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Iterative Dynamic Diversity Evolutionary Algorithm for

Constrained Optimization
GAO Wei-Shang1, 2 SHAO Cheng1, 2

Abstract Evolutionary algorithms (EAs) were shown to be effective for complex constrained optimization problems. However,
inflexible exploration in general EAs would lead to losing the global optimum nearby the ill-convergence regions. In this paper, we
propose an iterative dynamic diversity evolutionary algorithm (IDDEA) with contractive subregions guiding exploitation through
local extrema to the global optimum in suitable steps. In IDDEA, a novel optimum estimation strategy with multi-agents evolving
diversely is suggested to efficiently compute dominance trend and establish a subregion. In addition, a subregion converging iteration
is designed to redistrict a smaller subregion in current subregion for next iteration, which is based on a special dominance estimation
scheme. Meanwhile, an infimum penalty function is embedded into IDDEA to judge agents and penalize adaptively the unfeasible
agents with the lowest fitness of feasible agents. Furthermore, several engineering design optimization problems taken from the
specialized literature are successfully solved by the present algorithm with high reliable solutions.
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A great deal of engineering design problems can be for-
mulated as constrained optimization problems that often
consist of many mixed equality and inequality constrains.
These problems are difficult to solve because of their multi-
constraint feature. Penalty functions are usually used to
handle these multiple constraints[1−2], which will trans-
form the problems into unconstrained ones but meanwhile
make original objective function more complex. Previ-
ous researches[3−5] have suggested that evolutionary al-
gorithms (EAs) can be widely used to tackle such prob-
lems. Many successful applications of EAs have been re-
ported to solve engineering problems such as industrial
design[6−7] and military management[8]. EAs can also be
used to deal with complex optimization of regression[9] and
classification[10] in machine learning. To extend the appli-
cation of EAs to more difficult but important problems,
Vural et al. carried out intensive study on analog filter de-
sign with evolutionary algorithms[11], Li et al. presented a
new cooperatively coevolving particle swarm for large-scale
optimization[12], Blackwell provided further study of col-
lapse in bare bones particle swarm optimization[13], Pehli-
vanoglu enhanced particle swarm optimization with a pe-
riodic mutation strategy and neural networks[14], Chen et
al. proposed particle swarm optimization with an aging
leader and challengers[15], and Naznin et al. suggested a
progressive alignment method using genetic algorithm for
multiple sequence alignment[16]. Further analysis of parti-
cle swarm optimization algorithm was also carried out by
Pan et al.[17] and Liu et al.[18]. Constrained optimization
is an important kind of problems solved by EAs, such as
the methods proposed by Wang et al.[19−20], Cai et al.[21],
Krohling et al.[22] and Tessema et al.[23]. Recently Danesh-
yari et al.[24] have noted that genetic-based algorithms and
swarm-based paradigms are two popular population-based
heuristics introduced as EAs for solving constrained opti-
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mization problems[25−27]. All these algorithms have better
global search capabilities by sharing the principle of natural
evolution or swarm intelligence in nature.

Genetic algorithm (GA) is a search heuristic which mim-
ics the process of natural evolution by parallel computing.
It became popular through the work of John Holland in the
early 1970s, and particularly his book Adaptation in Nat-
ural and Artificial Systems (1975). The strong exploration

of GA is suitable for intricate optimization problems[28−29],
but GA′s intrinsic disadvantages such as slow convergence
caused by mutation operator[5] have limited the promotion
of this algorithm in practical application. Furthermore,
particle swarm optimization (PSO) developed by Kennedy

and Eberhart[30−31] has received more and more atten-
tion regarding its potential as a faster global optimization
technique[5]. However, it might be caught in the trap of
local optimum caused by premature convergence. Thus,
special trade-off between exploration and exploitation is re-
quired to balance optimization reliability and convergence
speed. A considerable method is to form a hybrid algo-
rithm with strong exploration and exploitation by combin-
ing a variety of EAs. It is because that mutually reinforc-
ing will make hybrid algorithm fit for difficult optimization
problems where acceptable solutions can be achieved[32−34].
Recently, co-evolutionary algorithms (CoEAs) have been
extensively studied in solving complex constrained opti-
mization problems[3]. It can be considered as a new form
of hybrid algorithm with high efficiency in exchanging in-
formation between agents. Another novel EA, rain forest
algorithm (RFA)[35], suggested by Gao et al. gets better
features both in efficiency and accuracy. Although these
algorithms can perform better than the standard EAs, in-
flexible exploration in general EAs would lead to losing the
global optimum nearby the ill-convergence regions.

