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Dual-stage Optimal Iterative Learning Control for

Nonlinear Non-affine Discrete-time Systems
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Abstract

HOU Zhong-Sheng!

On the basis of a new dynamic linearization technology along the iteration axis, a dual-stage optimal iterative learning

control is presented for nonlinear and non-affine discrete-time systems. Dual-stage indicates that two optimal learning stages are
designed respectively to improve control input sequence and the learning gain iteratively. The main feature is that the controller
design and convergence analysis only depend on the I/O data of the dynamical system. In other words, we can easily select the
control parameters without knowing any other knowledge of the system. Simulation study illustrates the geometrical convergence of
the presented method along the iteration axis, in which an example of freeway traffic iterative learning control is noteworthy for its

intrinsic engineering importance.
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1 Introduction

The iterative learning control (ILC) was originally pre-
sented for robot applications[l]. It involves systems that
repetitively perform the same task, aiming to improve their
tracking accuracy. Till now, the convergence analysis of
ILC has mainly focused on linear systems, and studies on
the nonlinear systems[2N5] and for the nonlinear non-affine
systems are few!Sl.

Furthermore, most of the current ILC methods adopt
fixed learning gain laws. Only control input sequence
is modified, the mapping relationship remains the same
during the learning iterations!. Clearly, these methods
are not effective in a varying control environment. Thus,
an adaptive learning control scheme was presented to im-
prove the learning scheme itself as well as the control input
sequence[7~9]. However, till now only a limited number of
results are available even for linear cases of adaptive ILC.

Another obstacle to the further application of ILC lies in
the selection of learning gain. In theory, just based on the
1/0 data and the desired signal of the controlled system, an
iterative learning controller can operate well without any
other a priori of the dynamic process. However, for the
controller design and convergence analysis, some knowledge
about the system is required, such as the Jacobin matrix
of the controlled systems, though it is not necessary to
know their values precisely. If there is not any knowledge of
the dynamical system, we most commonly select a proper
learning gain case by case. So how to achieve the model-free
property of ILC to avoid using any a priori of the system
becomes a challenging and opening problem.

In recent years, a constructive model-free adaptive con-
troller has been presented for a class of nonlinear and non-
affine systems[lo’”] based on a new dynamical linearization
method and a new concept called pseudo-partial derivative
(PPD). The design and analysis are only depended on the
input and output measurements without any a priori of the
system. As a result, it overcomes the limitation of model
uncertainties in nature.

In this paper, we explore the possibility of extending
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the model-free adaptive control®') to ILC tasks coping

with nonlinear and non-affine discrete-time systems. By in-
troducing the concept of PPD, a new dynamical lineariza-
tion method in the iteration domain is developed, which
is free of the unmatched dynamical uncertainty. Then, we
present a dual-stage optimal ILC. It is model-free, and the
design and convergence analysis are directly based on the
I/O data. Dual-stage indicates that there are two learning
stages: one is the control input learning stage for improving
the control input sequence and the other is the parameter-
updating stage for estimating the PPD wvalues iteratively.
Thus, the learning gain can be tuned iteratively with PPD
estimation values. Hence, the learning law itself can be
improved iteratively, and it overcomes the difficulty in se-
lecting proper learning gains.

This paper is organized as follows. Section 2 deals with
the model transformation, where a new dynamic lineariza-
tion method is developed. Section 3 copes with the detailed
design of the novel dual-stage optimal ILC method. The
convergence analysis is provided in Section 4. Section 5
shows the simulation results and Section 6 is some conclu-
sions.

2 Model transformation

To clearly demonstrate the main idea, we consider the
following repeatable system

ye(t+1) = fyn(t), ye(t = 1), - yn(t — ny), (1)
uk(t)7uk(t - 1)7 T 7uk(t - nu))

where yi(t) and ui(t) are the output and input at time
t of the kth iteration, respectively. ¢t € {0,1,---,T} and
k=0,1,2,---. ny and n, are unknown orders, and f(- - -)
is an unknown nonlinear scalar function.

Assumption 1. The partial derivative of f(- --) with
respect to control input ux(t) is continuous.

