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Abstract Recently, regularization methods have attracted in-
creasing attention. Lq (0 < q < 1) regularizations were proposed
after L1 regularization for better solution of sparsity problems.
A natural question is which is the best choice among Lq regu-
larizations with all q in (0, 1)? By taking phase diagram studies
with a set of experiments implemented on signal recovery and
error correction problems, we show the following: 1) As the value
of q decreases, the Lq regularization generates sparser solution.
2) When 1/2 ≤ q < 1, the L1/2 regularization always yields the
best sparse solution and when 0 < q ≤ 1/2, the performance of
the regularizatons takes no significant difference. Accordingly,
we conclude that the L1/2 regularization can be taken as a rep-
resentative of Lq (0 < q < 1) regularizations.
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Recently, considerable attention has been paid to the
following sparsity problem. We are given an n×N matrix
Φ which is in some sense “random”, for example, a ma-
trix with i.i.d Gaussian entries, and we are also given an
n-vector yyy and know that yyy = Φxxx0 where xxx0 ∈ RN is an
unknown sparse vector. We expect to recover xxx0. However,
n ¿ N , the system of equations is underdetermined and
hence, it is not a properly-posed problem in linear algebra.
Nevertheless, sparsity of x0 is a very useful priority that
sometimes allows unique solution. Accordingly, one natu-
rally proposes to use the following optimization model (P0)
to obtain the sparsest solutions

(P0) min
xxx∈RN

‖xxx‖0 s. t. yyy = Φxxx (1)

where ‖xxx‖0 = |{i : xi 6= 0}|. This is of little practical use,
however, since the problem (P0) is combinatorial in feature
and generally difficult to be solved as its solution requires
an intractable combinatorial search[1].

To solve this problem, the subsequent (P1) optimization

problem was suggested[2], which then can be transformed
into a linear programming problem:

(P1) min
xxx∈RN

‖xxx‖1
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s. t. yyy = Φxxx (2)

where ‖xxx‖1 =
∑N

i=1 |xi|. We call (P0) as L0 regularization
and (P1) as L1 regularization. The use of L1 regulariza-
tion has become so widespread that it has been arguably
considered as the “modern least squares”[3]. However, the
solutions of the L1 regularization are often not as sparse
as those of the L0 regularization. To find solutions more
sparse than L1 regularization is definitely imperative and
required for many applications. A natural try for this pur-
pose is to apply the Lq (0 < q < 1) regularization, that is,
to solve the following (Pq) model,

(Pq) min
xxx∈RN

‖xxx‖q

s.t. yyy = Φxxx (3)

or equivalently,

min
xxx∈RN

{‖yyy − Φxxx‖22 + λ‖xxx‖q
q} (4)

where ‖xxx‖q =
∑N

i=1 |xi|qq, and λ is a regularization param-
eter. Obviously, the Lq (0 < q < 1) model is no longer
a convex optimization problem, and thus we can only get
the local optimal solutions in most cases, yet it can yield
solutions sparser than the L1 regularization model[4−5].

There are many choices for q when the (Pq) model is
adopted. A nature and also crucial question is: which q is
the best among Lq (0 < q < 1) regularizations? In this
paper, our aim is to provide an affirmative answer to this
question through an experimental study with phase dia-
gram. We will comparatively apply the Lq (0 < q ≤ 1) reg-
ularizations, according to the phase diagram requirement,
to several typical sparsity problems: compressive sensing
and error correction, and then, we will conclude from the
resultant phase diagrams that L1/2 regularization can be
taken as a representative of Lq (0 < q < 1) regularizations.
This study offers a solid evidence to support the speciality
and importance of L1/2 regularization.

1 Experimental methods and test prob-
lems

1.1 Experimental methods

For an underdetermined system of linear equations yyy =
Φxxx, when the model (P0) has a unique sparse solution (it
is then also the unique solution of (Pq)) and the solution
can be obtained from the Lq (0 < q ≤ 1) regularization
procedure, we say that the Lq and L0 regularizations are
equivalent, or briefly, of L0/Lq equivalence. When a vector
is not only a solution of (P0) but also a solution of (Lq)
problem, it is said to be a point of L0/Lq equivalence.

