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Abstract A novel decentralized PID controller design procedure based on backstepping principles
is presented to operate multiple-input multiple-output (MIMO) dynamic processes. The first key
feature of the design procedure is that a whole MIMO control system is decomposed into multiple
control loops, therefore the sub-controllers can be efficiently flexibly designed in parallel prototype.
The second key feature is that the decentralized controller has equivalency to those designed by
backstepping approach. As a complementary support to the design procedure, the sufficient condition
of the whole closed-loop system stability is analyzed via the small gain theorem and it can be proven
that the process tracking performance is improved. The simulation results of the Shell benchmark
control problem are provided to verify the effectiveness and practicality of the proposed decentralized
PID control.
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1 Introduction

Decentralized PID control[1,2] for MIMO processes is popular in the chemical and process indus-

tries because of its relatively simple structure and fewer tuning parameters. In addition, controller

design focuses on single control loop and has little affect on other control loops, which is convenient to

maintenance and amendment. However, the tuning procedure often involves trial and error experiments

and requires an experienced operator, which is time consuming. With respect to the structural feature

of decentralized control, there are some rules in PID controller′s parameters tuning for the adjustment

of controller and the performance analysis of the control system. [3] and [2] presented effective de-

centralized PID control algorithms for interacting two-input two-output (TITO) and MIMO processes,

respectively, however, they all lack the stability analysis.

Backstepping[4] is a recursive and systematic design scheme first presented by Kokotovic in 1991.

Its designing idea is to decompose a complex system into multiple small-scale subsystems, then to

design recursively control Lyapunov function (CLF)[5] and virtual control variable for each subsystem,

and finally to obtain the original control law, realizing the global regulation and tracking for a class

of feedback linearizable nonlinear systems[6]. Some researches have been focused on the application of

backstepping method to decentralized control. [7] proposed an adaptive backstepping-based scheme for

designing a totally decentralized adaptive stabilizers for a class of large-scale systems with guaranteed

transient performance. Unfortunately, the industrial PID control application examples of backstepping

method are very few[8∼9]. [8] developed a backstepping-based adaptive PID control scheme that the

robustness and transient performance are better than those of the conventional PID control. Therefore,

combining backstepping with decentralized PID control will be of great theoretical and applicable value.

Decentralized PID controller design scheme and procedure are proposed for MIMO processes on the

basis of backstepping approach. MIMO processes are decomposed into multiple loops and controllers

are designed in parallel. First, CLF and virtual control variable based on backstepping are derived

recursively for each loop and a multivariable controller can be obtained. Then, a decentralized PID

controller can be derived via selection of the auxiliary control variable. By introducing small gain

theorem the sufficient condition of the whole closed-loop system stability is acquired and the tracking

performance is improved. The simulation study of the Shell benchmark control problem illustrates that

the decentralized PID control scheme is effective for MIMO processes.
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2 Problem statement

Consider an N × N process controlled by decentralized controller, the block diagram of general

decentralized control system is shown in Fig. 1, where y(t) = [y1 · · · yN ]T ∈ RN is the vector of process

outputs, u(t) = [u1 · · · uN ]T ∈ RN is the vector of process inputs, yr(t) = [yr1 · · · yrN ]T ∈ RN is the

vector of loop reference signals, and e(t) = [e1 · · · eN ]T ∈ RN is the vector of loop errors.

Fig. 1 MIMO decentralized control system

The control objective of MIMO decentralized control system is to decompose the MIMO process

into multiple control loops according to the control inputs and design multi-loop PID controllers, making

the process outputs yi(t)(i = 1, · · ·N) track the loop reference signals yri(t) respectively and making

the whole control system asymptotically stable. In decentralized control the controller Gc is a diagonal

matrix given by Gc = diag{Gc1, · · · , GcN}, where Gci is considered as a PID controller. The process

transfer matrix Gp = [Gij ]N×N , where Gij is a first-order or second-order transfer function model in

general.