Assumption 2. Suppose that for all t € {0,1,---,T}
and k =0,1,2,- - -, if |[Auk(t)] > e > 0, then system (1) is
generalized Lipschitz, i.e.,

|Dyi(t + 1] < bl Dus(t)]
vt e {0,1,---,T} and Vk=0,1,2,--- (2)

where Ayp(t +1) = yp(t + 1) — yp—1(t + 1), Dug(t) =
ur(t) — up—1(t), b is a finite positive constant, and ¢ is an
arbitrary small positive constant.

Remark 1. In Assumption 2, the condition |Au(t)| >
e>0foralte {01, --,7} and k = 0,1,2,- - - can be
guaranteed by a reset algorithm (15) given in the following
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section. From a mathematical point of view, provided that
|Aug(t)| > € > 0, there must exist a finite constant b such
that (2) can be satisfied. Furthermore, we just need the
existence of such a constant b without requiring the exact
value.

Lemma. For nonlinear system (1), if Assumptions 1
and 2 hold, there must exist (), called PPD. When
|Aup(t)| >e>0forallt € {0,1,--,T}and k =0,1,2,---,
such that

Ayp(t+1) = 0, (t) Aug(t) (3)

and |0 (t)| < b with b defined in Assumption 2.
Proof. From system (1), we have

Ayt +1) = flye(®), yr(t — 1), - yu(t — ny),
uk(t),uk(t — 1), .. -,uk(t — nu))—
fr—1(8), yr—1(t = 1), - ye—1(t — ny),
uk_l(t),uk_l(t — 1), . ~7uk_1(t — nu)) =
Fyr @), yn(t = 1), ye(t — ny),
ug (), uk(t — 1), up(t —ny))—
Fur(®),ye(t — 1), ye(t — ny),
Uk—1(t),urp(t — 1), -, up(t — ny))+
Fye(®),ye(t = 1), - yr(t — ny),
up—1 (), up(t — 1), - ue(t — ny))—
Fr—1(8), yr—1(t = 1), - yr—1(t — ny),
Up—1(t),up—1(t — 1), s up—1(t — ny))

Using Assumption 1 and the differential mean value the-
orem, from (4), we have

Ayi(t +1) = Of" [ Qur(t) (ur(t) — ux—1(2)) + &(t) ()

where 0f”/Ouy(t) is the proper partial derivative value of
f( ) with respect to uk(t), and & (t) = f(yr(t),yu(t —
1)7' : '7yk(t - ny)vuk—l(t)vuk(t - 1)3' : 'auk(t - nu)) -
SWr—1(8),ye—1( — 1), - - yp—1(t = ny), up—1(t), ue—1(t —
1)7 t '711/]@71(75 - nu) .

Consider the following equation with a variable 7y (¢):

€ (t) = mi(t) Dus(t) (6)

Because |Aug(t)] > e > 0 for all t € {0,1,---, T} and
k=0,1,2,- -, clearly (6) must have a solution nx(t).

Let 0x(t) = Of" /Our(t) + nk(t), so (3) can be obtained
from (5). Apparently, under Assumption 2, we can get that
6.(8)] < b. 0

Remark 2. Throughout this paper, all discussions are
based on the assumption that |Aug(t)] > ¢ > 0 for all
te€{0,1,--,T} and £k =0,1,2,---. Hence, system (1) can
be rewritten as (3).

Remark 3. By virtue of the definition of 0x(t), we can
see that all effects of the past inputs and system states on
the system output can be fused into 6x(t). In fact, 0 (t) is
one of the most complicated unknown functions about the
past inputs and system states. In this paper, we give the
prediction or estimation values of the current iteration in
batch by using the information of previous tries.

3 Dual-stage optimal iterative learning
controller design

Given a desired trajectory ya(t), t € {0,1,---, T}, the
control target is to find a sequence of appropriate control
inputs uk(t) such that the tracking error e, (t+1) = ya(¢t +
1) — yk(t + 1) converges to zero as the iteration number k
approaches infinity.

