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基于冗余离散小波变换的信号配准及分类

李德强 1, 2, 3 吴永国 1, 2, 3, 4 罗海波 1, 2, 3

摘 要 离散小波变换 (Discrete wavelet transform, DWT) 对输入信号的平移敏感, 当输入信号间存在平移时, 基于 DWT

的信号分类会受到负面影响. 本文提出一种基于冗余离散小波变换 (Redundant DWT, RDWT) 的信号配准及分类方法,

克服了 DWT 的平移敏感性, 解决输入信号间存在平移变化的信号分类问题, 同时实现了信号配准以及平移不变小波系

数提取. 对基准信号作离散小波变换. 对测试信号作冗余离散小波变换, 得到测试信号的平移所对应的 DWT 分解, 计算

其同基准信号 DWT 分解之间的相似性, 根据相似性大小对该测试信号分类并确定其相对基准信号的平移量. 利用 ECG

(Electrocardiograph) 信号的仿真实验证明了本文所提方法的有效性.
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Redundant DWT Based Signal Registration and Classification
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Abstract Discrete wavelet transform (DWT) is sensitive to the translation/shift of input signals, so its effectiveness

could be negatively impacted when it encounters translation among signals. This paper proposes a redundant DWT

(RDWT) based signal registration and classification method that can solve DWT′s translation sensitivity, fulfill signal

classification when there are translation variances among signals, and simultaneously accomplish signal registration and

translation invariant wavelet coefficient extraction. To the reference signal, we perform DWT on it. To the test signal,

we perform RDWT, obtain the DWT result for its translation, and compute the similarity between the translated test

signal and reference signals based on the DWT results. Then, we classify the test signal and determine its translation

with respect to the reference signal according to the similarity criterion. Simulation results on the ECG signals prove the

effectiveness of our RDWT based method.

Key words Redundant discrete wavelet transform (RDWT), discrete wavelet transform (DWT), translation-invariant

feature extraction, signal registration, ECG signal

离散小波变换 (Discrete wavelet transform,
DWT) 具有良好的时频局部化和多分辨率特性,
能够在多尺度下将信号分解为低频尺度空间和高

频细节空间并提取出信号中的特征点, 如时频域内
的突变点和拐点等, 因而被广泛应用到信号处理领
域. 用于信号分类的离散小波系数特征提取方法有:
Local discriminant bases (LDB), Joint best basis
(JBB)[1], Fuzzy wavelet packet based method[2]等,
这些方法的有效前提条件是输入信号间不存在平移,
否则无法保证提取的小波系数特征一一对应, 造成
后续匹配失败, 失败原因在于 DWT 分解过程中存
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在二抽取环节. 所谓的二抽取就是对一个序列隔点
抽取子序列的过程, 二抽取导致 DWT 对输入信号
的平移敏感, 即 “信号平移的 DWT 结果” 不等于
“信号 DWT 结果的平移”. 当两个信号只存在周期
平移差异时, 它们所对应的 DWT 分解系数在波形、
聚集度或其他特性上会有很大差异. 因为信号到达
的时间或位置经常无法预测, 实际应用中信号间经
常出现平移变化, 在利用 DWT 进行信号分类时, 消
除信号间的平移差别并提取出平移不变的小波系数

意义重大.
目前, 国内外关于提取平移不变小波特征的方

法主要可分为两大类. 第一类是提取间接的平移不
变小波特征, 如Mallat 的局部极小点法、Pun 的平
均能量法[3] 等, 这类方法不是直接利用小波系数作
为特征, 可能会无法保证充分利用小波时频局部化
特性; 第二类就是引入冗余思想, 具体可分为三种
方法: 1) 分解过程中无二抽取, 并对滤波系数逐级
进行二插值, 其计算复杂度为 O(L2), 远高于 DWT
的 O(L), 其中 L 为信号长度, 如 Nason 的静态
小波变换 (Stationary wavelet transform, SWT)[4]

和 Flower 的冗余小波变换[5]; 2) 复小波变换, 如
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Kingsbury[6] 和 Selesnick[7] 的对偶复小波变换, 因
为滤波器系数为复数, 所以可获得幅值和相位特征,
但因为 1/4 周期延迟环节难于利用有限冲激响应
(Finite impulse response, FIR) 实现, 另外复小波
变换只能是近似的平移不变小波变换; 3) 保留二抽
取的冗余小波变换, 最早由 Shensa[8] 和 Beylkin[9]

