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Delay-distribution-dependent Robust Stability

Analysis of Uncertain Lurie Systems with
Time-varying Delay

MUKHIJA Pankaj1 KAR Indra Narayan1 BHATT Rajendra Kumar Purushottam1

Abstract In this paper, the problem of robust absolute stability of Lurie system with probabilistic time-varying delay and norm-
bounded parametric uncertainty is considered. The time delay variation range is divided into two sub-intervals. By considering
the probability distribution of the time-varying delay between the two sub-intervals and the knowledge of the delay variation range,
a novel linear matrix inequalities (LMIs) based stability condition is derived by defining a Lyapunov Krasovskii functional. It is
illustrated with the help of numerical examples that the derived stability criteria can lead to less conservative results as compared
to the results obtained by the traditional method of using the delay variation range information only.
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The problem of absolute stability of Lurie system has
been widely studied by many researchers due to its theo-
retical as well as practical significance[1−3]. Most of the
physical systems possess time delay. Hence, the prob-
lem of absolute stability of time delay Lurie control sys-
tem has been the topic of considerable research[4−16]. It
is known that the delay-dependent stability conditions are
generally less conservative than delay-independent stability
conditions[4−5], especially when the size of delay is small.
Therefore, more efforts have been made to derive the delay-
dependent stability conditions for the absolute stability of
Lurie system[6−16]. In [6], model transformation along with
Moon′s inequality was used for deriving the absolute sta-
bility condition. In [7], a new stability condition was pro-
posed using Jensen′s inequality. Neither model transfor-
mation nor bounding technique for cross terms was used
therein. A less conservative stability criteria was devised
in [8] by employing free-weighting matrices to express the
relationship between the terms in Leibniz-Newton formula.
However, [11] used a discretized Lyapunov functional ap-
proach to deal with the problem of absolute stability for a
class of nonlinear neutral systems. Further, [12] presents a
new absolute stability criteria by using a Lur′e-Postnikov
function as the Lyapunov-like function. Nevertheless,
in all these results, the time delay was assumed to be
constant.

In the recent years, some results have been reported
for the absolute stability of Lurie system with time vary-
ing delay[13−16]. The results derived in [13] by using in-
tegral inequality approach were further improved in [14]
by including all the useful terms in the derivative of the
Lyapunov-Krasovskii functional. In [15], the problem of
robust absolute stability was studied by defining a Lya-
punov functional which divided the delay interval into two
subintervals. The delay interval was divided into multiple
segments and a different Lyapunov matrix was defined for
each segment in [16] to reduce the conservatism in the sta-
bility analysis of neutral Lurie system. However, it may
be noted that in all the above results, only the information
about the delay variation range was considered to derive
the stability conditions. In some applications, for instance
networked control systems, the probability of delay taking
a large value is small. In such cases, the knowledge of delay
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distribution is an important parameter to describe the net-
work system condition. As shown in [17], this additional
information in the form of probability distribution of delay
along with the knowledge of delay variation range can be
utilized for the stability analysis to give less conservative
results.

In this paper, we are concerned with stability analysis of
Lurie system by utilizing the information about both the
delay variation range and the delay distribution probability.
To the best of our knowledge, the problem of stability anal-
ysis of Lurie system by considering the information of the
probability distribution of time varying delay has not been
considered so far. In this paper, by utilizing the informa-
tion of probability distribution of the stochastic time delay,
a mean square stability (MSS) criteria is derived in terms of
LMIs for the time-delayed Lurie system, which depends on
both delay variation range and the delay distribution infor-
mation. Physical systems usually suffer from uncertainties
that arise due to unmodeled dynamics and variation in sys-
tem parameters. These parametric uncertainties may also
result in instability of the system. Therefore, to analyze
the effect of these uncertainties on the stability analysis,
we extend the derived condition to the above systems with
norm-bounded parametric uncertainties.

The rest of this paper is organized as follows. Section
1 describes the problem statement. In Section 2, a delay
dependent criteria for the stability of time-delayed Lurie
system is derived in terms of LMIs. The derived condi-
tion is extended to the above system with norm bounded
parametric uncertainties. Further, we prove that the result
presented in Theorem 1 of [18], for the absolute stability
of Lurie system, is a special case of our results. The effec-
tiveness of the proposed approach is illustrated in Section
3 with the help of numerical examples. Finally, Section 4
gives the concluding remarks.