In the context of L0/L1 equivalence, Donoho[6−7] intro-
duced the notion of phase diagram to illustrate how sparsity
(number of nonzeros in xxx/number of rows in Φ) and inde-
terminacy (number of rows in Φ/number of columns in Φ)
affect the success of L1 regularization. Using the technique
of high-dimensional geometry analysis, Donoho[6] provided
a necessary and sufficient condition on a particular random
matrix Φ of size n×N such that every xxx ∈ χN (k) is a point
of L1/L0 equivalence, where χN (k) = {xxx ∈RN : ‖xxx‖0 ≤ k}.
The performance exhibits two phases (success/failure) in a

diagram, as shown in Fig. 1[7]. Each point on the plot of the
figure corresponds to a statistical model for certain values
of n, N , and k. The abscissa runs from 0 to 1, and gives
values for δ = n/N . The ordinate is ρ = k/n, measuring
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the level of sparsity in the model. Above the plotted phase
transition curve, the L1 method fails to find the sparsest
solution; below the curve, the solution of (P1) is the precise
solution of (P0).

Fig. 1 Theoretical phase transition diagram: the theoretical
threshold at which equivalence of the solutions to the L1 and
L0 optimization problems breaks down (Along the x-axis the
level of underdeterminedness decreases, and along the y-axis

the level of sparsity of the underlying model increases.)

Donoho et al.[8] conducted a series of simulation experi-
ments for the problem of variable selection when the num-
ber of variables exceeds the number of observations. They
have defined a problem suite S {k, n, N} as a collection of
problems with sparse solutions, and each problem has an n
× N model matrix Φ and a k-sparse N -vector of coefficients
xxx. We will follow the method of Donoho et al.[8] in this pa-
per. For each k, n, N combination we run an algorithm
in question multiple times, and measure its success accord-
ing to a quantitative criterion. We choose the relative root
square error (RRSE) RRSE = ‖x̂xx−xxx‖2/‖xxx‖2 as the quan-
tization criterion, and the results are then compared across
models with different problem sizes.

The following recipes are employed to study an algorithm
for Lq (0 < q ≤ 1) regularization models:

1) Generate a prototype model yyy = Φxxx, which has a
k-sparse solution, where k < N .

2) Run an algorithm of Lq regularization to obtain a
reconstructed solution x̂xx.

3) Evaluate performance to test if ‖x̂xx− xxx‖2/‖xxx‖2 ≤ γ,
where γ is a tolerance bound set in advance.

After getting all the RRSEs of the problem suite
S{k, n, N}, a phase diagram can be drew for the tasted
algorithm. With such methodology, we will present the ex-
periments in the next section. However, we need to first
introduce two typical test problems.

1.2 Test problems

1.2.1 Signal recovery

Assume that xxx is a signal with k nozero spikes, and that
Ψ is a unit matrix, i.e., the canonical basis is used to denote
the signal. We attempt to reconstruct xxx through random
sampling Φ by (P1) and (Pq) models and compare the per-
formance of Lq regularizations when q varies from 0 to 1.

Many researchers have suggested methods to solve the
Lq (0 < q ≤ 1) regularization problems. Since L1 regu-
larization is convex and the others are not, there are many
exclusive efficient methods for L1 regularization, while very
few for Lq (0 < q < 1) regularizations. We briefly introduce
the methods applied in the experiments below.

For the L1 regularization problem, we will use the ba-
sis pursuit method suggested by Donoho et al.[2], which is
based on a linear program solver.

For the Lq regularization problems, we will apply the

reweighted L1 method proposed by Xu et al.[9], which
transforms the Lq problems into a series of convex weighted
L1 regularization problems, to which the existing L1 regu-
larization algorithms can be efficiently applied[10−11].

1.2.2 Error correction

Suppose that a response variable yyy is dependent on in-
dependent variables A1, · · · , Ap, and that we are in a clas-
sically designed experiment, with p < n. If the dependence
is linear, we then have yyy =

∑
j xjAj + eee, where the error eee

is a “wild” variable containing occasionally very large out-
liers. We assume that the outlier generators eee have most
entries of 0, with k being the number of nozero entries, but
we know neither which entries are affected nor how they
are affected. We would like to recover the information xxx
exactly from the corrupted N -dimensional vector yyy.