Usually the fitness function, especially around the global
optimum, becomes much more complex because of the
mixed constraints. Ill-convergence towards a region nearby
the global optimum is likely to arise when dealing with such
constrained optimization. Then inflexible exploration, such
as mutation and scattering, will distribute other agents far
from the local extremum and probably lose the global op-
timum. In this paper, we propose contractive subregions
with flexible exploration guiding exploitation through local
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extrema to the global optimum in suitable steps. An ap-
propriate redistricting method is suggested to establish a
smaller feasible region for regulating the exploration and
enhancing the exploitation. By subregions, an iterative
dynamic diversity evolutionary algorithm (IDDEA) with
multi-agents is also devised to solve constrained optimiza-
tion problems consisting of complex mixed equality and
inequality constraints. A dynamic diversity evolutionary
algorithm (DDEA) with high exploration ability is called
in each iteration of IDDEA. Thus, personal best agents in
each iteration of IDDEA can confirm a subregion in which
the global optimization can be obtained. Once a subre-
gion is found, another specific exploration and exploitation
with faster and more accurate convergence will be carried
out in the subregion. In addition, an effective and adap-
tive penalty function method that is fit for IDDEA is also
illuminated in this paper. Unlike other penalty methods,
this penalty term is not added to the objective function di-
rectly but constitutes the IDDEA as a correction term. The
drawback of common penalty function methods is that they
often require several parameters which are used to adjust
the relative weights of each constraint and the weight of the
penalty against the objective function. To avoid the diffi-
culty in designing those parameters, we selected the worst
agent as a reference term and added an infimum penalty
function into IDDEA. The corresponding penalty function
will be called whenever infeasible agents appear and reduce
the fitness of these agents to a level just under the worst
feasible agent. As infeasible solutions are banned by the
constraints equally, the fitness of infeasible agents will also
be modified according to the constraints equally.

This paper is organized as follows. Section 1 explains
how to divide a proper subregion with DDES and presents
an optimum estimation strategy. The iteration of IDDEA
is suggested in Section 2 which illuminates a process to
make the subregion contracted. An infimum penalty func-
tion and the process of IDDEA are proposed in Section 3.
To confirm the capability of IDDEA, Section 4 and Sec-
tion 5 provide several numerical experimentations across
benchmark problems and comparisons with state-of-the-art
methods. Conclusions and suggestions for further work are
presented in Section 6.

1 How to divide a proper subregion

To divide a subregion containing the optimum in global
area, an optimum estimation strategy and a subregion es-
tablishment method are proposed in this section. First of
all, dynamic diversity evolutionary searching (DDES) with
multi-agents is introduced to compute the dominance trend
of an objective function. This searching process with strong
exploration-exploitation ability will pick up the character
of extremum distribution. Secondly, a subregion will be
established according to the distribution of the global best
agent and the personal best agents found by DDES.

1.1 Optimum estimation

The DDES with strong exploration-exploitation ability is
well-suited for optimum estimation. Three types of agents,
partition agents (PAs), basic agents (BAs) and creative
agents (CAs), are combined together in DDES to realize
a quick-shift between exploration and exploitation. Parti-
tion agents are distributed in feasible region uniformly and
their gradual increase plays the role of brute search and
ensures exploration throughout the course of optimization.
Basic agents are distributed in different partitions accord-
ing to the property of partition agents, which plays the role
of transition media between partition agents and creative

agents and also between exploration and exploitation. Cre-
ative agents are distributed around basic agents according
to the property of basic agents, playing a role of exploita-
tion in global area and also exploration in local partitions.
The number of creative agents is the largest, which is fit
for exploiting in many smaller but more advantageous ar-
eas. The cooperation of these agents is managed by DDES
following a form of three layers proxy model (TLPM) as
shown in Fig. 1.

Fig. 1 Three layers proxy mode of DDES

The evolutionary process of DDEA is mainly carried out
by the rebirth of new agents around the senior ones. BAs
alternate with CAs, which are also affected by PAs. The
focus in DDEA is no longer on the position updating of
previous agents but on the density distribution of newborn
agents. The density of newborn agents is controlled by reg-
ulating the range and the scale of newborn agents according

to the feedback of sampling information. ÂD, R̂D and D̂C
are introduced in this paper as correction factors to analyze
the sampling information and estimate the situation of each
agent, which will guide newborn agents to distribute with
adaptive density. The correction factors can be defined as
below:
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D̂C =(1− γ)× R̂D + γ × ÂD

where F refers to the fitness of an agent, Fmax and Fmin

refer to the minimum and the maximum fitness in a region,
respectively. G refers to the growth of fitness found by an
agent in one iteration, Gmax refers to the largest G found
by all the agents in one iteration, and γ is a weight number
that will increase gradually from zero to one in the process
of optimization.

ÂD plays an important role in comparing the fitness of
newborn agents by mapping their fitness into an interval of
[1/e, e] in the form of increasing function. It indicates the
situation of current agent′s environment and will be used to

regulate the range of newborn agents in next iteration. R̂D
plays an important role in comparing the fitness growth of
newborn agents by mapping their fitness growth into an
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interval of [1/e, e] in the form of increasing function. It in-
dicates the complexity of current agent′s environment and
will be used to regulate the scale of newborn agents in next

iteration. D̂C represents a transition from R̂D to ÂD.
The range of newborn agents is determined by two items.

The first one is narrowing range with 2
3

ratio, which means

the child agents will inherit 2
3
(rparent) from their parents.