Notations. The following notations are used through-
out the paper. The superscript “T” denotes the transpose
of a matrix. Rn and Rn×m stand for the set of real vectors
with dimension n and real matrix of size n × m, respec-
tively. P > 0 denotes a symmetric positive definite matrix.
I and 0 mean the identity matrix and zero matrix, respec-
tively with compatible dimensions. In a symmetric matrix,
the symbol “∗” is used to denote the term that is induced
by symmetry. Wherever the dimensions of the matrices
are not mentioned, they are assumed to be of compatible
dimensions. E{·} denotes the mathematical expectation.
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1 Problem statement

Consider the following Lurie system:

ẋ(t) = Ax(t) + Bx(t− h(t)) + Dω(t)

z(t) = Mx(t) + Nx(t− h(t)) (1)

ω(t) = −ϕ(t, z(t))

x(t) = ψ(t), t ∈ [−hm, 0]

where x(t) ∈ Rn, ω(t) ∈ Rm, and z(t) ∈ Rm are the state
vector, input vector, and output vector of the system, re-
spectively. A, B, D, M , and N are real constant matrices
with appropriate dimensions. ϕ(t, z(t)) is a class of memo-
ryless, time-varying, nonlinear vector-valued functions that
are piecewise continuous in t and globally Lipschitz in z(t).
ϕ(t, 0) = 0 and satisfies the following sector condition for
∀ t ≥ 0, ∀ z(t) ∈ Rm:

ϕT(t, z(t))[ϕ(t, z(t)−Kz(t)] ≤ 0 (2)

[ϕ(t, z(t))−K1z(t)]T[ϕ(t, z(t)−K2z(t)] ≤ 0 (3)

where K1 and K2 are constant real matrices of appropriate
dimensions and K = K2 −K1 is a symmetric positive def-
inite matrix. The nonlinear function ϕ(t, z(t)) satisfying
(2) is said to belong to the sector [0, K], whereas when
ϕ(t, z(t)) satisfies (3), it is said to belong to the sector
[K1, K2]. The time varying delay satisfies the following:

0 ≤ h(t) ≤ hm < ∞, ∀ t ≥ 0 (4)

The initial condition, ψ(t), is a differentiable vector-
valued function of t ∈ [−hm, 0].

The information of the probabilistic distribution of the
time-varying delay is incorporated in (1) by defining a
Bernoulli distributed random variable ρ(t) with the expec-
tation ρ0 (0 ≤ ρ0 ≤ 1) as follows:

ρ(t) =

{
1, h(t) ∈ [0, h0]
0, h(t) ∈ (h0, hm]

(5)

where h0 ∈ [0, hm] is a constant.
From (5) we get Prob{ρ(t) = 1} = E(ρ(t)) = ρ0 and

Prob{ρ(t) = 0} = 1− E(ρ(t)) = 1− ρ0.
By using (5), system (1) can be re-expressed as follows:

ẋ(t) = Ax(t) + ρ(t)Bx(t− h1(t)) +

(1− ρ(t))Bx(t− h2(t)) + Dω(t)

z(t) = Mx(t) + ρ(t)Nx(t− h1(t)) +

(1− ρ(t))Nx(t− h2(t))

x(t) = ψ(t) , t ∈ [−hm, 0] (6)

where h1 ∈ [0, h0] and h2 ∈ [h0, hm] are defined as

h1(t) =

{
h(t), h(t) ∈ [0 , h0]
h0, h(t) ∈ (h0 , hm]

(7)

h2(t) =

{
h0, h(t) ∈ [0 , h0]
h(t), h(t) ∈ (h0 , hm]

(8)

Remark 1. The random variable ρ(t) describes the dis-
tribution information of the delay. It is clear from the def-
inition of ρ(t) that E(ρ(t)− ρ0) = 0, E(ρ2(t)) = ρ0 and
E(ρ(t) − ρ0)

2 = ρ0(1− ρ0).
Remark 2. It can be observed that the system represen-

tations (1) and (6) are equivalent. Therefore, the stability
of (1) can be deduced from the stability analysis of (6).