To decode, Candes et al.[12] proposed to use the subse-
quent (D1) model to solve the error correction problem:

(D1) min
x̃xx∈Rp

‖yyy −Ax̃xx‖1 (5)

which can also be recast as an linear programming (LP)
problem. They showed that if A is chosen suitably, the so-
lution of (D1) model can correctly retrieve the information
xxx without error provided that eee is sparse enough.

Also, Chartrand[13] suggested to solve the error correc-
tion problem by Lq (0 < q < 1) minimization:

(Dq) min
x̃xx∈Rp

‖yyy −Ax̃xx‖q (6)

For the L1 minimization, we use the corresponding Mat-
lab program in L1-magic software, which is available on
Candes′ web page[14]. For Lq (0 < q < 1) minimization, we
slightly adjust the reweighted L1 algorithm proposed in [9]
to solve the (Dq) model.

2 Experiment results
2.1 Signal recovery

To apply the phase diagram methodology, we fix the
length of signal, N = 512, and then build a prototype
model for a certain level of underdeterminedness δ ≡ n/N
for δ ∈ [0, 1], and a sparsity level ρ ≡ k/n for ρ ∈ [0, 1].
Then, a problem suite is constructed through varying sam-
pling number n and sparsity k. The performance of the
regularization algorithms is then evaluated over this grid
in a systematic way. For each k, n, N combination, the
procedure of study is as follows:

Algorithm 1.
Step 1. Generate An×N with Aij ∈ N(0, 1), and create

yyy = Axxx where xxx has k nonzeros drawn from N(0, 1).
Step 2. Run a regularization method, and get the re-

constructed solution x̂xx.
Step 3. Evaluate the “success/failure” property: if the

relative root square error (RRSE) is smaller than 10−5, the
recovery is considered success, or failure otherwise.

Step 4. Repeat Steps 1∼ 3 for 50 times, and evaluate
the frequency of success/failure recovery.

After getting the “success/failure frequency” of all the
defined problem suite S{k, n, N}, we can plot it on the
phase plane (δ, ρ), where δ = n/p and ρ = k/n (Fig. 2). The
contours indicate the success rate, where light gray (above
the belt curve) means the success rate of this combination
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of {k, n, N} is 0 %, and dark gray (below the belt curve)
means the success rate of this combination of {k, n, N} is
100%. We can also find the belt area with other color in
Fig. 2, which means that the success rate is between 0%
and 100%. Fig. 2 shows the recovery performances of L0.1,
L0.3, L0.5, L0.7, L0.9, and L1.0 separately, in which the thin
curve is the theoretical L1/L0 equivalent curve, proved by

Donoho[6−7]. After comparing the phase diagrams in Fig. 2,
we can obtain the following conclusions:

1) The phase transition phenomenon occurs very clearly,
with the belt area displaying a phase transition curve for
any Lq regularizations.

2) The Lq phase transition curves are almost all above
the theoretical L1/L0 equivalent curve, showing that Lq

regularizations have stronger sparsity promoting ability
than L1 regularization.

3) The smaller q, the better the performance, but when
q ∈ (0, 0.5), the difference is invisible.

Fig. 2 Phase diagrams of Lq regularizations (q = 0.1, 0.3, 0.5,
0.7, 0.9, 1.0) when applied to signal recovery, where abscissa

δ = n/N and ordinate ρ = k/n

To quantitatively compare the differences of behaviors
of the Lq regularizations for different q ∈ (0, 1), we have
gotten more phase diagrams for different values of q and
calculated the success percentage in all the suite for a reg-
ularization, that is, the ratio of the dark gray region in the
whole region of the phase plane. The interpolated success
percentage curve is depicted in Fig. 3, where the horizontal
axis is the value of q, and the vertical axis is the percentage
of successive restoration. From Fig. 3, we can observe the
following:

1) The ratio changes very slowly between q ∈ (0, 0.5).