提出, 该冗余小波变换对原始信号及其一步平移
分别作经典 DWT 变换, 一级冗余离散小波变换
(Redundant DWT, RDWT) 分解的计算量是经典
DWT 的 2 倍, 其优点是虽然 RDWT 不穷举原始
信号的 L 个周期平移并分别作 DWT, 却能够从冗
余分解树中获得输入信号的任意周期平移所对应的

DWT 结果. 目前, RDWT 的应用主要是在信号去
噪和压缩上[10−11], 首先定义一个关于信号去噪和压
缩性能的目标函数 (如熵函数), 对输入信号作最大
级别的 RDWT 分解, 在 RDWT 分解树中找到一个
分解组合使目标函数最优. 当两个信号之间只存在
周期平移关系, 目标函数最优时从 RDWT 分解树
中得到关于它们的 DWT 分解结果是相同的.

有关 RDWT 方法应用于信号分类的报道不多,
Li 等[12] 曾将 RDWT 思想引入到 2 维 DWT 变换
中, 对人脸识别进行了初步研究.
至于小波变换在信号配准的应用, Dusan 等[13]

利用时间和尺度平面上的小波变换模极大值作为图

像的边缘来实现图像配准; 吕佩卓等[14] 提出一种基

于小波多分辨分析的 PDF417 二维条码自动检测定
位方法.
信号分类与信号压缩/去噪存在很大不同. 分类

问题涉及到一组信号, 要求从每个信号中都提取出
平移不变特征, 而后者经常只处理单一信号, 并不
关心特征提取和特征对应. 我们认为信号分类的难
点在于: 1) 不同输入信号间的平移不变特征表示;
2) 信号或特征的配准; 3) 鉴别力强的特征提取. 本
文提出了一种基于 RDWT 的信号配准及分类方法,
解决了经典 DWT 中的二抽取破坏信号平移不变性
的问题, 同时实现信号配准、信号分类以及测试信号
相对基准信号的平移不变小波系数的提取.

1 冗余离散小波变换

RDWT对尺度信号及其一步平移分别作DWT
分解, 能够保证从 RDWT 分解树中推导出任意平
移所对应的 DWT 结果, 以解决 DWT 的平移敏
感问题, 单节点的一级 RDWT 分解计算量仅是
DWT 的两倍, 一维 RDWT 分解结构示意图见图
1. 图 1 中, Ωj

m 是 j 级第 m 个子空间, 它是一个
尺度空间; Sx(Ωj

m) 是 Ωj
m 的 x 步周期平移; Ωj+1

2m

和 Ωj+1
2m+2 是尺度空间; Ωj+1

2m+1 和 Ωj+1
2m+3 是小波空

间. 由图 1 可以看出只有尺度空间被分解, 而小

波空间保持不动; RDWT (Ωj
m) 由 DWT (Ωj

m) 和
DWT (S1(Ωj

m)) 构成, 其中, DWT (Ωj
m) = Ωj+1

2m ⊕
Ωj+1

2m+1, DWT (S1(Ωj
m)) = Ωj+1

2m+2 ⊕ Ωj+1
2m+3.

图 1 一维 RDWT 分解结构示意图

Fig. 1 1-D RDWT decomposition structure

参照图 1, 分析 RDWT 分解树中上下层, 即
父节点与子节点间的平移关系, 例如 Ωj

m 与其

一级 RDWT 分解节点 {Ωj+1
2m ,Ωj+1

2m+1} 和 {Ωj+1
2m+2,

Ωj+1
2m+3} 之间的平移关系. 由于二抽取的存在,

DWT (Sx(Ωj
m)) 的结果受 x 的奇偶性影响而选择

不同的子节点组合:

DWT (Sx(Ωj
m)) = Sx/2(Ω

j+1
2m )⊕ Sx/2(Ω

j+1
2m+1),

x = 0, 2, · · · , 2k (1)

DWT (Sx(Ωj
m)) =

S(x−1)/2(Ω
j+1
2m+2)⊕ S(x−1)/2(Ω

j+1
2m+3),

x = 1, 3, · · · , 2k + 1 (2)