The second one is regulated range with ÂD, which means
the child agents will study from the sampling information
and adjust their range toward 2

3
(

rparent

ÂD
). Then, the range

of those agents whose fitness is lower will be set to a larger
value and vice versa. To make information fusion, α is in-
troduced as study factor to integrate the two items in the
form of (1 − α) × item1 + α × item2. It can be described
specifically as follows:
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where rP
i (t), rB

i,j(t) and r̃C
i,j,k(t + 1) represent the range

of PAi, BAi,j and CAi,j,k in each iteration, respectively.

ÂD
B

i,j and ÂD
C

i,j,k refer to the correction factor ÂD of
BAi,j and CAi,j,k. The index i, j and k indicate that
the current parameter attaches to PAi, BAj and CAk.

When newborn CAs are distributed, the sampling infor-
mation will also affect the property and range of PAs and
the changing of PAs′ property will also affect the property
and range of CAs′. This process is called as self-correcting
in range which can be described as:

rP
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ÂD
P

i

(3)

rC
i,j,k(t + 1) =

[
(1− α) +

α

ÂD
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where r̃C
i,j,k(t + 1) and rC

i,j,k(t + 1) are the range of
CAi,j,k before and after the self-correction. The equation
set (1)∼ (4) is also called the range-dividing principle in

DDEA. Larger range caused by smaller ÂD will make weak
agents explore outward to discover more dominant position.

On the contrary, smaller range caused by larger ÂD will
converge agents to exploit the emergent region fast.

The scale of newborn agents is also determined by two
items. The first one is the scale which is the same as their
parents, which means the child agents will inherit sparent

from their parents. The second one is the regulated scale

with R̂D or D̂C, which means the child agents will study
from the sampling information and adjust their scale to-

ward R̂D × rparent or D̂C × rparent. Then, the scale of
those agents of which the fitness growth is larger will be
set to a larger value and vice versa. To make information
fusion, α is also introduced as a study factor to integrate
the two items in the form of (1− α)× item1 + α× item2.
It can be described specifically as follows:
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PAi, BAi,j and CAi,j,k in each iteration, respecitively.
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C

i,j,k refer to the correction factor R̂D of
BAi,j and CAi,j,k, respecitively. The index i, j and k indi-
cate that the current parameter attaches to PAi, BAj and
CAk, respecitively.

When newborn CAs are distributed, the sampling infor-
mation will also affect the property and the scale of PAs,
and the changing of PAs′ property will affect the property
and scale of CAs′. This process is called as self-correcting
in scale which can be described as:
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where s̃C
i,j,k(t+1) and sC

i,j,k(t+1) are the scale of CAi,j,k be-
fore and after the self-correction, respecitively. The reason

to select D̂C
P

i as a self-correcting factor is that the focus of

D̂C will transit from R̂D to ÂD and large number of agents
should be used to exploit the area where there may be the
optimal agent in the later phase of optimization. While the
algorithm runs, the focus of larger scale agents will trans-
late from complex area to dominant area. Thus, DDEA
can carry out specific exploration at the earlier stage of
optimization and develop fast targeted exploitation at the
later phase of optimization. In addition, a swarm scale
floor (SSF) is introduced to reduce quickly the number of
agents in the area where there is little growth in fitness. It
not only saves sample resource but also maintains global
exploration with fewer agents, which can be formulated as:

s(t + 1) = ŜSF , if R̂D ≤ 0 (9)

The equation set (5)∼ (9) is also called the scale-setting

principle in DDEA. Larger scale caused by larger R̂D or

D̂C will not only reduce the loss of information in volatile
region but also strengthen the ability of both exploration
and exploitation towards potential advantage areas. On

the contrary, smaller scale caused by smaller R̂D or D̂C
will save much time that might be wasted in poor areas.

Quick-shift between exploration and exploitation is an
important character of DDES. The degree of exploration
and exploitation can be regulated according to the special
condition in each partition. In addition, the population
of agents in DDES is adaptively adjusted according to the
need of exploration and exploitation. This mechanism not
only makes DDES keep exploring globally but also gives
DDES sufficiently fast convergence focusing on emergent
areas. When a local optimal area is found by exploration
in a partition, much more CAs will be generalized to exploit
fast in the area. After the fast convergency conducted by
CAs, a few of better CAs will be remained and transformed
to the corresponding BAs as personal best agents. Other
dispersive CAs will keep exploration in the corresponding
partition. Thus, a preferable trade-off between exploration
and exploitation will be acquired in each partition, and the
personal best agents in each partition can reflect the dis-
tribution of local extremum to some extent.

1.2 Subregion dividing

Subregion is defined as an emergent area where the global
optimum will be probably found. It is assigned in this pa-
per as an area where agents can find much higher fitness,
such as the inherent range around the current global best
agent in DDES. The higher fitness in subregions indicates
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that the global optimum probably exists in these smaller
regions. The difficulty in deciding such a subregion is that
the existence of global optimum cannot be ensured, just as
that the reliability of result obtained by swarm optimiza-
tion algorithms cannot be ensured. So proper exploration
should be considered around the subregions. Thus, the in-
herent range around the current global best agent of DDES
appears to be too small to meet the requirement of explo-
ration.

