica Sinica, 2014, 40(7): 1339–1347

DOI 10.3724/SP.J.1004.2014.01339

Inspired by the social behavior of bird flocking and
fish schooling, the particle swarm optimization (PSO) has

drawn widespread attention in the last decades[1−2]. To
improve the performance of the standard PSO[3], various
strategies have been presented, and these studies mainly
focus on the basic control parameters, such as swarm size,
inertial weight, acceleration coefficients, velocity clamp-
ing, and topological structures[4−5]. In [6−8], linearly de-
creasing, randomly varying, and dynamic nonlinear iner-
tial weights were proposed, respectively, indicating that a
varying inertial weight can balance the global search abil-
ity and the local search ability. In [9], a particle swarm
optimizer with time-varying acceleration coefficients was
introduced, and it suggested that a changing acceleration
coefficient of the cognition part in a linearly decreasing way
and a varying acceleration coefficient of the social part in
a linearly increasing way would bring better solutions. In
the meantime, acceleration coefficients varying with evo-
lutionary states were also studied by fuzzy membership
functions[10].

The PSO is sensitive to control parameter choices be-
cause not only they affect the search ability but also they
influence the convergence performance of particles. As a
matter of fact, the convergence analysis of standard PSO
has been widely studied. In [11−13], the behavior of parti-
cles was investigated to observe the trajectories for swarms
under some specified models. In general, the stability anal-
ysis of PSO is based on either dynamic system theory[14−18]

or stochastic process theory[19−22], and they have provided
theoretical support for the selection of parameters.

On the other hand, the effect of the random functions on
PSO has not been discussed so much. We presented a PSO
using the skewness of evaluation function as heuristic in-
formation to adjust the random functions[23]; however, the
study was based on experience without theoretical analysis.
In this paper, by studying the convergence analysis results
of the standard PSO, we find that the changing of random
functions, personal best and group best have the poten-
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tial to improve the performance of the PSO. Based on the
observation, then a particle swarm optimization algorithm
with variable random functions and mutation (PSO-RM) is
proposed consequently, and the experiment results testify
the effectiveness of the PSO-RM.

The paper is organized as follows. Section 1 introduces
the standard PSO. In the next section, the search direction
of optimization algorithms and random distribution func-
tions are analyzed; then the potential of changing random
functions and varying personal best and group best to im-
prove the performance of standard PSO is demonstrated.
Section 3 presents the experiment results and discussion by
comparing the PSO-RM with other PSOs. Conclusions are
drawn in Section 4.

1 Standard particle swarm optimizer

As a stochastic optimization approach, similar to the ge-
netic algorithm, particles swarm optimization is initialized
with a population of random solutions. However, the solu-
tions are called particles instead of individuals, and at the
same time, each particle is associated with a randomized
velocity. In the process of updating, each particle keeps
track of its previous best position as well as the best po-
sition found by its neighborhood. The standard particle
swarm optimization can be described as follows

vid(k + 1) = wvid(k) + c1r1(pid(k)− xid(k))+

c2r2(pgd(k)− xid(k)) (1)

xid(k + 1) = xid(k) + vid(k + 1) (2)

where i denotes the ith particle, d is the dth di-
mension, Vi(k) = (vi1(k), · · · , vin(k)) and Xi(k) =
(xi1(k), · · · , xin(k)) are the current velocity and position of
the ith particle, respectively. Pi(k) = (pi1(k), · · · , pin(k))
is the best position found so far by the ith particle, while
Pg(k) = (pg1(k), · · · , pgn(k)) is the best position found by
the neighborhood. c1 and c2 are acceleration constants,
and r1 and r2 are uniformly distributed random numbers.

2 PSO with variable random functions
and mutation

2.1 Search direction

To solve an optimization problem, the traditional
method is based on gradient. In the gradient based way,
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search direction is generated by the negative gradient at an
iterative point. Moving in the negative gradient direction,
the objective function decreases at a steepest descent in
the neighborhood of the point. However, the gradient only
indicates local information, that is to say, methods based
on gradient are local search approach to some extent.

Modern intelligent optimization algorithms, such as ge-
netic algorithm, simulated annealing, ant colony optimiza-
tion, particle swarm optimization, etc., are believed to be
global optimization methods. At the same time, these al-
gorithms are stochastic approaches, and they usually uti-
lize the evaluation function as the search direction informa-
tion. In a way, for the intelligent optimization algorithm,
the probability distribution of population can reflect the
direction to guide the swarm′s moving. As for the PSO
algorithm, the changing of the random functions in the up-
date equation can alter the swarm′s distribution, which, in
other words, can direct the behavior of particles.