3 Backstepping-based decentralized PID control

3.1 Configuration analysis of control system

Taking the 3× 3 system as an example, the simple block diagram of a 3 × 3 decentralized control

system is shown in Fig. 2, where ui(i = 1, 2, 3) is the control input (i.e., the controller output) for

the ith sub-process, yii is the output response to the input ui, the control effect on the ith sub-

process from other control inputs is denoted as yci, and Yci(s) =

3
∑

j=1,j 6=i

Gij(s)Uj(s), where Ui(s) and

Yci(s) are the Laplace transforms of ui and yci, yi is the output response of the ith control loop, and

Yi(s) = Yii(s) +Yci(s), where Yi(s) and Yii(s) are the Laplace transforms of yi and yii. The controllers

for all loops are designed in parallel and PID controller is derived based on backstepping approach for

each loop.

Fig. 2 3 × 3 decentralized control system

3.2 Backstepping-based multivariable control

For the i(i = 1, · · · , N)th control loop Yri(s) and Ei(s) are the Laplace transforms of yri and ei,

the transfer function of the ith sub-process is
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Gii(s) =
Yii(s)

Ui(s)
,

Bi(s)

Ai(s)
=

smi + bi,mi−1s
mi−1 + · · · + bi0

sni + ai,ni−1sni−1 + · · · + ai0
, mi < ni (1)

Decentralized PID control for MIMO process is presented on the basis of the work of Benaskeur

and Desbiens[8,9]. An integral action is inserted into the control input, Vi(s) = sBi(s)Ui(s), vi is seen

as a new control input and Vi(s) is the Laplace transform of vi, then the transfer function of the ith

sub-process can be written as

G∗
ii(s) =

Yii(s)

Vi(s)
=

1

sAi(s)
=

1

sni+1 + ai,ni−1sni + · · · + ai0s
(2)

and its state-space representation is



































ẋ1 = x2

...

ẋni
= xni+1

ẋni+1 = −ai0x2 − · · · − ai,ni−1xni+1 + vi

yii = x1

(3)

Since backstepping method is applicable to the controller design of lower-triangle nonlinear systems

or accurate linearization systems[4], (3) is a special lower-triangle linear system, backstepping can be

used recursively in the controller design for each loop. The design procedure for the ith control loop is

as follows.

Step 1. The first error variable is defined as

z1 = yi − yri + εi = yii + yci − yri + εi = xi + yci − yri + ε (4)

where εi is an auxiliary control variable used in the decentralized controllers design in Section 3.3.

Choosing the first CLF, V1 = 1
2z2

1 , and its derivative is

V̇1 = z1(x2 + ẏci − ẏri + ε̇i) (5)

x2 + ẏci is taken as the first virtual control variable, and its desired value is

α1 = (x2 + ẏci)d = −c1z1 + ẏri − ε̇i (6)

where c1 > 0 is the backstepping parameter to be designed. With the above choice, (5) becomes

negative definite.

Step l(l = 2, · · · , ni). The l(l = 2, · · · , ni)th error variable is

zl = xl + y
(l−1)
ci − αl−1 (7)

Then żl−1 = xl + y
(l−1)
ci − α̇l−2 = zl + αl−1 − α̇l−2 = −zl−2 − cl−1zl−1 + zl.

Defining the l(l = 2, · · · , ni)th CLF, Vl = 1
2

l
∑

h=1

z2
h,

V̇l =
l

∑

h=1

zhżh = −

l−1
∑

h=1

chz2
h + zl(zl−1 + xl+1 + y

(l)
ci − α̇l−1) (8)

The l(l = 2, · · · , ni)th virtual control variable is

αl = (xl+1 + y
(l)
ci )d = −zl−1 − clzl + α̇l−1 (9)

where cl > 0.