Selecting a flexible extent for a subregion seems to be
advisable in improving the ability of exploration. In view
of the optimum estimation of BAs and the inherent exten-
sive exploration of DDES′s PA(s), personal best positions
will be picked out in each partition and construct a smaller

but better region of which the range is labeled as R̂. It can
be determined through calculation as shown in (10):

R̂ = (max.XP best i)− (min.XP best i) (10)

where XP best i means the decision variable of a personal
best result in partition i. ‘max.’ and ‘min.’ mean to find the
maximum and minimum of each element in vector XP best i

respectively. To establish a subregion, the current global

agent whose position is labeled as P̂ should be focused on.

So the subregion presented in this paper consists of R̂ and

P̂ . Taking P̂ as the center of a region and R̂ as the range

of this region around point P̂ , then a subregion will be got.
Subregion plays an important role in regulating explo-

ration and improving exploitation, which will concentrate
agents and accelerate optimizing speed especially when
dealing with complex problems whose objective functions
are simple. It is just like to plot out a key area on the
whole feasible region, which will make optimization algo-
rithm focus on a smaller area where there is probably a
globally optimal result. Thus, the exploration in subregions
with different sizes is flexible. The smaller a subregion is,
the more targeted exploration is. If the subregion is small
enough and contains the global optimum, then exploration
in this subregion can guide exploitation through local ex-
trema to the global optimum in suitable steps. Equation

(10) also shows that the least value of R̂ will be limited to
the division of partitions because the distribution of each
personal best agent is limited to the partition to which the
agent belongs. The focusing effect will be more obvious if
the quantity of partitions is less in DDES, and vice versa.

2 The iteration

As discussed in Subsection 1.2, the focusing effect of a
subregion found in global area by much more partitions in
DDES will be not obvious. But commonly large numbers of
partitions are required to carry on wide exploration against
some more complex engineering problems. Thus, the focus-
ing effect of subregion will not be made full use of if the
subregion is just adopted in global area through the whole
process of DDES. On the other hand, the complexity of
objective function in most engineering problems is far from
that of mixed constraints. So strong exploration in DDES
should find a much smaller subregion which will play an
important role in improving the efficiency of optimization
algorithm. The issue is how to combine the advantage of
both DDES and subregion to form an algorithm whose ex-
ploration and exploitation are both higher.

If subregions found by DDES in global area will not work
in that case, alteration between calling DDES in the latest
subregion and assigning a smaller subregion for next call-
ing may serve the purpose. It starts by dividing the feasible

region into partitions using PAs of DDES, then global best
agent and personal best agents found by BAs and CAs will
construct a subregion. Once a subregion has been found,
the next round of dividing in the subregion will be carried
on by DDES. It can be illustrated as Fig. 2 shows.

Fig. 2 The iteration caused by subregion

As DDES leads the iteration from a searching space to
a subregion then to a new smaller searching space, we call
this process as iterative DDES which can be described as
follows:

1) To divide searching space into a number of partitions.
2) To find the personal best individual (P best) of each

partition by DDES.

3) To calculate R̂ and find the global best individual
(G best) according to these personal best agents.

4) To judge whether the breaking conditions are met. If
it is, then jump to the last step, otherwise, continue down-
wards.

5) To plot out a subregion centered with G best.
6) Take the subregion as a new searching space in which

a new round of DDES will be carried on and then jump to
the first step.

7) Output the results.
Obviously, a precondition is that the exploration of the

optimization algorithm should meet the requirement of
finding the character of extreme value distribution. Fortu-
nately, DDES meets the requirement because of its strong
exploration. So if DDES comes along with the redividing
by subregion mentioned above, we will have an opportunity
to create a successful optimization algorithm, iterative dy-
namic diversity evolutionary algorithm (IDDEA), for con-
strained optimization. The next task is to find a proper
penalty function for IDDEA.

3 Infimum penalty and IDDEA process

Although penalty function method is one of the most
common methods to solve constrained optimization prob-
lems, the design of penalty item should be fit for the al-
gorithm by which we will deal with practical optimization
problems. In order to avoid the complication caused by
adding penalty term to the objective function, the penalty
function will be departed away from the objective function
and introduced into IDDEA as a classification condition
and a fitness calculation.