Vol. 33
Rewrite (3) as
ye(t+1) = yp—1(t + 1) + 0k (t) Aug(t) (7)
Define the index function of control input as
J(ur(t)) = lex(t + D + Al Au(t)]” (8)

where ) is a positive weighting factor.
According to (7) and the definition of ex(t + 1), J(ux(t))
can be rewritten as follows.

J(un(t)) = lya(t +1) = yr—1(t+ 1) — Ok (t) (ur(t)—
k-1 (£))* + A () — ur—1(t)]
Using the optimal condition 8J/du(t) = 0, we have

e (t) = we—1(t) + pOx(t)en—1(t + 1)/ (A + |6k ()[*) ~ (10)

where p is a step-size constant series, which is added to
make the generality of algorithm (10) and used in the an-
alytical stability proof later.

Since PPD, 6i(t), is not available, here we present the
learning control law as

ur(t) = we—1(t) + pOi(tex—1 (t + 1)/ (A + |65 (D) (11)

where A > 0, p € (0,2). 0;,(¢) is to learn the PPD param-
eter 0;(t) and updated iteratively in terms of the optimal
solution of the following criterion index function:

J(05.(8) = | Ay—r(t+1) = 05, (8) Aug—1 (4)* + pl 0. () — 05, (1)
(12)
where p is a positive weighting factor. Rewriting (12),

J(0 (1) =lyr—1(t +1) — (Yr—2(t + DHO_1 () Dur—1(t))—
(0%(t) — 011 (1)) Auk—1 (1) [+
w0k (t) — 51 (1))

9)

(13)

Using the optimal condition 8J/80;(t) = 0, we obtain
the parameter updating law as follows:

Ok (t) = 01 (t) + nlui—1()/(p + | Dur—1(t)]*) x
(Dye-1(t+1) = 1 (1) Dug—1(t))

where p > 0 is the positive weighting factor in (12) and
n € (0,2) is a step-size constant series added to make the
generality of algorithm (14). 6(t) can be chosen arbitrarily.

To make the condition |Aug(t)] > & > 0 be satisfied for
all t € {0,1,---, 7T} and k = 0,1,2,- - -, and to make the
parameter estimation algorithm (14) have stronger ability
in tracking variable parameter, we present a reset algorithm
as follows:

0L (t) = 04 (t), if (1) <e, or

where ¢ is a small positive constant.

Remark 4. It is worth pointing out that the PPD pa-
rameters act as the learning gains in learning control law
(11) virtually and can be iteratively tuned by (14), depend-
ing only on the I/O data. This is quite different from the
traditional ILC.

Remark 5. For the proposed ILC scheme, in the prac-
tical operation, what we need is to tune the parameters p
and 7 in a small range with properly fixed values of A and
u, without requiring any a priori knowledge of the non-
linear dynamic system. This is the major difference from
the traditional ILC, in which the design of learning gain
requires some knowledge of the nonlinear dynamic system,
e.g., the upper and lower boundary of the nonlinear system
gradient.

(14)

|Auk(t)| < e (15)
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4 Learning convergence analysis

For the rigorous analysis of the following discussion, we
give another assumption on PPD parameter as follows.

Assumption 3. The PPD parameter 0y (¢) satisfies the
assumption that 65 (t) > 0 (or 0, (t) < 0), Vt € {0,1,---, T}
and Vk € {0,1,2,- - -}, and 0x(t) = 0 holds only at finite
points.

Remark 6. This assumption is similar to the limitation
of control input direction. In fact, many practical systems
can satisfy this assumption such as the temperature control,
the pressure control and so on.

Theorem. For a nonlinear and non-affine discrete-time
system governed by (1), if Assumptions 1 ~ 3 hold, then
the learning control law (11), the PPD parameter updating
law (14), and the reset algorithm (15) guarantee that

1) the PPD parameter estimation value 8},(t) is bounded
over the finite time interval 0,1, - -, T';

2) the tracking error converges to zero pointwisely over
the finite time interval as k approaches to infinity;

3) the control signals are bounded, that is, ug(t) € 1™
fort € {0,1,---,T} and k =0,1,2,- - -.