Further, the stability analysis for system (1) is extended
to the uncertain systems represented by

ẋ(t) = Āx(t) + B̄x(t− h(t)) + D̄ω(t)

z(t) = Mx(t) + Nx(t− h(t)) (9)

where Ā = A + ∆A, B̄ = B + ∆B and D̄ = D + ∆D. ∆A,
∆B and ∆D are real valued matrix functions representing
parameter uncertainties, which are assumed to have the
following form:

[∆A ∆B ∆D] = HF (t)[Ea Eb Ed] (10)

where H, Ea, Eb and Ed are known constant matrices of
appropriate dimensions, and F (t) is an unknown real and
possibly time-varying matrix with Lebesgue-measurable el-
ements satisfying:

FTF (t) ≤ I (11)

By using (5), the uncertain Lurie system (9) can be
rewritten as

ẋ(t) = Āx(t) + ρ(t)B̄x(t− h1(t)) +

(1− ρ(t))B̄x(t− h2(t)) + D̄ω(t)

z(t) = Mx(t) + ρ(t)Nx(t− h1(t)) +

(1− ρ(t))Nx(t− h2(t)) (12)

The following definitions and lemmas will be used to de-
rive the main results of this paper.

Definition 1[19]. Denote xt(s) = x(t+s), −hm ≤ s ≤ 0.
For a given function V (xt), its infinitesimal operator L is
defined as

LV (xt) = lim
∆→0+

1

∆
[E(V (xt+∆)|xt)− V (xt)] (13)

Definition 2[20]. System (6) is said to be mean square
stable if for any ε > 0 there is a δ(ε) such that

E‖ x(t) ‖2 < ε, ∀ t > 0

when
sup

−hm≤s≤0
E‖ ψ(s) ‖2 < δ(ε)

Lemma 1 (Schur complement lemma[21]). Given
constant matrices Ω1, Ω2 and Ω3 of appropriate dimensions,
with Ω1 and Ω2 symmetric, then Ω1 − Ω3Ω

−1
2 ΩT

3 > 0 and
Ω2 > 0 if and only if

[
Ω1 Ω3

ΩT
3 Ω2

]
> 0

Lemma 2[22]. Given matrices Σ, Ξ, and Ω with Ω = ΩT,
then

Ω + ΣF (σ)Ξ + ΞTFT(σ)ΣT < 0

holds for any F (σ) satisfying FT(σ)F (σ) ≤ I if and only if
there exists a scalar εs such that

Ω + ε−1
s ΣΣT + εsΞ

TΞ < 0 (14)

2 Main results

In this section, we will first derive stability criteria for the
Lurie time delay system represented by (6). The derived
result will be extended to robust stability analysis of the
uncertain system represented by (9). Further, it will be
shown that the result presented in Theorem 1 of [18] is a
special case of our result.
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Theorem 1. For given scalars hm (> 0) and ρ0 (0 ≤ ρ0

≤ 1), the Lurie system represented by (6), with the nonlin-
ear function ϕ(t, z(t)) satisfying (9), is absolutely stable in
the mean square sense if there exist matrices P > 0, Qi >
0, Zi > 0 (i = 1, 2), S, T , W , U of appropriate dimensions
and a scalar ε > 0 such that the following LMIs hold:

Ω (l) =




Ξ11 Σl Ξ13 Ξ14 Ξ15 Ξ16

∗ Υl 0 0 0 0
∗ ∗ −Z1 0 0 0
∗ ∗ ∗ −Z1 0 0
∗ ∗ ∗ ∗ −Z2 0
∗ ∗ ∗ ∗ ∗ −Z2




< 0

(15)
where

l = 1, 2, 3, 4

Ξ11 =




Π11 Π12 0 Π14 0 Π16

∗ 0 0 0 0 Π26

∗ ∗ −Q1 0 0 0
∗ ∗ ∗ 0 0 Π46

∗ ∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ ∗ Π66




+ Γ + ΓT

Γ = [S − S + T − T + U − U + W −W 0]