The general constrained problem formulation that is
also called the primal problem can be stated as follows:
min f(xxx)
s.t. gi(xxx) ≤ 0, i = 1, · · · , m

hi(xxx) = 0, i = m + 1, · · · , m + l
xxx = (x1, x2, · · · , xn) ∈ Rn
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where xxx represents a vector of n real variables subject to a
set of m inequality constraints g(xxx) and a set of l equality
constraints h(xxx). The penalty function p(xxx) proposed here
can be defined as:

p(xxx) =

m∑
i=1

φ(gi(xxx)) +

m+l∑
i=m+1

ϕ(hi(xxx)) (11)

where

φ(x) =

{
x, if x > 0
0, if x ≤ 0

(12)

ϕ(x) =





x, if x > 0
0, if x = 0
−x, if x < 0

(13)

Penalty function p(xxx) will be used in IDDEA to judge
whether an agent is in the feasible region. Once an agent
is updated by IDDEA, p(xxx) will be called to check the de-
cision variable represented by this agent. If the function
result is zero, a feasible decision variable is got. Otherwise,
the function result will replace the objective function value
and be regarded as the fitness of the agent after subtract-
ing from the minimum fitness of those agents in feasible
regions. It can be expressed as what is shown in (14), the

fitness function f̂(xxx):

f̂(xxx) =

{
f(xxx), if p(xxx) = 0

min(f̃)− p(xxx), if p(xxx) > 0
(14)

where f̃ represents the fitness of agents in feasible regions.
As the minimum fitness of feasible agents is selected to con-
struct the base of a penalty function when calculating the
fitness of unfeasible agents, the penalty function is called
an infimum penalty function.

The agents which include PAs, BAs and CAs in IDDEA
are divided by penalty function p(xxx) into two kinds: SAs
that satisfy the constraint and UAs that unsatisfy the con-
straint. The fitness of SAs is got from objective function

f(xxx) in the first part of fitness function f̂(xxx), while the fit-
ness of UAs is calculated according to the second part of

fitness function f̂(xxx). As shown in (14), the fitness of UAs
consists of ‘state penalty’ and ‘constraint penalty’. State
penalty refers to the minimum fitness (or objective func-
tion) found by SAs in the current searching results. It in-
dicates a dynamic penalty boundary basing on the actual
situation. So state penalty can avoid too little or too much
punishment. Constraint penalty refers to the UAs′ distance
from the constraint boundary. The further one agent is out
of the feasible region, the more fitness penalty it will suffer.
So UAs will evolve towards the feasible region under such
selection pressure.

By introducing the infimum penalty function into the ID-
DEA proposed in Section 2, we will get an efficient search
algorithm against constrained optimization. Then, the ex-
ecution flow of IDDEA can be illustrated in Fig. 3

4 Benchmark problems

The performance of the proposed IDDEA was investi-
gated on problems frequently employed in the published
literature, where other state-of-the-art methods developed
for constrained optimization are compared. As IDDEA
was used to find the maximum value, the opposite value
of objective function was selected as objective value in the

following evaluation process. The algorithms had been im-
plemented in MATLAB 7.10. Four test problems proposed
by different authors have been chosen to illustrate the ap-
plicability and the efficiency of the implemented algorithm.
The details of initialization conditions are described in the
following subsections.

Fig. 3 The process of IDDEA

4.1 Himmelblau′s function

Himmelblau′s function originally proposed by
Himmelblau[36] is a common benchmark problem in non-
linear constrained optimization. This problem consists of
five design variables, six nonlinear constraints, and ten
boundary conditions as follows:

min f(xxx) = 5.3578547x2
3 + 0.8356891x1x5+

37.293239x1 − 40792.141

s.t. 0 ≤ g1(xxx) ≤ 92

90 ≤ g2(xxx) ≤ 110

20 ≤ g3(xxx) ≤ 25

where

g1(xxx) = 85.334407 + 0.0056858x2x5+

0.0006262x1x4 − 0.0022053x3x5

g2(xxx) = 80.51249 + 0.0071317x2x5+

0.0029955x1x2 + 0.0021813x2
3

g3(xxx) = 9.300961 + 0.0047026x3x5+

0.0012547x1x3 + 0.0019085x3x4
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and

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ x3 ≤ 45

27 ≤ x4 ≤ 45, 27 ≤ x5 ≤ 45

Several attempts have been made to solve this problem.
Take the list given by Nema et al.[3] as an instance, Himmel-
blau used a generalized reduced gradient method to search
for the optimal solution and acquired a result of −30 373.94.
This problem was also investigated by Runarsson and
Yao[37], where an evolutionary strategy with stochastic
ranking was suggested. They reported a better result of
−30 665.53. Gen and Cheng[38] have tackled this problem
by using an improved GA and the best solution they ob-
tained was −30 183.57. Recently, Nema et al.[3] have pub-
lished a more excellent result of −30 665.57 using HCP al-
gorithm.

In our approach, the IDDEA found an optimal objective
function value of −30 665.54 using 60 times of contraction
led by subregions. The learning factor and the initial agents
size were chosen as 0.5 and 3D, respectively (D refers to
the dimension of decision variable). The optimal results
of Himmelblau′s problem found by HCP and IDDEA were
compared in Table 1. The excellent result, −30 665.53867,
found by IDDEA was a mean fitness value. All the fitness
values for 10 independent runs of IDDEA are shown in Ta-
ble 2. The results stabilize around the mean fitness except
for slight fluctuations caused by the limitation of search-
ing precision. If we increase the times of contraction, the
searching precision of this algorithm will be improved be-
cause of much smaller subregions. Even though the number
of iterations was set to a value that was not too high, the
result of IDDEA was satisfactory.