Step (ni + 1). The (ni + 1)th error variable is

zni+1 = xni+1 + y
(ni)
ci − αni

(10)
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Then żni
= xni+1 + y

(ni)
ci − α̇ni−1 = zni+1 + αni

− α̇ni−1 = −zni−1 − cni
zni

+ zni+1

Choosing the (ni + 1)th CLF, Vni+1 = 1
2

ni+1
∑

h=1

z2
h,

V̇ni+1 =

ni+1
∑

h=1

zhżh = −

ni
∑

h=1

chz2
h + zni+1(zni

+ ẋni+1 + y
(ni+1)
ci − α̇ni

) (11)

Select żni+1 = −zni
− cni+1zni+1(cni+1 > 0).

The (ni + 1)th virtual control variable is

αni+1 = (ẋni+1 + y
(ni+1)
ci )d = −zni

− cni+1zni+1 + α̇ni
(12)

In the s-plane, (12) can be rewritten as

Lni+1(s) = |sIni+1 − Cni+1|[Yri(s) − Fi(s)] − (|sIni+1 − Cni+1| − sni+1)[Yii(s) + Yci(s)] (13)

where Lni+1(s), Fi(s) are the Laplace transforms of αni+1, εi, and

Cni+1 =



















−c1 1 0 · · · 0

−1 −c2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 −cni

1

0 · · · 0 −1 −cni+1



















.

From (3), the new control input is

Vi(s) =

ni−1
∑

h=0

ai,hsh+1X1(s) + sXni+1(s) =

ni−1
∑

h=0

ai,hsh+1Yii(s) + Lni+1(s) − sni+1Yci(s) =

ni−1
∑

h=0

ai,hsh+1Yii(s) + Di(s)[Yri(s) − Fi(s)] − (Di(s) − sni+1)Yii(s) − Di(s)Yci(s) (14)

where Di(s) , |sIni+1 − Cni+1|.

The loop error is defined as Ei(s) = Yri(s) − [Yii(s) + Yci(s)], (14) can be derived

Vi(s) =

(

sni+1 +

ni−1
∑

h=0

ai,hsh+1 − Di(s)

)

Yii(s) + Di(s)[Yri(s) − Fi(s)] − Di(s)Yci(s) =

(Di(s) − sAi(s))Ei(s) + sAi(s)Yri(s) − [Di(s)Fi(s) + sAi(s)Yci(s)] (15)

Since Yci(s) =
∑

j=1

j 6=i

Gij(s)Uj(s), the control input of the i(i = 1, · · · , N)th loop is

Ui(s) =
Vi(s)

sBi(s)
=

Di(s) − sAi(s)

sBi(s)
Ei(s)+G−1

ii (s)Yri(s)−
Di(s)

sBi(s)
Fi(s)−G−1

ii (s)
N

∑

j=1,j 6=i

Gij(s)Uj(s) (16)

It can be seen that the controller design for the ith loop is dependent on the control inputs in

other loops, which is a multivariable control structure.

3.3 Decentralized PID controller design

If Di(s)Fi(s)+sAi(s)Yci(s) = 0 is held, the effect of other control inputs Vj(s)(j = 1, · · · , N, j 6= i)

on Vi(s) can be eliminated. The auxiliary control variable Fi(s) can be chosen as

Fi(s) = −
sAi(s)

Di(s)
Yci(s) (17)

then (16) can become

Ui(s) =
Di(s) − sAi(s)

sBi(s)
Ei(s) + G−1

ii (s)Yri(s) , Gci(s)Ei(s) + G−1
ii (s)Yri(s) (18)
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It can be observed from (18) that the control input (controller output) of the i(i = 1, · · · , N)th

loop only depends on the error and reference signal in the same loop and is not related to other control

inputs, which realizes the decentralized control. The block diagram of the ith control loop is shown in

Fig. 3.

Fig. 3 Control structure of the ith loop

Since the majority of industrial plants can be seen approximately as first-order or second-order

models, the decentralized PID controller design for first-order and second-order models are paid more

attention.