Π11 = ATP + PA + Q1 + Q2, Π12 = ρ0PB

Π14 = (1− ρ0)PB, Π16 = PD − εMTKT

Π26 = ερ0N
TKT, Π46 = ε(1− ρ0)N

TKT

Π66 = −2εI

Ξ13 =
[√

ρ0h0Z1A
√

ρ0h0Z1B 0 0

0
√

ρ0h0Z1D
]T

Ξ14 =
[√

(1− ρ0)h0Z1A 0 0
√

(1− ρ0)h0Z1B

0
√

(1− ρ0)h0Z1D
]T

Ξ15 =
[√

ρ0h0mZ2A
√

ρ0h0mZ2B 0 0 0

√
ρ0h0mZ2D

]T

Ξ16 =
[√

(1− ρ0)h0mZ2A 0 0
√

(1− ρ0)h0mZ2B

0
√

(1− ρ0)h0mZ2D
]T

Σ1 = −2h0S Σ2 = −2h0T Σ3 = −2h0U, Σ4 = −2h0W

Υ1 = Υ2 = −2h0Z1, Υ3 = Υ4 = −2h0mZ2

h0m = hm − h0

Proof. Choose the Lyapunov functional candidate as

V (xt) =

3∑
i=1

Vi(xt) (16)

where

V1(xt) = xT(t)Px(t)

V2(xt) =

∫ t

t−h0

xT(s)Q1x(s)ds +

∫ t

t−hm

xT(s)Q2x(s)ds

V3(xt) =

∫ t

t−h0

∫ t

s

ẋT(v)Z1ẋ(v)dvds +

∫ t−h0

t−hm

∫ t

s

ẋT(v)Z2ẋ(v)dvds

Using the infinitesimal operator (13) for V (xt) and tak-
ing the expectation on it, we can obtain

E{LV1(xt)} = E{2xT(t)P (Ax(t) + ρ0Bx(t− h1(t)) +

(1− ρ0)Bx(t− h2(t)) + Dω(t))} (17)

E{LV2(xt)} = E{xT(t)(Q1 + Q2)x(t) −
xT(t− h0)Q1x(t− h0) −
xT(t− hm)Q1x(t− hm)} (18)

E{LV3(xt)} = E
{

ẋT(t)Z12ẋ(t) −
∫ t

t−h0

ẋT(s)Z1ẋ(s)ds −
∫ t−h0

t−hm

ẋT(s)Z2ẋ(s)ds
}

(19)

where Z12 = h0Z1 + (hm − h0)Z2.
From (6), we get

E
(
ẋT(t)Z12ẋ(t)

)
= xT(t)ATZ12Ax(t) +

ρ0x
T(t)ATZ12Bx(t− h1(t)) +

(1− ρ0)x
T(t)ATZ12Bx(t− h2(t)) +

xT(t)ATZ12Dω(t) +

ρ0x
T(t− h1(t))B

TZ12Bx(t− h1(t)) +

ρ0x
T(t− h1(t))B

TZ12Dω(t) +

(1− ρ0)x
T(t− h2(t)) ×

BTZ12Bx(t− h2(t)) +

(1− ρ0)x
T(t− h2(t))B

TZ12Dω(t) +

ωT(t)DTZ12Dω(t) (20)

Further, the following holds:

2ζT(t)S

[
x(t)− x(t− h1(t))−

∫ t

t−h1(t)

ẋ(s)ds

]
= 0

2ζT(t)T

[
x(t− h1(t))− x(t− h0)−

∫ t−h1(t)

t−h0

ẋ(s)ds

]
= 0

2ζT(t)U

[
x(t− h0)− x(t− h2(t))−

∫ t−h0

t−h2(t)

ẋ(s)ds

]
= 0

2ζT(t)W

[
x(t− h2(t))− x(t− hm)−

∫ t−h2(t)

t−hm

ẋ(s)ds

]
= 0

(21)

where

ζT(t) = [xT(t) xT(t− h1(t)) xT(t− h0) xT(t− h2(t))

xT(t− hm) ωT(t)]

It follows from (1), (2) and (6) that

E{ωT(t)ω(t) + xT(t)MTKTω(t) +

ρ(t)xT(t− h1(t))N
TKTω(t) +
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(1− ρ(t))xT(t− h2(t))N
TKTω(t)} ≤ 0

which results in the following:

ωT(t)ω(t) + xT(t)MTKTω(t) +

ρ0x
T(t− h1(t))N

TKTω(t) +

(1− ρ0)x
T(t− h2(t))N

TKTω(t) ≤ 0 (22)