4.2 Minimization of the weight of a ten-
sion/compression string

This engineering design problem taken from
Belegundu[39] is much more complicated. It describes
the minimization of the weight of the tension/compression
spring subject to constraints on minimum deflection, shear
stress, surge frequency, and limits on outside diameter.
The mathematical formulation of the problem is stated as
follows:

min f(xxx) = (x3 + 2)x2x
2
1

s.t. g1(xxx) = 1− x3
2x3

71785x4
1

≤ 0

g2(xxx) =
4x2

2 − x1x2

12566(x2x3
1 − x4

1)
+

1

5108x2
1

− 1 ≤ 0

g3(xxx) = 1− 140.45x1

x2
2x3

≤ 0

g4(xxx) =
x1 + x2

1.5
− 1 ≤ 0

Many researchers have previously investigated this min-
imization problem. Belegundu[39] proposed an approach
based on Lagrange multipliers technique to deal with this
challenging problem, while Arora[40] attempted a numerical
optimization method called constraint correction at con-
stant cost. In addition, Coello and Montes[41] obtained
better known results by using a dominance-based selection
scheme to incorporate constraints into the fitness function
of a genetic algorithm. More wonderful results were found
by Nema et al.[3] basing on a hybrid cooperative search
algorithm for constrained optimization. Their results are
shown in Table 3 comparing with the result obtained by
the proposed algorithm in this paper, when using 40 times
of contraction led by subregions with learning factor as 0.5
and initial agents size as 3D (D refers to the dimension of
decision variable).

Table 1 The comparison results of Himmelblau′s problem between HCP and IDDEA

Optimization algorithm HCP[3] IDDEA

Optimal objective f(xxx) −30 665.57 −30 665.53867

Decision variables xxx [78.0027, 32.9992, 29.9809, 45.0000, 36.8109] [78.0000, 33.0000, 29.9953, 45.0000, 36.7758]

Constraint 0 ≤ g1(xxx) ≤ 92 92.0053 (No) 92.0000 (Yes)

Constraint 90 ≤ g2(xxx) ≤ 110 98.8467 (Yes) 98.8405 (Yes)

Constraint 20 ≤ g3(xxx) ≤ 25 19.9999 (No) 20.0000 (Yes)

Constraint 78 ≤ x1 ≤ 102 Yes Yes

Constraint 33 ≤ x2 ≤ 45 No Yes

Constraint 27 ≤ x3 ≤ 45 Yes Yes

Constraint 27 ≤ x4 ≤ 45 Yes Yes

Constraint 27 ≤ x5 ≤ 45 Yes Yes

Table 2 The optimal results found by IDDEA across Himmelblau′s problem

No. Min f(xxx) No. Min f(xxx)

1 −30 665.53867178001 6 −30 665.53867178327

2 −30 665.53867178031 7 −30 665.53867178321

3 −30 665.53867154942 8 −30 665.53867177717

4 −30 665.53867178278 9 −30 665.53867178329

5 −30 665.53867178299 10 −30 665.53867178329
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4.3 Pressure vessel design

This optimization problem put forward by Sandgren[42]

aims to minimize the cost of materials for forming and weld-
ing of a pressure vessel. There are four design variables:
Ts (Thickness of the shell), Th (Thickness of the head), R
(Inner radius), and L (Length of the cylindrical section of
the vessel, not including the head). Ts and Th are integer
multiples of 0.0625 in., which are the available thicknesses
of rolled steel plates, and R and L are continuous. This
optimization problem can be described as:

min f(xxx) = 0.6224x1x3x4 + 1.7781x2x
2
3+

3.1661x2
1x4 + 19.84x2

1x3

s.t. g1(xxx) = 0.0193x3 − x1 ≤ 0

g2(xxx) = 0.00954x3 − x2 ≤ 0

g3(xxx) = 1 296 000− πx2
3x4 − 4

3
πx3

3 ≤ 0

g4(xxx) = x4 − 240 ≤ 0

and

0.0625 ≤ x1 ≤ 6.1875, 0.0625 ≤ x2 ≤ 6.1875

10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200

Previous researchers took this design problem as a mixed
integer problem. An evolutionary algorithm named as Ge-
neAS was used by Deb[43] to solve the problem. Coello and
Montes[44] also attempted to solve this problem by using
GA with dominance-based tournament selection to handle
the constraints. An improved PSO was proposed by He et
al.[4] to deal with pressure vessel design. A better result
was obtained by Nema et al.[3] by using HCP. The results
found by these different algorithms are shown in Table 4
comparing with a wonderful result obtained by the present
algorithm. When using 40 times of contraction leaded by
subregions with learning factor as 0.5 and initial agents size
as 3D (D refers to the dimension of decision variable), more
wonderful design variables are found by IDDEA as shown
below:

x1 = 0.7781686497708, x2 = 0.3846491690908

x3 = 40.3196190969763, x4 = 199.9999948102470

with optimal result 5 885.33.