Proof. The proof consists of three parts. Part 1 de-
rives the boundedness of the PPD parameter estimation
value 6},(t). Part 2 proves the almost perfect tracking per-
formance. The boundedness of control signals is shown in
Part 3.

Part 1. The boundedness of 65, ().

Case 1. When |Auk(t)| < e, by (15), 0,(t) is clearly
bounded.

Case 2. When |Auyg(t)| > €, subtracting 05 (¢) from both
sides of (14), we have

P (t) =¢r-1(t) = (O () — Ox—1(t))+
nBuk-1(8)/ (1 + | Dur—a (8)]*) x (16)
(Dy1(t+1) — Oy (1) D1 (1))
where ¢y (t) = 05, (t) — 0 ().
Let ABk(t) = 0x(t) — Ox—1(t). Using the relationship of
(3), we can rewrite (16) as
i (t) = di—1(t) = D0k (1) +nluk—1 (1) / (p + | Dug—1 (£)*) %
(Or—1(8) =01 (1)) Dur—1 (1)) =
Gr—1(t)(1 = nDur—1(t)*/ (1 + | Dur—1(8)|*)) — DOk (2)
(17)
Consider the following inequality
0 < |1 =nlue—1(t)*/(p+ D (1)) <1 (18)
Solving inequality (18), we have
n€ Dy = [0,2+ 21/l A1 (1)) (19)

Apparently, because p > 0, n € (0,2), then inequality
(18) can be guaranteed for V¢ € {0,1,---, T} and Vk €
{0,1,2,---}. Although |Aug—_1(t)| approaches infinity, we
still get |1 — n| < 1. Hence, we can find a constant di =
SUDke (0,00} SUPrefo, 1y |1 — nAuk—1(8)%/ (1 + |Aup—1(£)[?)
such that 0 < dy < 1 for all ¢t € {0,1,---,T} and k €
{07 1,2,-- }

Taking norm for both sides of (17), we have

|6k (8)] < 11— nDui—1 () /(1 + | Dur—r (8)] )| dn-1 (1) |+

|80k (1) < di|dr—1(t)] +2b < dF[do(t)] + 2b/(1 — dn)
(20)

Hence ¢ (t) is bounded. Because |0x(t)| < b, 0;(t) is
bounded for all ¢ € {0,1,---,T} and k € {0,1,2,---}.

Part 2. Almost perfect tracking performance.

By (7), the error dynamics is

er(t+1) =ya(t+1) —yp(t +1) =
ya(t+1) —ye—1(t+ 1) — 0 () Dug(t) = (21)
6k_1(t -+ 1) — Oy (t)Auk (t)
Substituting control law (11) into (21), we obtain
er(t+1) = [1— pbr ()65, () /(A + |6 ())er—1(t +1) (22)
To evaluate the relationship between er(t + 1) and
ex—1(t + 1) described by (22), we consider the term [1 —
POk (1)01 (1) /(A + |04 (6)[*)] in (22).
Solving the following inequality
11— PO (165 (1) /(A + [0k (8)] )] < 1 (23)
we obtain
0<p < 2N+ 0k(1)*)/0x ()0 (2) (24)
If 0 (t)0,(t) < 0},(t)?, then clearly

20k (£)) /01 (105 () > 2(A+ 01 ()0 (¢)) /0x (£) 0k (1) =
2 42X/ 0k (1) 0k (t) > 2
(25)

Hence, p € (0,2) C (0,2 + 2X/0,()05(1)).

If 0x()05(t) > 6}.(t)%, we can choose A > Amin =
01 ()05, (t) — 07, (t)* to guarantee that p € (0,2) C (0,2(\ +
01 ()2 /6. (10, (1)).

Hence, by properly choosing the values of A and p, we
can always guarantee that inequality (23) holds for all ¢ €
{0,1,---,T} and k € {0,1,2,- - -}.

Similarly, we also define a constant do =
SUDke 0.0y SUPrc (0.1 11— POR (4 (E)/ (A + 04 (1) )] Thus
0<dy<lforallte{0,1,---,7}and k € {0,1,2,---}.