From (16)∼ (22), on applying S-procedure[21], we obtain

E {LV (xt)} =

E
{

ζT(t)Ξ̃11ζ(t)−

2ζT(t)S

∫ t

t−h1(t)

ẋ(s)ds− 2ζT(t)T

∫ t−h1(t)

t−h0

ẋ(s)ds−

2ζT(t)U

∫ t−h0

t−h2(t)

ẋ(s)ds− 2ζT(t)W

∫ t−h2(t)

t−hm

ẋ(s)ds−
∫ t

t−h0

ẋT(s)Z1ẋ(s)ds−
∫ t−h0

t−hm

ẋT(s)Z2ẋ(s)ds

}

(23)

where

Ξ̃11 =




Π̃11 Π̃12 0 Π̃14 0 Π̃16

∗ Π̃22 0 0 0 Π̃26

∗ ∗ −Q1 0 0 0

∗ ∗ ∗ Π̃44 0 Π̃46

∗ ∗ ∗ ∗ −Q2 0

∗ ∗ ∗ ∗ ∗ Π̃66




+ Γ + ΓT

Π̃11 = ATP + PA + Q1 + Q2 + ATZ12A

Π̃12 = ρ0PB + ρ0A
TZ12B, Π̃22 = ρ0B

TZ12B

Π̃14 = (1− ρ0)PB + (1− ρ0)A
TZ12B

Π̃16 = PD + ATZ12D − εMTKT

Π̃26 = ρ0B
TZ12D − ρ0εN

TKT

Π̃44 = (1− ρ0)B
TZ12B, Π̃66 = DTZ12D − 2εI

Π̃46 = (1− ρ0)B
TZ12D − ε(1− ρ0)N

TKT

ε is a positive scalar and Γ is being defined in (15). Now,
(23) can be written as

E {LV (xt)} =

E

{
1

2h0

(∫ t

t−h1(t)

ζ̃T(t, s)Ω̃1ζ̃(t, s)ds+

∫ t−h1(t)

t−h0

ζ̃T(t, s)Ω̃2ζ̃(t, s)ds

)
+

1

2(hm − h0)

(∫ t−h0

t−h2(t)

ζ̃T(t, s)Ω̃3ζ̃(t, s)ds+

∫ t−h2(t)

t−hm

ζ̃T(t, s)Ω̃4ζ̃(t, s)ds

)}
(24)

where

ζ̃T(t) = [xT(t) xT(t− h1(t)) xT(t− h0) xT(t− h2(t))

xT(t− hm) ωT(t) ẋT(s)]

Ω̃1 =

[
Ξ̃11 −2h0S
∗ −2h0Z1

]
, Ω̃2 =

[
Ξ̃11 −2h0T
∗ −2h0Z1

]

Ω̃3 =

[
Ξ̃11 −2h0mU
∗ −2h0Z2

]
, Ω̃4 =

[
Ξ̃11 −2h0W
∗ −2h0Z2

]

(25)
It can be observed from (24) and (25) that E{LV (xt)} holds
true when the following is satisfied:

Ω̃1 < 0, Ω̃2 < 0, Ω̃3 < 0, Ω̃4 < 0

By applying Lemma 1, it can be easily shown that the
inequalities Ω̃1 < 0, Ω̃2 < 0, Ω̃3 < 0, Ω̃4 < 0 are equivalent
to inequalities Ω(1) < 0, Ω(2) < 0, Ω(3) < 0, Ω(4) < 0,
respectively in (15). This completes the proof. ¤

Remark 3. It may be observed from (16) that knowl-
edge of an internal point (h0) in the delay range is utilized
to define the Lypunov functional. Unlike [18], where the
same Lyapunov matrices were used over the complete de-
lay range, different Lyapunov matrices are used for the two
sub-intervals to define the Lyapunov functional. As shown
in Section 3, the defining of different Lyapunov matrices
in the two sub-intervals along with the probability distri-
bution of the delay may reduce the conservatism of the
results.

Remark 4. By using the loop transformation[23] as in
[7], it can be easily shown that the stability analysis of
system (6) with the nonlinearity ϕ(t, z(t)) satisfying the
sector condition (3) is equivalent to the stability analysis
for the following system in the sector [0, K2 −K1].