4.4 Welded beam design

The optimization problem introduced by Ragsdell and
Phillips[45] aims to find the minimum cost design of a struc-
tural welded beam. The problem consists of seven lin-
ear and nonlinear constraints on (g1) shear stress (τ), (g2)
bending stress in the beam (σ), (g3, g4, g5) side constraints,
(g6) end deflection of the beam (δ), and (g7) buckling load
on the bar (Pc). The problem with four design variables is
described as follows:

min f(xxx) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)

s.t. g1(xxx) = τ(xxx)− τmax ≤ 0

g2(xxx) = σ(xxx)− σmax ≤ 0

g3(xxx) = x1 − x4 ≤ 0

g4(xxx) = 0.10471x2
1+

0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

g5(xxx) = 0.125− x1 ≤ 0

g6(xxx) = δ(xxx)− δmax ≤ 0

g7(xxx) = P − Pc(xxx) ≤ 0

and

0.1 ≤ x1 ≤ 2.0, 0.1 ≤ x2 ≤ 10.0

0.1 ≤ x3 ≤ 10.0, 0.1 ≤ x4 ≤ 2.0

where

τ(xxx) =

√
(τ ′)2 + 2τ ′τ ′′

x2

2R
+ (τ ′′)2

τ ′ =
P√

2x1x2

, τ ′′ =
MR

J
, M = P

(
L +

x2

2

)

R =

√
x2

2

4
+

(x1 + x3

2

)2

J = 2

{√
2x1x2

[
x2

2

12
+

(x1 + x3

2

)2
]}

σ(xxx) =
6PL

x4x2
3

, δ(xxx) =
4PL3

Ex3
3x4

Pc(xxx) =
4.013

√
EG(x2

3x
6
4/36)

L2

(
1− x3

2L

√
E

4G

)

Table 3 Comparison of the results for the minimization of cost of the weight of a tension spring

Algorithm IDDEA HCP[3] Coelle and Montes[41] Arora[40] Belegundu[39]

x1 0.05160011 0.051987 0.051989 0.053396 0.050000

x2 0.35458147 0.363964 0.363965 0.399180 0.315900

x3 11.41532664 10.890521 10.890522 9.185400 14.25000

g1 −5.5E-007 −0.0014 −0.0000 0.0000 −0.0000

g2 −2.5E-007 0.0000 −0.0000 −0.0000 −0.0037

g3 −4.04954161 −4.0611 −4.0613 −4.1238 −3.9383

g4 −0.72921228 −0.7226 −0.7226 −0.6982 −0.7560

f(xxx) 0.01266539 0.012679 0.012681 0.012730 0.012833

Table 4 Comparison of the results for the minimization of cost in pressure vessel design

Algorithm IDDEA HCP[3] He et al.[4] Coelle and Montes[44] Deb[43]

f(xxx) 5 885.33 6 059.69 6 059.71 6 059.94 6 410.38

Table 5 Comparison of the results for the minimization of cost in welded beam design

Algorithm IDDEA HCP[3] He et al.[4] Ray and Liew[46] Ragsdell and Phillips[45]

f(xxx) 1.8616 2.3809 2.3809 2.3854 2.3859



2476 ACTA AUTOMATICA SINICA Vol. 40

The numerical parameters for this model are chosen as:

P = 6000 lb., L = 14 in.

E = 30× 106 psi, G = 12× 106 psi

τmax = 13600 psi, σmax = 30000 psi

δmax = 0.25 in.

There has been much discussion on this problem by many
researchers with various methods. Ragsdell and Phillips[45]

handled the problem with geometric programming. It was
also dealt with by Ray and Liew[46] using a society and civi-
lization algorithm. He et al.[4] had tackled this optimization
problem by using an improved PSO. A well known result
was reported by Nema et al.[3] with their HCP algorithm.
The results found by them are shown in Table 5 compar-
ing with the result searched by the present algorithm. The
design variables found by IDDEA with the same initial con-
ditions used in Section 4.3 are shown as following:

x1 = 0.244368999403763, x2 = 3.040294849243054

x3 = 8.291470822579198, x4 = 0.244369009286497

with optimal result 1.8616.

5 Comparison and analysis

In order to further assess the benefits from the proposed
algorithm, the four problems referred by Nema et al.[3] are
considered here for the purpose of comparing with other
evolutionary algorithms published in the literature such as
HCP and the common PSO. When the iteration number
is 200, learning factor is 0.5 and initial agents size is 3D

(D refers to the dimension of decision variable) for 100
executions, the proportion of IDDEA converged to global
optimum is over 87 % across these four problems. But the
common PSO has a lower proprotion of 71∼ 83% when the
maximum iteration number is 2 000 with swarm size 40.
The proportion of HCP put forward by Nema et al.[3] is
81% in the search process for Himmelblau problem. When
applying the proposed method to these four problems, the
convergence rate is found to be better than HCP and sim-
ilar to the improved PSO as shown from Fig. 4∼Fig. 7.
Although the rate of convergence of IDDEA is sometimes
lower than PSO, the final optimization results are mostly
the best as shown in Table 6. Thus, the proposed IDDEA

in this paper performs well in both optimization accuracy
and rapidity.