2.2 Random distribution functions

In various distribution functions, the β distribution can
approximate other diverse distribution functions. The
probability density function of β distribution is

f(x|a, b) =
1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1 (3)

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx, a > 0, b > 0 (4)

The alteration of parameters a and b can gain various dis-
tributions. If a = b = 1, the distribution can approximate
uniform distribution; if a = b = 4, it will approximate nor-
mal distribution; if a = 1, b = 2, the approximate lower
triangular distribution will be gained and if a = 2, b = 1,
the approximate upper triangular distribution will be ob-
tained. The histograms of the distributions are illustrated
in Fig. 1.

Fig. 1 Four different distributions

2.3 Adjusting strategy of random functions

In [18], the convergence analysis of PSO was discussed.
It can be concluded that under some circumstances, the
positions of the particles can converge to

qid =
ϕ1pid + ϕ2pgd

ϕ1 + ϕ2
(5)

where ϕ1 = c1r1, ϕ2 = c2r2. It is acknowledged that pid is
the cognition part and pgd is the social part, and the equi-
librium of the two parts is manipulated by ϕ1 and ϕ2. It

is easy to understand that the increase of ϕ1 will benefit
competition while the increase of ϕ2 will benefit cooper-
ation. To control the competition and cooperation, it is
very significant to evaluate the situation of the population
distribution information.

The diversity of the population is an efficient way to
evaluate the distribution. In [24], various methods based
on distance were presented to measure the population di-
versity. In this paper, the relative density of population is
used for the same purpose.

ρabs =
m

V
=

m

L1 × L2 × · · · × LD
(6)

where ρabs is the absolute density of the population, and
Ld(d = 1, · · · , D) is the range of the dth dimensional par-
ticles, and m is the size of the population. Generally, the
size of population is constant, so it is useful to define the
relative density

ρrel =
L1 × L2 × · · · × LD

L′1 × L′2 × · · · × L′D
∈ [0, 1] (7)

in which the ranges of L′1 to L′D are specified as the differ-
ence between the upper and lower bounds of variables. Due
to the ρrel

′s variation with the dimensions of the variables,
the single dimensional analysis is beneficial for deep study.

ρrel(d) =
Ld

L′d
∈ [0, 1] (8)

In the paper, acceleration constants are fixed; therefore,
the changing of random functions will control the weight
of competition and cooperation, and then affect the distri-
bution of population. Using the information of density for
criterion, the detailed relationship is specified as follows




r1 = f(x|2, 1), r2 = f(x|1, 2); if ρrel(d) > 0.75

r1 = f(x|4, 4), r2 = f(x|4, 4); if 0.5 < ρrel(d) ≤ 0.75

r1 = f(x|1, 1), r2 = f(x|1, 1); if 0.25 < ρrel(d) ≤ 0.5

r1 = f(x|1, 2), r2 = f(x|2, 1); if ρrel(d) ≤ 0.25

(9)

The reason why we choose 0.25, 0.5 and 0.75 as thresholds is
that the expected values of both the uniform distribution
and standard normal distribution which are widely used
for PSO are 0.5, while 0.25 and 0.75 are the mean values
in [0, 0.5] and [0.5, 1], respectively.

It indicates that when the relative density is high, the
particles tend to their own best, and at last, the particles
tend to the group best with a rapid convergence rate.

2.4 Mutation of personal best and group best

To maintain the diversity of a population, mutation op-
erators are widely used in evolutionary computation, espe-
cially for PSO. Different mutation operators for PSO are
investigated and compared in [25], including Gaussian op-
erator, Cauchy operator, Michalewicz operator, and Ran-
dom operator. At the same time, three different ways to
carry out the operators during an optimization run were
also summarized. And it was concluded that mutation
on best position found by the neighborhood was a com-
mon choice and the best mutation method depended on
the structure of optimization problem.

In the specified parameters of β distribution, the expec-
tations of random numbers are

{
E(f(x|1, 1)) = 0.5, E(f(x|1, 2)) = 1

3

E(f(x|2, 1)) = 2
3
, E(f(x|4, 4)) = 0.5

(10)
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which shows that the expectation of r1 + r2 will be lower
than 2 in any case, which can guarantee the convergence
property of the proposed PSO.

On the other hand, as shown in (5), the personal best and
group best are not fixed actually in the process of search-
ing. However, the phenomenon is ignored by most of the
researchers as for the simplicity of the convergence analysis.
Out of question, the emphasis on convergence will weaken
the global search.