ẋ(t) = (A−DK1M)x(t) + ρ(t)(B −DK1N)x(t− h1(t))+

(1− ρ(t))(B −DK1N)x(t− h2(t)) + Dω(t)

z(t) = Mx(t) + ρ(t)Nx(t− h1(t))+

(1− ρ(t))Nx(t− h2(t))

x(t) = ψ(t), t ∈ [−hm, 0] (26)

The stability criteria for the Lurie system (6) with the
nonlinear function ϕ(t, z(t)) in the sector [K1, K2] is given
below in Corollary 1. It can be easily obtained by following
the similar procedure as in Theorem 1.

Corollary 1. For given scalars hm (> 0) and ρ0 (0 ≤ ρ0

≤ 1), the Lurie system represented by (6) with the nonlin-
ear function ϕ(t, z(t)) satisfying (3) is absolutely stable in
the mean square sense, if there exists matrices P > 0, Qi >
0, Zi > 0 (i = 1, 2), S, T , W , U , of appropriate dimensions
and a scalar ε > 0 such that the following LMIs hold:

Ω̂ (l) =




Ξ̂11 Σl Ξ̂13 Ξ̂14 Ξ̂15 Ξ̂16

∗ Υl 0 0 0 0
∗ ∗ −Z1 0 0 0
∗ ∗ ∗ −Z1 0 0
∗ ∗ ∗ ∗ −Z2 0
∗ ∗ ∗ ∗ ∗ −Z2




< 0

(27)
where

l = 1, 2, 3, 4

Ξ̂11 =




Π̂11 Π̂12 0 Π̂14 0 Π̂16

∗ 0 0 0 0 Π̂26

∗ ∗ −Q1 0 0 0

∗ ∗ ∗ 0 0 Π̂46

∗ ∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ ∗ Π66




+ Γ + ΓT

Π̂11 = ÂTP + PÂ + Q1 + Q2, Π̂12 = ρ0PB̂

Π̂14 = (1− ρ0)PB̂, Π̂16 = PD − εMTK̂T

Π̂26 = ερ0N
TK̂T, Π̂46 = ε(1− ρ0)N

TK̂T
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Ξ̂13 =
[√

ρ0h0Z1Â
√

ρ0h0Z1B̂

0 0 0
√

ρ0h0Z1D
]T

Ξ̂14 =
[√

(1− ρ0)h0Z1Â 0 0
√

(1− ρ0)h0Z1B̂

0
√

(1− ρ0)h0Z1D
]T

Ξ̂15 =
[√

ρ0h0mZ2Â
√

ρ0h0mZ2B̂ 0 0 0

√
ρ0h0mZ2D

]T

Ξ̂16 =
[√

(1− ρ0)h0mZ2Â 0 0
√

(1− ρ0)h0mZ2B̂

0
√

(1− ρ0)h0mZ2D
]T

Â = A−DK1M, B̂ = B −DK1N, K̂ = K2 −K1

with Σl, Υl, Π66, Γ being the same as defined in (15).
As shown in Theorem 2 below, the approach of Theorem

1 can be extended to the robust absolute stability analysis
of the time-delayed Lurie system with time-varying para-
metric uncertainties. For this case the system is represented
by (10)∼ (12).

Theorem 2. For given scalars hm (> 0) and ρ0 (0 ≤ ρ0

≤ 1), the uncertain Lurie system represented by (12) with
the nonlinear function ϕ(t, z(t)) satisfying (2) is absolutely
stable in the mean square sense, if there exist matrices P >
0, Qi > 0, Zi > 0 (i = 1, 2), S, T , W , U of appropriate
dimensions and scalars ε > 0 and µ > 0 such that the
following LMIs hold:

Ω̄ (l) =




Ξ11 Σl Ξ13 Ξ14 Ξ15 Ξ16 Ξ17

∗ Υl 0 0 0 0 0
∗ ∗ −Z1 0 0 0 0
∗ ∗ ∗ −Z1 0 0 0
∗ ∗ ∗ ∗ −Z2 0 0
∗ ∗ ∗ ∗ ∗ −Z2 0
∗ ∗ ∗ ∗ ∗ ∗ −µI
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