This paper presents a method of swarm evolution with
multi-agents under the three layers proxy mode of DDES
and a novel optimum estimation strategy to carry out sub-
region converging iteration. Simulation results based on
well-known constrained engineering design problems sug-
gest that the IDDEA is capable of locating the global op-
timum with better convergence rate. It is because the pro-
posed algorithm has strong exploration ability by adopt-
ing the TLPM of DDES, which reduces the possibility of
being trapped in local optimum. The novel optimum es-

timation strategy with ÂD, R̂D and D̂C gives a better
guide for multi-agents toward dominant area, which is cou-
pled with the novel evolution model of agents′ range and
scale and provides sufficient basis for the subregion divid-
ing. Thus, IDDEA is capable of finding a smaller but more
dominant area under the framework of subregion dividing
and infimum penalty, and converging to the global opti-
mum quickly. It is worth noting that IDDEA is more fit
for solving problems with complex constrains around the
global optimum in a much smaller area.

The proposed algorithm is aimed at avoiding being
trapped in local optimum which is formed by the complex
constraint condition nearing the global optimum. Other
kinds of constrained optimization problems such as the
problems with high dimensional design variable and equal-
ity constraint should be considered in the future. Some
engineering design problems solved in this paper have re-
vealed that IDDEA is fit for the problems with lower dimen-
sion and inequality constraints. The Himmelblau problem,
one of CEC 06 (problem definitions and evaluation crite-
ria for the CEC 2006 special session on constrained real-
parameter optimization), is used here for testing. Other
constrained optimization problems of CEC 06 which have
lower dimension and inequality constraints are also tested
by IDDEA comparing with PSO as shown in Table 7.

6 Conclusion and future work

As there are many engineering problems whose objec-
tive functions are simple while the constraint conditions are
complex, the personal best agents in each iteration of ID-
DEA can confirm a subregion where the global optimization
could be obtained. Once a subregion is found, another

Table 6 Comparison of the results for the minimization in four problems

Problems IDDEA HCP[3] He et al.[4] PSO

Himmelblau −30 665.54 −30 665.57 − −30 665.54

Tension spring 0.012665 0.012679 − 0.012856

Pressure vessel 5 885.33 6 059.69 6 059.71 6 038.55

Welded beam 1.8616 2.3809 2.3809 1.8698

Table 7 Testing across constrained problems of CEC 06

Prob. n f(xxx∗) IDDEA PSO

g04 5 −30 665.5386717834 −30 665.5386717832 −30 665.5386717828

g06 2 −6 961.8138755802 −6 961.8138755799 −6 961.8138755801

g08 2 −0.0958250415 −0.0958250414 −0.0958250414

g12 3 −1.0000000000 −1.0000000000 −1.0000000000

g24 2 −5.5080132716 −5.5080132716 −5.5080132716
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Fig. 4 Evolution plots for Himmelblau problem

Fig. 5 Evolution plots for spring′s tension problem

Fig. 6 Evolution plots for pressure vessel design

Fig. 7 Evolution plots for welded beam design

specific exploration and exploitation with faster and more
accurate convergence will be carried out in the subregion.
When the subregion converges to a much smaller area, the
global optimum will be hard to be lost. Furthermore, the
infimum penalty function is not added to the objective
function directly but constitutes the IDDEA as a correc-
tion term. It selects the worst agent as a reference term
and adds an infimum penalty term into IDDEA, which can
avoid the difficulty in designing those parameters or weights
in other penalty based methods.

The performance of IDDEA proposed in this paper was
evaluated by comparing its accuracy with other well known
optimization algorithms. The more optimal results pre-
sented in Section 4 confirmed the strong global searching
ability of IDDEA in dealing with complex constrained opti-
mization problems. It also revealed that the dynamic sub-
regions and the infimum penalty term not only kept the ca-
pability of global search but also enhanced the convergence
which was correlative with the precision of optimization re-
sults. Thus, the improvements presented in this article on
original DDES can also be used in other simplex evolution-
ary algorithms to extend their application scope to complex
constrained optimization successfully.

To make IDDEA adapt to more comprehensive environ-
ment easily is an important goal in future study. The gen-
eralization capability of IDDEA needs to be improved fur-
ther, which is difficult and not practical sometimes. On
the other hand, parameter matching for IDDEA should be
systematized comprehensively according to more types of
problems. Although the engineering design problems and
the benchmark constrained optimization problems have
been resolved well, many more experiments and practices
are needed for identifying the most suitable range for the
application of IDDEA. To improve the present algorithm,
other state-of-the-art methods dealing with constraints can
be used to combine with the infimum penalty function. As
IDDEA is a simplex evolutionary algorithm, it can also be
used in co-evolutionary algorithms to extend its application
field.
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