To expand the search space and enhance the search ca-
pability, the changing of the two bests becomes necessary.
Although a learning method using other particles′ historical
information was used to update the best[26], the strategy
has no theoretical basis. Of course, unlike other existing
methods for PSO, the polynomial mutation[27] is performed
on them in the paper as follows

yk = xk + (xu
k − xl

k)δk (11)

where yk is the child and xk is the parent with xu
k being

the upper bound on the parent component, xl
k is the lower

bound and δk is a random number computed from a poly-
nomial distribution by





δk = (2rk)
1

η
m

+1 , if rk < 0.5

δk = 1− [2(1− rk)]
1

η
m

+1 , if rk ≥ 0.5
(12)

in which rk is an uniformly random number between (0, 1)
and ηm is the mutation distribution index.

2.5 Description of the PSO-RM

The differences from the standard version of PSO are the
variable random functions and mutation. In this paper, the

strategy of deceasing inertial weight is inherited, and ran-
dom functions will change according to the relative density
of the population. By the way, the personal best and group
best after mutation will be incorporated with original bests
through selection by sorting the fitness and only half of the
top will be chosen.

The PSO-RM in pseudocodes is given as follows:
Initialize population, set w ← wmax and k ← 0;
repeat
k ← k + 1
Adjust random functions in terms of (9);
Mutate pbest and gbest through (11) and (12);
Select pbest and gbest by sorting
w ← wmax − (wmax − wmin) k

MAXITER
;

until the specified termination criterion is met.
where pbest and gbest are short for personal best and group
best, wmax and wmin are the maximal and minimal weights,
and MAXITER is a predefined maximum number of iter-
ations. To be more specific, inertial weight w varies from
0.9 to 0.4, and the mutation distribution index ηm in (12)
is 20, while the probability of mutation is the reciprocal of
the dimension depending on specified problems.

3 Experiments and discussion

To evaluate the performance of the PSO-RM, a set of
twenty well-known benchmark functions are used, includ-
ing both unimodal and multimodal functions, non-rotated
or non-shifted and rotated or shifted. The majority of non-
rotated and non-shifted functions are chosen from [28], the
rotated and shifted functions are from the first 10 bench-
mark functions in [29], and the details of these functions
are displayed in Table 1.

Table 1 Benchmark functions used in this paper

Function Range

f1(xxx) =
∑n

i=1 x2
i [−100, 100]

f2(xxx) =
∑n

i=1(100(xi+1 − x2
i )2 + (xi − 1)2) [−30, 30]

f3(xxx) =
∑n

i=1(x
2
i − 10cos(2πxi) + 10) [−5.12, 5.12]

f4(xxx) = 1
4 000

∑n
i=1 x2

i −
∏n

i cos| xi√
i
|+ 1 [−600, 600]

f5(xxx) = −20exp(−0.2
√

1
n

∑n
i=1 x2

i )− exp( 1
n

∑n
i=1 cos(2πxi)) + 20 + e [−32, 32]

f6(xxx) =
∑n

i=1 sin(xi)sin(
ix2

i
π )20 [−π, π]

f7(xxx) =
∑n

i=1(−xisin(
√|xi|)) [−500, 500]

f8(xxx) =
∑n

i=1 |xi|+
∏n

i=1 |xi| [−10, 10]

f9(xxx) =
∑n

i=1(
∑i

j=1 xj)
2 [−100, 100]

f10(xxx) = maxi{|xi|, 1 ≤ i ≤ n} [−100, 100]

f11(xxx) =
∑n

i=1 z2
i , zzz = xxx− ooo [−100, 100]

f12(xxx) =
∑n

i=1(
∑i

j=1 zj)
2, zzz = xxx− ooo [−100, 100]

f13(xxx) =
∑n

i=1(10
6)

i−1
n−1 z2

i , zzz = (xxx− ooo) ∗MMM [−100, 100]

f14(xxx) = (
∑n

i=1(
∑i

j=1 zj)
2) ∗ (1 + 0.4|N(0, 1)|), zzz = (xxx− ooo) ∗MMM [−100, 100]

f15(xxx) = max{|AAAixxx−BBBi|},BBBi = AAAi ∗ ooo [−100, 100]

f16(xxx) =
∑n

i=1(100(zi+1 − z2
i )2 + (zi − 1)2), zzz = xxx− ooo + 1 [−100, 100]