1) For the first-order model, i.e., ni = 1, mi = 0, Di(s) = |sI2 − C2| = s2 + (c1 + c2)s + c1c2 + 1,

the control input of the ith loop is

Ui(s) =
(c1 + c2 − ai0) + (c1c2 + 1)/s

bi0
Ei(s) + G−1

ii (s)Yri(s) ,

(KP + KI/s)Ei(s) + G−1
ii (s)Yri(s) , GPI(s)Ei(s) + G−1

ii (s)Yri(s) (19)

where PI-type controller parameters are
{

KP = (c1 + c2 − ai0)/bi0

KI = (c1c2 + 1)/bi0

(20)

2) For the second-order model, i.e., ni = 2, mi = 1, Di(s) = |sI3 − C3| = s3 + (c1 + c2 + c3)s
2 +

(c1c2 + c2c3 + c1c3 + 2)s + c1c2c3 + c1 + c3, and the control input of the ith loop under the assumption

bi1 = 0, bi0 6= 0, is

Ui(s) , (KP + KI/s + KDs)Ei(s) + G−1
ii (s)Yri(s) , GPID(s)Ei(s) + G−1

ii (s)Yri(s) (21)

where PID-type controller parameters are










KP = (c1c2 + c2c3 + c1c3 + 2 − ai0)/bi0

KI = (c1c2c3 + c1 + c3)/bi0

KD = (c1 + c2 + c3 − ai1)/bi0

(22)

It can be drawn that decentralized PID controller parameters are equivalent to the designing pa-

rameters based on the backstepping method. For the first-order transfer function plant model backstep-

ping designing parameters are equivalent to a PI-type controller and for the second-order plant model

backstepping designing parameters are equivalent to a PID-type controller. The conventional PID

controller parameters KP , KI , KD can be converted into backstepping designing parameters ci(ci > 0).

4 Stability analysis

To guarantee system stability, the following assumptions are presented for the plant models[9]:

1) Bi(s)(i = 1, · · · , N) is a Hurwitz polynomial;

2) The interaction transfer function Gij(s)(i, j = 1, · · · , N, i 6= j) is strictly stable.

For the ith control loop, error variables defined in (4), (7) and (10) make the derivative of CLF

V̇ni+1 negative definite, then Vni+1 is bounded, zl(l = 1, · · · , ni + 1) is bounded[4], and

lim
t→∞

zl(t) = 0, l = 1, · · · , ni + 1 (23)

In addition, the following expression is held according to final value theorem

lim
t→∞

εi(t) = lim
s→0

sFi(s) = − lim
s→0

s2Ai(s)

Di(s)
Yci(s) = 0 (24)
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From (4), (23) and (24),

lim
t→∞

z1(t) = lim
t→∞

[yi(t) − yri(t) + εi(t)] = lim
t→∞

[yi(t) − yri(t)] = 0 (25)

Hence, the process output yi(t) tracks asymptotically the loop reference signal yri(t), the ith

sub-process is asymptotically stable. The controller Gc is to be designed for the process Ḡp =

diag{G11, · · · , GNN} such that the block diagonal closed-loop system with the transfer matrix Ḡh =

diag{Ḡh1, · · · , ḠhN} is stable, where Ḡhi = GiiGci(1 + GiiGci)
−1.

It should be noticed that the small gain theorem[10] can be used to obtain the sufficient condition

for determining the stability of the full closed-loop system Gh = GpGc(I + GpGc)
−1, which the closed-

loop process is stable if the spectral radius (the maximum eigenvalue of a matrix) or the infinite norm

ρ(Ep(jω)Ḡh(jω)) < 1 or ‖Ep(jω)Ḡh(jω)‖∞ < 1, ∀ω (26)

where Ep = (Gp − Ḡp)Ḡ
−1
p is the multiplicative error between the full MIMO and decentralized models.

For TITO processes, Ep =

[

0 G12G
−1
22

G21G
−1
11 0

]

, Ḡhi = 1 − sAi

Qi
(i = 1, 2), then the sufficient

condition of the stability is

∥

∥

∥

∥

G12G21

G11G22

(

1 −
sA1

Q1

) (

1 −
sA2

Q2

)
∥

∥

∥

∥

∞

< 1 (27)

For N × N(N > 3) processes, the sufficient condition of the stability is

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













0 G12G
−1
22 Ḡh2 · · · G1N G−1

NN ḠhN

G21G
−1
11 Ḡh1 0

. . .
...