Taking norm for both sides of (22) yields

lex(t +1)| = 1= pbi ()01 (8)/ (A + 0L (6)] ) lex—1 (¢ + 1)] <

dalex—1(t+ 1) < - < dbleo(t + 1)
(26)

As a result, it guarantees that ex(t 4+ 1) exponentially
converges to zero as the iteration number k& approaches in-
finity.

By reset algorithm (15), if 65(t) < € or Aug—1(t) < ¢,
setting 0}, (t) = 0;(¢), then we have

ler(t + 1) = |1 — pbi()05(£) /(A + 166 (D)) Jex—1(t + 1)] <
da|ex—1(t + 1)|
(27)

Hence, the tracking error e (t+ 1) still decreases with an
increase in the iteration number k.

Part 3. Boundedness of control signal.

From learning law (11), we get

Aui(t) = pbi(t) /(A + 0k () )ex—1(t +1)  (28)

Because the boundedness of 0}, (t) has been guaranteed,
there must exist a constant

N= sup  sup {p0(t)/(A+10:(0)")}  (29)
ke{0,00} te{0,T—1}
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such that 0.8
0.7

|Aur(t)] < Neg—1(t+ 1) (30)

We know that

[uk ()] = |uw(t) — uo(t) +uo(t)| <
[uk(t) — wo(t)] + |uo(t)| =
[uk (t) — uk—1(t) + ur—1(t) = +ur(t) —wo(®)| + |uo ()| <

|Duk (@] + [Duk—1(B)] + - - - + [Dua (B)] + |uo(8)]
(31)

According to (27), (30), and (31), we have

|k ()] <
Nep_1(t4+1) 4+ Neg_o(t+1) 4+ - + Neg(t + 1) + |uo(t)| <
Ndgeo(t +1)/(1 — da) + uo(t)| <

Neo(t +1) + |uo(t)] (52

Clearly, the values of initial input uo(¢) and tracking er-
ror eo(t+1) can be chosen as bounded, so the control input
ug(t) is bounded for ¢t € {0,1,---,T} and k € {0,1,2,---}.

O

5 Simulation study

Now, we present two examples to show the convergence
properties of the presented method. The first example aims
at evaluating the validity of the dual-stage optimal ILC.
The second one is an example of freeway traffic density
control that may be of practical importance.

Example 1.

Consider a nonlinear and non-affine SISO system de-
scribed as

y(1)/(1+y(®)*) +u(®)’, 0<t<50
y@y(t — Dy(t —2)ut —1)(y(t — 1) — Da(?)
u(t)/(1+y(t —1)> +y(t—2)%), 50 <t<100
(33)
where a(t) = 1 4+ round(¢/50) is a varying parameter. It
is notable that the structure, orders and parameters of the

controlled system are time-varying.
The expected trajectory of output is described by

y(t+1) =

0.5 x (71)round(t/10), 0<t<30
ya(t+1) = { 0.5sin(tm/10) + 0.3cos(tr/10), 30 <t < 70
0.5 x (—1)rwd/10 = 70 < ¢ < 100
(34)

By choosing n =0.1, p=1, A =1, = 0.6, the learning
convergence is shown in Fig. 1. The horizon is the iteration
number and the vertical is the maximum absolute values
of the output tracking error. The simulation result demon-
strates the validity of the presented dual-stage optimal ILC
scheme.

e
o

o
n

e
w

Maximum tracking error
=]
N

e
)

e

0

0O 10 20 30 40 50 60 70 80 90 100
Iteration number

Fig.1 Convergence of the maximum tracking errors in Example 1

Example 2.

In this example, we address the ramp metering in a
macroscopic-level freeway environment. The choice of this
example is motivated by its intrinsic engineering impor-
tance and high-order strong-nonlinear dynamics.