f17(xxx) = 1
4 000

∑n
i=1 z2

i −
∏n

i cos| zi√
i
|+ 1, zzz = (xxx− ooo) ∗MMM [0, 600]

f18(xxx) = −20exp(−0.2
√

1
n

∑n
i=1 z2

i )− exp( 1
n

∑n
i=1 cos(2πzi)) + 20 + e,zzz = (xxx− ooo) ∗MMM [−32, 32]

f19(xxx) =
∑n

i=1(z
2
i − 10cos(2πzi) + 10), zzz = xxx− ooo [−5, 5]

f20(xxx) =
∑n

i=1(z
2
i − 10cos(2πzi) + 10), zzz = (xxx− ooo) ∗MMM [−5, 5]
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The algorithms which are compared with the proposed
PSO-RM are listed below:

1) the standard PSO (PSO);
2) PSO with only variable random functions (PSO-R);
3) PSO with only mutation on pbest and gbest (PSO-M);
4) Comprehensive learning PSO (CLPSO);
5) PSO-RM.
In PSO, the inertial weight varies in a linear declining

way from 0.9 to 0.4 and both acceleration coefficients are
fixed at 2. In PSO-R and PSO-M, the parameter settings
are the same as PSO except the random functions and the
mutation strategy, while in CLPSO, the parameter setting
in accordance with [26] is used. In the proposed PSO-RM,
parameters are described in the last part.

The population size has some effect on the performance
of the PSOs; however, it is quite common to set the number
of particles to the range from 20 to 60[4]. In this paper, all
experiments are carried out with a population size of 30,
and they are all performed independently for 30 trials with
the dimension 30 and the maximum iterations at 1 × 105.
By the way, all of the simulations are run on the MATLAB
platform with version 7.1.0.246 (R14) Service Pack 3. The
test results of the benchmark functions are presented in Ta-
ble 2, with mean and s.t. (standard deviation) to indicate
their performance. At the same time, t-distribution tests
are used to describe the significant differences of results
obtained by PSO-RM and the other variants of PSO, as
shown in Table 2, in which, the significance level at 5 % is
set in the paper. “−”, “+”, and “≈” mean that the perfor-
mances of the corresponding algorithms are worse, better
and similar to that of PSO-RM, respectively.

Fig. 2 Mean fitness for f1

1) Non-rotated and non-shifted functions f1-f10: It is
easy to find that the PSO-RM is the best among the five
methods on these non-rotated and non-shifted functions
except for f4, for which the CLPSO dominates the others.
Compared PSO-R with PSO, it is not difficult to find that
PSO-R is better than PSO for f2, f8, f9, f10, while for oth-
ers, they behave much the same. As for PSO-M, we observe
that it beats PSO on all the cases and it has the similar be-
havior to that of PSO-RM, that is to say, it indicates that
the success of PSO-RM is mainly due to the mutation on
pbest and gbest. On the other hand, when comparing PSO-
M with PSO-R, as shown from Fig. 3 to Fig. 12, we find
that the curves of PSO-R decrease more sharply than that
of PSO-M, which indicates that the strategy of changing
the variable random functions accelerate the convergence
rate of the standard PSO. By the way, for the Rosenbrock
function (f2), as far as we know, the PSO-RM achieves the
best results compared with most variants of PSO in other

literatures. Any way, the good results are due to the com-
bination of the mutation and the variable random functions
strategy.

Fig. 3 Mean fitness for f2

Fig. 4 Mean fitness for f3

Fig. 5 Mean fitness for f4

Fig. 6 Mean fitness for f5
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Fig. 7 Mean fitness for f6

Fig. 8 Mean fitness for f7

Fig. 9 Mean fitness for f8

Fig. 10 Mean fitness for f9

2) Rotated and shifted functions f11-f20: As can be seen
from Table 2, apart from f11, f12 and f19, all of the results

of the PSOs are not satisfactory, especially for the standard
PSO. However, compared with its competitors, the results
of PSO-RM are much better. To be more specific, for f12

and f14, the results of PSO-RM are more than a little satis-
factory when compared with that of CLPSO. Furthermore,
we can find the same phenomenon as described previously,
that is, the polynomial mutation of pbest and gbest con-
tributes much to the performance of PSO-RM, and the
strategy of variable random functions can accelerate the
convergence process. We can also find that the proposed
PSO-RM is good for shifted functions, but when running
with rotated functions, it becomes not so satisfactory. For
f13 and f15, the results are bad for all variants of PSO.