从式 (1) 和 (2) 中可看出, DWT (Sx(Ωj
m)) 可

以通过平移 RDWT 分解树中的冗余子节点来得到,
x 的奇偶性决定取哪种分解组合, Ωj

m 的偶数平移

的 DWT 结果通过平移 Ωj+1
2m 和 Ωj+1

2m+1 来获得, 其
奇数平移的 DWT 结果通过平移 Ωj+1

2m+2 和 Ωj+1
2m+3

来得到. 根据图 1 所示, 对长度为 L 的信号 (表示
为根节点 Ω0

0) 作 RDWT 分解, 第一级有 4 个冗余
节点 (Ω1

0,Ω
1
1,Ω

1
2,Ω

1
3), 其节点长度为 L/2; 第二级

有 8 个冗余节点 (Ω2
0,Ω

2
1, · · · ,Ω2

7), 其节点长度为
L/4; 依次类推, 第 J 级有 2J+1 个冗余节点 (ΩJ

0 ,
ΩJ

1 , · · · ,ΩJ
2J+1−1), 其节点长度为 L/2J . 可以看出

在 RDWT 分解树中, 每一层共有 2L 个小波分解系

数.
若已知原始信号及其平移量 x, 从 Ω0

0 的

RDWT 分解树中可得到 DWT (Sx(Ω0
0)) 的分解组

合, 即应该选择哪些节点, 对所选节点的平移量是多
少:

DWT (Sx(Ω0
0)) = Sx1(Ω

1
m1
⊕ Ω1

m1+1)⊕
Sx2(Ω

2
m2
⊕ Ω2

m2+1)⊕ · · · ⊕ SxJ
(ΩJ

mJ
⊕ ΩJ

mJ+1)
(3)
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其中, m1,m2, · · · ,mJ 表示在各分解级别中所选择

的尺度空间编号; xj 表示对 Ωj
mj
的平移量; Ω1

m1
,

Ω2
m2

, · · · ,ΩJ
mJ
为尺度空间; Ω1

m1+1,Ω
2
m2+1, · · · ,

ΩJ
mJ+1 为小波空间.
上下两相邻分解级别节点编号间的递推关系为

{
mj = 2×mj−1, 若 xj−1 是偶数

mj = 2×mj−1 + 2, 若 xj−1 是奇数
(4)

其中, m0 = 0. 上下两相邻分解级别节点平移量间
的递推关系为

xj =
⌊xj−1

2

⌋
(5)

其中, x0 = x, b·c 为取下整数操作.
为说明 DWT 的平移敏感性以及利用 RDWT

能提取出平移不变小波系数, 图 2 给出了直观的图
示说明, 图 2 (a) 为存在平移关系的原始方波信号;
图 2 (b) 为原始信号 DWT 分解的第三级尺度信息,
它们对平移敏感; 图 2 (c) 给出 RDWT 方法获得的
平移不变的第三级尺度信息.

2 基于RDWT的信号配准和分类

基于 RDWT 的信号配准和分类的过程是: 首
先选定每一类的基准信号, 对它们执行 DWT 变换.
对测试信号执行 RDWT 变换, 从 RDWT 分解树中
得到测试信号平移的 DWT 结果, 并计算其与每个
基准信号 DWT 结果间的相似性, 将测试信号分类
到相似度最大的基准信号所属类, 同时得到测试信
号相对基准信号的平移量.

2.1 基准信号DWT向量

定义基准信号 rrri 的第 j 级 DWT 分解:

rrri(j) = [Ωj
0 ⊕ Ωj

1] (6)

其中, Ωj
0 和 Ωj

1 分别为第 j 级尺度空间和小波空间.

2.2 测试信号 xxx平移的DWT向量

从测试信号 tttn 的RDWT分解树中得到其 x平

移对应的第 j 级 DWT 分解:

tttn,x(j) = [Sxj
(Ωj

mj
⊕ Ωj

mj+1)] (7)

其中, Ωj
mj
和 Ωj

mj+1 分别为第 j 级尺度空间和小波

空间. mj 和 xj 可利用式 (4) 和 (5) 递推得到.

(a) 原始方波信号序列

(a) Original shifted square signal

(b) DWT 分解得到第三级尺度信息

(b) DWT′s approximation results at the 3rd level with

respect to (a)

(c) RDWT 分解得到第三级平移不变尺度信息

(c) RDWT′s translation invariant approximation

results at the 3rd level with respect to (a)

图 2 DWT 平移敏感性及 RDWT 优势示意图

Fig. 2 Illustration of DWT′s translation sensitivity and

RDWT′s advantage

2.3 测试信号与基准信号间的相似性

计算测试信号 x 平移的 DWT 向量与基准信号
DWT 向量间的相似度
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S corr(i, n) = max
x∗

{
J∑

j=1

corr(rrri(j), tttn,x(j))},

x = −τ : +1 : τ (8)