We refer to the following model originally proposed
by Parageorgiou and used in many realms of freeway
control®13 The time-discretized traffic flow model for a
single freeway with one on-ramp and one off-ramp is given
as follows:

pi(t+1) = pi(t) + Tlgi-1(t) — qi(t) +ri(t) — s:(t)]/Li (35)

qi(t) = pi(t)vi(t) (36)
vi(t +1) =vi(t) + TV (pi(t)) — vi(t)]/7+
Twi(t)[vi-1(t) — vi(t)]/Li— (37)
VT [pit1(t) — pi(t)]/Tlilpi(t) + K]
V(pi(t)) = Viree(1 = [pi(t)/pjam] )™ (38)

where t € {0,1,--- , T}, i€ {1,---,T}.

The freeway is assumed to be divided into I sections of
length L;. T is the sample time interval; p;(t) is the traffic
density in section ¢ at time t7T" (veh/lane/km); v;(¢) is the
mean traffic speed in section ¢ at time t7° (km/h); ¢:(t) is
the traffic flow leaving section ¢ and entering section i + 1
at time tT" (veh/h); r;(¢) is on-ramp traffic volume for sec-
tion i at time ¢T' (veh/h); s;(t) is off-ramp traffic volume
for section ¢ at time tT" (veh/h), which is regarded as an
unknown disturbance; vfree and pjam are the free speed
and the maximum possible density per lane, respectively;
7,7, k,l,m are constant parameters, which reflect particu-
lar characteristics of a given traffic system. For a real-life
network, these parameters are determined by a validation
procedure.

It is worthy to point out that the traffic flow patterns are
in general repeated every day. From point of view of the
system, the repeatability or similarity of the traffic flow
implies two conditions: 1) the traffic model is invariant,
and 2) the exogenous inputs/disturbances to the freeway
system are invariant!™!. In such a circumstance, we apply
ILC method to the freeway traffic systems. Before using the
presented control method, we first give some assumptions
as follows.

Assume that the traffic flow rate entering section 1 dur-
ing the time period tT" and (¢t + 1)T is qo(t), and the mean
speed of the traffic entering section 1 is equal to the mean
speed of section 1, i.e., vo(t) = vi1(t). We also assume
that the mean speed and traffic density of the traffic ex-
iting section I + 1 are equal to those of section I, i.e.,
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vry1(t) = vI(t), pr+1(t) = pr(t). These assumptions can
be summarized as: a) po(t) = qo(t)/v1(t), b) vo(t) = v1(¢),
¢) pr+1(t) = p1(t), d) via(t) = vi(t).

Our control objective is to apply the presented ILC
scheme, based on the historical freeway traffic data col-
lected from the previous day (week or month), to generate
a proper value of r;(t) that drives traffic density of sec-
tion ¢ at time 7" convergence to the desired traffic density
Pi,desired(t), despite the modeling uncertainties and distur-
bances occurring at some on-ramp or off-ramp.

For the simulation, we consider a long segment of free-
way, which is subdivided into 12 sections. The length of
each section is 500m. The initial entering traffic volume
is 1500 veh/h. For all sections, the initial density and the
initial mean speed are 30 veh/lan/km and 50 km/h, respec-
tively. Other parameters used in this model are: Vypee =
80km/h, pjam = 30veh/lane/km, ! = 0.5, m = 1.7, k = 13,
7 = 0.01, T = 0.00417h, v = 35, qo(t) = 1500veh/h,
r;(t) = Oveh/h, o = 0.95.

Learning error of section 2
—— Learning error of section 9

Learning errors
=

2 4 6 8§ 10 12 14 16 18 20
Iteration number

Fig.2 Learning errors in sections 2 and 9

Fig. 2 shows the learning errors in sections 2 and 9. Here
the learning error is defined as the maximum absolute error
between the real density and the desired one over the whole
period. We can see that the real traffic density converges
to the desired density just after a few iterations.

6 Conclusion

The ILC of a nonlinear non-affine system over a finite
time interval is one of the most important and difficult
problems in the area of control theory. Motivated by the
analogy between the model-free adaptive control and ILC,
and based on a new dynamical linearization in iteration
domain, we work out a dual-stage optimal ILC for improv-
ing control input sequence, as well as the learning control
scheme itself. The control design and analysis only depend
on the input and output information of the dynamic sys-
tem. The effectiveness of the presented control method is
shown by theoretical analysis and intensive simulation re-
sults.
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