Fig. 11 Mean fitness for f10

Fig. 12 Mean fitness for f11

Then, we explain the reasons of the success of PSO-RM
for some cases.

As a stochastic algorithm, whether or not to find a global
minimum depends mainly on how to update a population.
In theory, if a population can keep changing all the way, it
has the ability to find the global minimum but in a infinite
time. However, to make a stochastic algorithm efficient,
strategies have to be proposed to reduce the large amount
of time. As the number of iterations is fixed, the rapid con-
vergence rate is necessary in practice. In the PSO-RM, the
variable random function strategy has the ability to better
explore at the first stage and to better exploit at the last
stage, which consequently leads to the rapid convergence
in a finite time. Nevertheless, if the pbest and gbest are
local minimum not global minimum and are constant for a
long time, they will become blocked in local minima, from
which the population are difficult to escape. Then other
strategy of mutation on pbest and gbest is adopted, so as
to benefit the exploration of new areas, which improves the
performance of the standard PSO.
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Table 2 Test results of the benchmark functions

Fcn statistics PSO PSO-R PSO-M CLPSO PSO-RM

f1 mean 0 9.38E−230 4.94E−324 1.69E−11 0

s.t. 0 0 0 8.48E−12 0

t test ≈ − ≈ −
f2 mean 19.0714 3.9866 1.68E−4 22.0831 6.62E−10

s.t. 25.157 8.0141 7.03E−4 17.2449 1.86E−9

t test − − − −
f3 mean 12.6028 8.9546 1.13E−14 7.96E−5 3.22E−14

s.t. 3.9827 13.0235 2.75E−14 9.47E−5 8.66E−14

t test − − ≈ −
f4 mean 0.0231 0.0330 0.0139 5.56E−8 0.0094

s.t. 0.0313 0.0338 0.0128 7.23E−8 0.0096

t test − − − +

f5 mean 6.09E−15 5.63E−15 8.97E−12 1.47E−6 1.13E−14

s.t. 6.48E−16 1.35E−15 4.90E−11 3.45E−7 9.12E−15

t test ≈ ≈ − −
f6 mean −16.5759 −19.9847 −28.4591 −29.0535 −29.2183

s.t. 1.9788 1.7189 1.1324 0.1491 0.4962

t test − − ≈ ≈
f7 mean −9.02E+3 −9.54E+3 −1.09E+4 −1.25E+4 −1.25E+4

s.t. 783.7548 523.3748 372.4628 30.0488 48.1852

t test − − − ≈
f8 mean 10 1.6667 1.98E−219 7.16E−8 0

s.t. 9.0972 4.6113 0 2.29E−8 0

t test − − − −
f9 mean 2.63E+4 1.09E−217 3.46E−323 2.15E−10 0

s.t. 2.87E+4 0 0 1.51E−10 0

t test − − ≈ −
f10 mean 2.08E−27 6.27E−30 2.67E−7 8.9718 2.57E−8

s.t. 5.39E−27 2.53E−29 1.09E−6 1.1409 6.29E−8

t test + + ≈ −
f11 mean 1.02E+4 4.14E+3 2.80E−19 3.71E−12 6.39E−25

s.t. 3.90E+3 2.21E+3 1.53E−18 1.90E−12 3.18E−24

t test − − − −
f12 mean 2.31E+4 7.11E+3 7.71E−16 4.51E+3 2.46E−23

s.t. 1.43E+4 4.69E+3 4.22E−15 939.6842 6.28E−23

t test − − − −
f13 mean 1.09E+8 2.88E+7 1.37E+5 2.33E+7 6.18E+4

s.t. 1.40E+8 2.65E+7 6.01E+4 7.61E+6 2.95E+4

t test − − ≈ −
f14 mean 1.92E+4 7.71E+3 0.0554 1.34E+4 0.0299

s.t. 1.01E+4 8.33E+3 0.0889 3.41E+3 0.0330

t test − − ≈ −
f15 mean 1.35E+4 9.28E+3 5.80E+3 4.98E+3 2.23E+3

s.t. 3.98E+3 4.06E+3 1.82E+3 536.9043 972.0416

t test − − ≈ ≈
f16 mean 3.31E+9 2.69E+8 7.5727 31.7994 0.1326

s.t. 4.77E+9 2.65E+7 11.8432 17.6113 0.3148

t test − − − −
f17 mean 488.7066 284.4888 0.0180 1.1631 0.0223

s.t. 247.2481 243.8877 0.0163 0.0696 0.0197

t test − − + −
f18 mean 20.8079 20.8057 20.1510 20.9724 20.1365

s.t. 0.0566 0.0606 0.1363 0.0567 0.0950

t test ≈ ≈ ≈ ≈
f19 mean 137.7333 91.4834 4.73E−16 1.64E−6 9.47E−16

s.t. 26.4447 22.7671 9.25E−16 1.14E−6 1.85E−15

t test − − ≈ −
f20 mean 216.4011 171.1572 242.3854 138.2069 80.9610

s.t. 35.4296 46.1444 50.1928 15.8127 46.9782

t test − − − −
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Next, we give some reasons why PSO-RM does not work
for other cases.