其中,

corr(aaa,bbb) =

∑
k

(ak × bk)
√∑

k

(ak × ak)
√∑

k

(bk × bk)
(9)

J 为最大分解级别, [−τ ,τ ] 为平移范围, x* 为
S corr(i, n) 最大时测试信号相对基准信号的平移
量. 对测试信号 tttn 分类, 将其分类到相似度最大的
基准信号所属类中:

S corr∗(n) = max
i∗
{S corr(i, n)},
i = 1, 2, · · · , c (10)

其中, c 为类别数, S corr*(n) 表示测试信号 tttn 与

所有基准信号的最大相似度, i* 表示测试信号所属
类别, x* 为测试信号相对 i* 类基准信号的平移量,
利用 x* 可以提取出测试信号相对基准信号的平移
不变小波系数, 具体过程参照式 (3)∼ (5).

2.4 相关问题研究

1) 分解层数的确定: 在单信号的压缩和去噪上,
常利用基于某种目标函数 (如熵值) 最优的分解层数
确定方法, 一般过程是自底向上逐级计算子节点的
熵值和, 并同其父节点的熵值进行比较, 若子节点的
熵值和小于父节点的熵值, 则利用子节点代替父节
点; 否则删除子节点, 保留父节点. 在信号分类上,
参考文献 [2] 利用训练集合的特征空间定义了一种
基于模糊准则的特征空间分类能力评价函数, 计算
每一类内样本的模糊隶属度之和, 将其作为评价特
征空间分类能力的指标, 再自底向上逐级确定DWT
的分解层次, 但该方法所定义的评价函数不具备叠
加性, 另外需要训练样本集. 在一般情况下, DWT
分解层次的确定可采取 “trial and error” 的策略.

2)平移量假定范围的确定: 本文所提的RDWT
法是一种精确的平移量确定方法, 需预先知道平
移范围, 准确的初始平移量范围可以大大减小搜
索空间, 提高计算效率. 关于平移量初始范围的
确定可考虑以下两种方法: a) 快速傅里叶变换
(Fast Fourier transform, FFT) 互功率谱法, 其
原理是利用 Fourier 描述算子的平移不变性, 对
基准信号 rrri 和测试信号 tttn 分别作 FFT 变换, 得
到 FFT (rrri) 和 FFT (tttn), 再计算它们的互功率谱
FFT (rrri)×FFT∗(tttn)

|FFT (rrri)×FFT∗(tttn)| . 在理论上, 如果 rrri 和 tttn 只相差

一个平移量 τ , 则互功率谱为 ejτω, 对 ejτω 作傅里叶

逆变换, 则 X 轴 τ 处将形成一个单位脉冲函数, 互
功率谱逆变换的最大值出现的位置就是两信号最佳

匹配位置. 所以, 可在互功率谱逆变换中找到若干幅
值比较大的区域, 作为平移量的候选范围. b) 基于
DWT 的多尺度分析法, 其理论基础是 DWT 的多
分辨率分析, 大尺度可分析信号的全局信息, 小尺度
可获得细节信息. 可先在大尺度下对平移量进行粗
略估计, 令尺度 j 下匹配位置估计值为 τj, 则在原始
信号中可能的平移范围为 (2jτj − 2j, 2jτj + 2j).

3) 基准信号的选取: 基准信号是每一类中有代
表性的样本, 其选取的好坏会影响识别和匹配定位
效果, 基准信号的选取涉及到信号指标的评价问题,
可从以下几方面给予考虑: 信噪比、熵值、一类信号
中接近均值的样本信号等.

3 仿真实验

对 MIT-BIH 心律异常数据库中 7 种不同类型
ECG 信号进行分类和配准, 即: 房性早搏 APC、室
性逸搏 E、左束支阻滞 L、正常N、起搏心跳 PB、室
性早搏 PVC、右束支阻滞 R, 其波形见图 3.
此数据库包含了采集于 48 位患有心律异常

的病人各一段 ECG 心电信号, 每段为连续半个小
时的双道联 ECG 数据, 并以 360Hz 的采样频率
被数字化, 可从 http://www.physionet.org/physi-
obank/database/mitdb 网站下载. 参考文献 [15],
由于诊断信息主要位于 R 波峰, 每个样本由 QRS
间域中 R 波峰的前后各 100 个点总共 201 个点组
成, 每类信号各取 78 个样本, 共 546 个样本.
在 MIT-BIH 数据库中, 医学专家已经对每类