µΞ18 0 µΞ110 0 µΞ112

0 0 0 0 0
0 Ξ39 0 0 0
0 0 0 Ξ411 0
0 Ξ59 0 0 0
0 0 0 Ξ611 0
0 0 0 0 0
−µI 0 0 0 0
∗ −µI 0 0 0
∗ ∗ −µI 0 0
∗ ∗ ∗ −µI 0
∗ ∗ ∗ ∗ −µI




< 0

(28)
where

l = 1, 2, 3, 4

Ξ17 = [HTP 0 0 0 0 0]T, Ξ39 =
√

ρ0h0Z1H

Ξ18 = [Ea ρ0Eb 0 (1− ρ0)Eb 0 Ed]T

Ξ110 = [Ea Eb 0 0 0 Ed]T, Ξ59 =
√

ρ0h0mZ2H

Ξ112 = [Ea 0 0 Eb 0 Ed]T

Ξ411 =
√

(1− ρ0h0)Z1H, Ξ611 =
√

(1− ρ0h0m)Z2H

Ξ11, Ξ13, Ξ14, Ξ15, Ξ16, Σl, Υl being the same as defined
in (15).

Proof. On replacing A, B and D in (15) by A +
HF (t)Ea, B + HF (t)Eb, and D + HF (t)Ed, respectively,
we get the following:

Ω(l) + H̄F (t)Ē + ĒTF (t)H̄T < 0, l = 1, 2, 3, 4 (29)

where Ω(l) is defined in (15) and

H̄ = [H̄1 H̄2 H̄3], Ē = [ĒT
1 ĒT

2 ĒT
3 ]T

H̄1 = [HTP 0 0 0 0 0 0 0 0 0 0]T

H̄2 = [0 0 0 0 0 0 0
√

ρ0h0H
TZ1 0

√
ρ0h0mHTZ2 0]T

H̄3 = [0 0 0 0 0 0 0 0
√

(1− ρ0h0)H
TZ1

0
√

(1− ρ0h0m)HTZ2]
T

Ē1 = [Ea ρ0Eb 0 (1− ρ0)Eb 0 Ed 0 0 0 0 0]

Ē2 = [Ea Eb 0 0 0 Ed 0 0 0 0 0]

Ē3 = [Ea 0 0 Eb 0 Ed 0 0 0 0 0]

On applying Lemma 2, it can be shown that (29) is equiv-
alent to the following

Ω(l) + µ−1H̄H̄T + µĒTĒ < 0 (30)

On applying Lemma 1 to (30), it can be shown that (30)
is equivalent to (28). ¤

The stability criteria for the Lurie system (12) with the
nonlinear function ϕ(t, z(t)) satisfying (3) is given below
in Corollary 2. It can be obtained from Corollary 1 by
following the similar procedure as in Theorem 2.

Corollary 2. For given scalars hm (> 0) and ρ0 (0 ≤ ρ0

≤ 1), the uncertain Lurie system represented by (12) with
the nonlinear function ϕ(t, z(t)) satisfying (3) is absolutely
stable in the mean square sense, if there exist matrices P >
0, Qi > 0, Zi > 0 (i = 1, 2), S, T , W , U of appropriate
dimensions and scalars ε > 0 and µ > 0 such that the
following LMIs hold:

Ω̂2 (l) =




Ξ̂11 Σl Ξ̂13 Ξ̂14 Ξ̂15 Ξ̂16 Ξ17

∗ Υl 0 0 0 0 0
∗ ∗ −Z1 0 0 0 0
∗ ∗ ∗ −Z1 0 0 0
∗ ∗ ∗ ∗ −Z2 0 0
∗ ∗ ∗ ∗ ∗ −Z2 0
∗ ∗ ∗ ∗ ∗ ∗ −µI
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
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µΞ̂18 0 µΞ̂110 0 µΞ̂112

0 0 0 0 0
0 Ξ39 0 0 0
0 0 0 Ξ411 0
0 Ξ59 0 0 0
0 0 0 Ξ611 0
0 0 0 0 0
−µI 0 0 0 0
∗ −µI 0 0 0
∗ ∗ −µI 0 0
∗ ∗ ∗ −µI 0
∗ ∗ ∗ ∗ −µI




< 0 (31)

where
l = 1, 2, 3, 4

Ξ̂18 = [Ea − EdK1M ρ0(Eb − EdK1N) 0

0 (1− ρ0)(Eb − EdK1N) 0 Ed]T

Ξ̂110 = [Ea − EdK1M Eb − EdK1N 0 0 0 Ed]T

Ξ̂112 = [Ea − EdK1M 0 0 Eb − EdK1N 0 Ed]T

with Ξ̂11, Ξ̂13, Ξ̂14, Ξ̂15, Ξ̂16, Σl, Υl being the same as
defined in (27) and Ξ17, Ξ39, Ξ59, Ξ411, Ξ611 being defined
in (28).