For the non-rotated and non-shifted group, PSO-RM is
not good for the Griewank function (f4). From the experi-
ments of this function, we observe that sometimes PSO-RM
could find the global minimum, but at other times, it failed.
In the unsuccessful cases, we find that some components of
the pbest and gbest do not change until the end of the it-
erations. As we can see from (1) and (2), if the pbest and
gbest stop changing, the random functions will have no ef-
fect on the position and velocity equations. Although the
mutation is operated on the pbest and gbest, because of low
mutation probability on single dimensional component, the
PSO-RM gets trapped into local minimum and can hardly
escape. In other words, it indicates signifies that high mu-
tation probability is necessary for single dimensional com-
ponent. In CLPSO, the best particle for guidance can be
chosen randomly from one of all particles′ historical best
component, which is just a case of increasing the changing
of single dimensional component, that is why CLPSO is
the best among all PSOs on this function. However, the
strategy can only be useful for functions whose variables
are independent, for example, for Rosenbrock function (f2)
and Griewank function with shift and rotation (f17), it does
not work. Anyhow, the success of CLPSO supports the
strategy of mutation on personal best and group best.

For the rotated and shifted group, PSO-RM does work
well for most cases as other variants of PSO. From Figs. 15,
16, 18 and 20, we can find that the curves of PSO-RM
decrease in a slow way at the last stage of the iterative pro-
cess, which can be explained by the relationship to adjust
the random functions. If the relative density is low, the
particles tend to the group best with a rapid rate. How-
ever, if the personal best and group best are local minima,
the PSO-RM will be in stagnation. In other words, for
these cases, the strategy of changing the random functions
does not work, and it does not help to accelerate the con-
vergence. From Fig. 17 and Fig. 20, the curves of PSO-RM
keep unchanged at an early state, which indicates that the
mutation does not work for the cases, because the poly-
nomial mutation in the paper has little effect on single di-
mensional component. However, the failure of PSO-RM on
f17 and f20 indicates the cooperation of random distribu-
tion functions and mutation is a potential strategy, in other
words, a proper random function should be associated with
a corresponding proper mutation operator.

All in all, the performance of PSO-RM is better than its
competitors used in the paper, which testifies the effective-
ness of the proposed strategy. It is found that the chang-
ing of random functions and mutation of personal best and
group best are significant for PSO. To deal with the shifted

Fig. 13 Mean fitness for f12

Fig. 14 Mean fitness for f13

Fig. 15 Mean fitness for f14

Fig. 16 Mean fitness for f15

Fig. 17 Mean fitness for f16
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Fig. 18 Mean fitness for f17

Fig. 19 Mean fitness for f18

Fig. 20 Mean fitness for f19

Fig. 21 Mean fitness for f20

and rotated functions, not only should we focus on the fea-
tures of these functions, but also we should pay attention to

the iterative process of the position and velocity equations.
That is to say, the convergence analysis can only guarantee
the PSO converges to a stationary point but not the global
minimum. To make sure the point is just the global min-
imum and to make PSO algorithms more efficient, other
strategies need to be considered.

4 Conclusion

By studying the convergence of standard particle swarm
optimization, the necessity of changing the random func-
tions and personal and group best is found. Then, the
adjusting strategy of random functions based on the rela-
tive density of a population and the polynomial mutation
on personal as well as group best are proposed. Compared
with other variants of PSO, the experiment results have tes-
tified the effectiveness of the proposed strategy. Especially
for Rosenbrock function, the PSO-RM achieves a quite sat-
isfactory result.

On the other hand, the PSO-RM does not work well for
some shifted and rotated functions. Although it is shown
that random functions, personal best and group best have
great effect on PSO, how to use a better strategy to adjust
the random distribution functions and to design a better
mutation on best particles are still challenging. That is to
say, much work has to be done for PSO, and to understand
the features of these rotated functions is our future work
to better improve the performance of PSO.
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