ECG 信号的类别和发生位置进行了标注. 在本实验
中, 人工对信号加入了 x ∈ [−6,+6] 的随机平移量,
利用标注结果作为先验来验证 RDWT 方法的分类
和配准效果. 本实验从每类信号中随机选取一个作
为基准信号, 利用 “db4” 小波对每个基准信号作 3
级 DWT 分解; 对每个未知类别的测试信号, 进行 3
级 RDWT 分解, 从 RDWT 分解树中得到测试信号
x 平移的 DWT 结果, 并计算其与基准信号 DWT
结果间的相似性. 为证明 RDWT 方法的有效性, 本
文利用互相关法、FFT 法、DWT 方法等三种方法
进行对比实验. 对于 DWT 法, 忽略 DWT 结果对
输入信号平移敏感, 令测试信号 x 平移的第 j 级

DWT 分解近似为 tttn,x(j) ≈ [Sround (x/2j)(Ω
j
0⊕Ωj

1)].
上述实验共执行 10 次, 具体的统计分类结果见表 1.
在分类结果正确的前提下, 我们统计了四种方

法对所有测试信号相对基准信号的配准效果, 具体
统计了定位误差绝对值的均值和方差, 其中: 互相
关法对应 0.80± 1.36; FFT 方法对应 1.91± 3.47;
DWT 方法对应 0.72± 1.34; RDWT 方法对应
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0.9± 1.33.

(a) 房性早搏 APC

(a) Atrial premature beat

(b) 室性逸搏 E

(b) Ventricular flutter

wave

(c) 左束支阻滞 L

(c) Left bundle branch

block beat

(d) 正常 N

(d) Normal beat

(e) 起搏心跳 PB

(e) Paced beat

(f) 室性早搏 PVC

(f) Premature ventricular

contraction

(g) 右束支阻滞 R

(g) Right bundle branch

block beat

图 3 七类典型 ECG 信号

Fig. 3 7 types of ECG signals

从实验结果中, 我们发现:
1) 从分类结果上看, 互相关法对 (a) 类信号

分类效果较差; FFT 方法对 (a) 类和 (b) 类分类
效果较差; DWT 对 (a) 类和 (f) 类分类效果较差;
RDWT 对所有类信号都有很好的分类效果.

2) 从配准定位精度上看, RDWT 虽然定位误
差绝对值的均值不是最小的, 但方差是最小的. 由于
7 类 ECG 信号发生的时间是人工标注的, 同真实值
相比可能会有几个采样位置偏差, 利用这些标注值
做基准, 对各类信号的配准误差在 2 个采样单位以
内应该是可以接受的.

4 结论

本文提出一种基于冗余小波分解的信号配准及

分类方法, 只需预先给定每类的基准信号, 而不需
要样本训练集合. 若给定训练样本集, 通过训练过程
能够提取出鉴别能力强的特征, 分类和配准效果会
更好. RDWT 对各级尺度信息及其一步平移分别作
DWT 变换, 能够得到测试信号任意平移的 DWT
结果, 通过计算基准信号 DWT 与测试信号平移的
DWT 间的相似性, 实现信号的分类和配准, 并提取
出测试信号相对基准信号的平移不变性小波系数.
此处的 “平移不变性” 并不是广义上具有平移不变
性的数学变换. RDWT 的优势在于:

1) 继承了 DWT 的时频局部化和多分辨率分析
的优点, 对信号尺度变化具有鲁棒性;

2) 从 RDWT 分解树中能够得到信号任意平移
的 DWT 结果, 可解决 DWT 对输入敏感的问题;

3) RDWT 只是逐级递推分解尺度空间, 而未
处理小波空间, 所以每一级 RDWT 分解的计算量
只是 DWT 的两倍.

信号的配准和分类是一个广泛的研究课题, 涉
及到许多问题, 本文中我们只是对分解层数的确定、
平移量假定范围的确定、基准信号的选取等问题做

了初步讨论, 今后将继续就此展开深入研究.

表 1 各种方法对 7 类 ECG 信号正确分类结果

Table 1 Correct classification results of 7 ECG signals with various methods

(a) 房性 (b) 室性 (c) 左束 (d) 正常 N (e) 起搏 (f) 室性 (g) 右束 总的正确

早搏 APC 逸搏 E 支阻滞 L 心跳 PB 早搏 PVC 支阻滞 R 识别数

互相关 48 75 78 78 78 76 78 511

FFT 49 29 78 78 78 75 78 465

DWT 65 74 78 78 78 66 78 517

RDWT 74 74 78 78 78 74 78 534
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