Fig. 3 Success recovery percentage of Lq regularizations when
applied to signal recovery

2) The ratio changes rapidly when q increases from 0.5
to 1.

This reveals that L1/2 regularization is significantly bet-
ter than L1 regularization, while it takes no significant dif-
ference from other Lq regularizations when q ∈ (0, 0.5).
Thus, in the sense of bringing the benefit of exact recovery,
L1/2 can be regarded as the best.

2.2 Error correction

Inspired by the phase transition experiment for signal
recovery, we fix n = 512, and then build a prototype model
for a fixed γ = p/n, γ ∈ [0, 1], and a fixed ε = k/p for ε
∈ [0, 1]. Almost exactly the same with the experiment of
signal recovery, for each k, p, n combination, the procedure
of study is given as follows.

Algorithm 2.
Step 1. Generate A = (Aij) ∈ Rn×p with Aij ∼ N(0, 1)

and p-dimensional vector x0x0x0 with xi ∼ N(0, 1), and then
create yyy = Ax0x0x0 + eee where eee has k nonzeros drawn from
N(0, 1).

Step 2. Run a regularization method, and get the solu-
tion x̂xx.

Step 3. Evaluate the “success/failure” property: if the
relative root square error (RRSE) is smaller than 10−5, the
recovery is considered success, or failure otherwise.

Step 4. Repeat Steps 1∼ 3 for 50 times, and evaluate
the “success/failure”.

After getting the “success/failure” of all the defined
problem suite S{k, p, n}, we plot it on the plane (γ, ε),
where γ = p/n and ε = k/p. The contours indicate the
success/failure rate, with light gray (above the belt curve)
meaning the success of this combination of {k, n, p} is 0 %,
and dark gray (below the belt curve) means the success
rate of this combination of {k, n, p} is 100%. In the fig-
ure, we can also find the belt area with other color, which
means that the success rate is between 0% and 100%. Fol-
lowing Donoho and Tanner[15], we display the result in
different ordinate systems with variables ρ = k/(n − p)
and δ = (n − p)/n. Fig. 4 then shows the performances of
L0.1, L0.3, L0.5, L0.7, L0.9, L1.0 regularization algorithms,
in which the thin curve is the theoretical L1/L0 equivalent
curve. After comparing the phase diagrams in Fig. 4, we
find that all the phenomena observed in signal recovery ap-
plication occur again in this error correction application.

Fig. 4 Phase diagrams of Lq regularizations (q = 0.1, 0.3, 0.5,
0.7, 0.9, 1.0) when applied to error correction, where abscissa

δ = (n− p)/n and ordinate ρ = k/(n− p)

To quantitatively compare the differences of behaviors
of the Lq minimizations for different q ∈ (0, 1), we have
also gotten more phase diagrams for different values of q
and calculated the success percentage in all the suite for a
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regularization algorithm, which is defined as the ratio of the
dark gray region in the whole phase plane. The interpolated
success rate curve is given in Fig. 5. These experiments
for error correction reveal again that L1/2 regularization is
significantly better than L1 regularization, while it takes
no significant difference from other Lq regularization when
q ∈ (0, 0.5). Thus, in the sense of getting the benefit of
exact recovery, L1/2 is the best.

Fig. 5 Success recovery percentage of Lq regularizations when
applied to error correction

3 Conclusion
With the phase diagram tool, we have conducted an ex-

perimental study on performance comparison between L1

regularization and Lq (0 < q < 1) regularizations for sparse
signal recovery and error correction. The comparisons show
that when 0 < q < 1, the Lq regularizations can always
yield sparser solutions than L1 regularization, and that the
smaller, the better the performance of Lq regularizations.
Nevertheless, when 0 < q ≤ 1/2, the performance of Lq

regularizations has no significant difference. This suggests
that among the Lq regularizations with 0 < q ≤ 1, L1/2

can be taken as a representative.
The study of this paper reveals the extreme importance

and special role of L1/2 regularization. It particularly leads
to a guess or an expectation that the L1/2 regularization
might be more powerfully applied to sparsity problems. In
a very recent research, a fast efficient iterative half thresh-
olding algorithm was suggested for implementation of L1/2

regularization.
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