...
. . .

. . . GN−1,N G−1
NN ḠhN

GN1G
−1
11 Ḡh1 · · · GN,N−1G

−1
N−1,N−1ḠhN−1 0













∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∞

< 1 (28)

5 Simulation study

The Shell heavy oil fractionator is a multivariable control problem with three product draws and

three side circulating loops. Product specifications for the top and side draw streams are determined by

economics and operating requirements. There is no product specification for the bottom draw, but there

is an operating constraint on the temperature in the lower part of the column. The three circulating

loops remove heat to achieve the desired product separation. The heat exchangers in these loops reboil

columns in other parts of the plant. The bottom loop has an enthalpy controller which regulates heat

removal in the loop by adjusting steam make. Its heat duty can be used as a manipulated variable to

control the column. The heat duties of the other two loops act as disturbances to the column.

Prett and Morari[11] presented a model for a heavy oil fractionator as the benchmark process for

the Shell standard control problem

y = Gp(s)u + Gd(s)d (29)

where Gp(s) and Gd(s) are the process and disturbance transfer function matrix (See [11]), respectively,

u = [u1 u2 u3]
T are input variables to control the process, d = [d1 d2]

T are unmeasured but

bounded disturbances entering the column, with |d1| 6 0.5 and |d2| 6 0.5, y = [y1 y2 y3]
T are

output variables.

The control objective of the whole system is to maintain the draw composition from the top (y1)

and the side (y2) of the column at specification. In order to test the performance of the control scheme,

the closed-loop system is subject to disturbance patterns d1 = [0.5 0.5]T and d2 = [−0.5 −0.5]T[12] .

Use sampling time of 4 minutes and simulation time of 400 minutes.

By examining the elements of Gp(s) it is observed that the best pairing of input and output

variables is to control y1 with u1, y2 with u2, and y3 with u3, accordingly three control loops can

be derived. The Matlab based simulation results (Figs. 4∼7) show the system output responses, the

control input signals, and the corresponding sufficient conditions for the stability of the closed-loop

system ‖EpḠh‖∞, under the disturbance patterns d1 and d2, respectively.
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It can be observed from Figs. 4∼7 that the system output responses are rapidly stable and

all control input signals are within the saturation and rate limit constraints. Since the decentralized

controllers have ‖EpḠh‖∞ < 1 for all frequencies, the closed-loop stability is guaranteed. In addition,

the designing parameters for each loop under decentralized control can be designed and tuned separately,

which is superior to centralized control and can be simple to implement.

Fig. 4 System output responses and control input signals under the disturbance pattern d
1

Fig. 5 ‖EpḠh‖∞ with the disturbance pattern d
1

Fig. 6 System output responses and control input signals under the disturbance pattern d
2
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Fig. 7 ‖EpḠh‖∞ with the disturbance pattern d
2

Backstepping designing parameters for each control loop are as follows










c1
1 = 6.2627, c1

2 = 4.8485, c1
3 = 3.4343

c2
1 = 6.2627, c2

2 = 4.8485, c2
3 = 3.4343

c3
1 = 3.6667, c3

2 = 1.6667

(30)

6 Conclusion

A new backstepping-based decentralized PID control scheme is presented for linear MIMO pro-

cesses. The MIMO control system is decomposed into multiple control loops and controllers are designed

in parallel prototype. It has been proved that the controller parameters obtained with backstepping

design for the first-order transfer function models are equivalent to a PI-type controller and for the

second-order plant model backstepping design parameters are equivalent to a PID-type controller. In

addition, the sufficient stability conditions are derived via the small gain theorem for TITO and MIMO

closed-loop systems, respectively. The major advancement of the approach is that multivariable control

for a MIMO process can be converted to designing PID controller for multiple SISO sub-processes.

Thus it can significantly reduce the computational complexity while keeping satisfactory performance.
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