If we set ρ(t) = 1 and N = 0 in (6), then system (6)
reduces to the following time-delay Lurie system (32) with
time-varying delay h1(t) such that h1(t) ∈ [0, h0], where h0

is now the upper delay bound.

ẋ(t) = Ax(t) + Bx(t− h1(t)) + Dω(t)

z(t) = Mx(t)

ω(t) =− ϕ(t, z(t))

x(t) = ψ(t), t ∈ [−h0, 0] (32)

Using the result of Theorem 1, the following Corollary is
obtained for the stability analysis of system (32).

Corollary 3. For a given upper delay bound h0 (> 0),
the Lurie system represented by (32) with the nonlinear
function ϕ(t, z(t)) satisfying (2) is stable in the mean square
sense, if there exist matrices P > 0, Q1 > 0, Z1 > 0, S =
[ST

1 ST
2 0 0 0 0]T, T = [TT

1 TT
2 0 0 0 0]T of appropriate

dimensions such that the following LMIs hold:

Λ (i) =




λ11 λ12 −T1 λ14 λi
15 λ16

∗ λ22 −T2 0 λi
25 λ26

∗ ∗ −Q1 0 0 0
∗ ∗ ∗ −2I 0 λ46

∗ ∗ ∗ ∗ −h0Z1 0
∗ ∗ ∗ ∗ ∗ −Z1




< 0

(33)
where

i = 1, 2

λ11 = ATP + PA + Q1 + S1 + ST
1 , λ14 = PD −MTKT

λ12 = PB − S1 + ST
2 + T1, λ1

15 = −h0S1, λ2
15 = −h0T1

λ16 =
√

h0A
TZ1, λ22 = −S2 − ST

2 + T2 + TT
2

λ1
25 = −h0S2, λ2

25 = −h0T2, λ26 =
√

h0B
TZ1

λ46 =
√

h0D
TZ1

Proof. The above condition can be derived from (15)
by equating ρ0 = 1, ε = 1, N = 0, U = 0, W = 0, Z2 = 0,
Q2 = 0 and replacing −2h0S1, −2h0S2, −2h0T1, −2h0T2

and −2h0Z1 by −h0S1, −h0S2, −h0T1, −h0T2 and −h0Z1,
respectively. ¤

Remark 5. The stability condition (33) derived in
Corollary 3 is the same as the stability condition presented
in Theorem 1 of [18] for the absolute stability of time delay
Lurie system. This shows that the stability condition in
Theorem 1 of [18] is a special case of our result.

3 Numerical examples

Example 1. Consider system (1) with the following

system matrices[18]:

A =

[
0 1
1 −2

]
, B =

[ −0.7539 −0.3319
0 0

]
, D =

[
0
1

]

M = [ 1 −0.5 ] , N = [ 0 0 ] , K = 1

Table 1 shows a comparison of the maximum allowable
delay (hm) obtained by Theorem 1 for h0 = 0.5 and differ-
ent values of ρ0 with some of the earlier results.

Table 1 Comparison of the delay bound

Approach Delay bound

Reference [24] 1.2562

Reference [18] 1.2890

Theorem 1 (ρ0 = 0.4) 1.5344

Theorem 1 (ρ0 = 0.7) 2.0606

Theorem 1 (ρ0 = 0.9) 4.3815

Theorem 1 (ρ0 = 0.99) 15.8235

Remark 6. It can be observed from Table 1 that when
the probability distribution of the delay is known a priori,
using the results of this paper can lead to a larger upper
delay bound than that obtained by using the conventional
approach of using the delay range information only.

Example 2. Consider the time delay Chua′s oscilla-
tor[12] with the following system matrices:

A =

[
1.3018 −1.3018 0

1 −1 1
0 0.0136 0.0297

]

B =

[ −1 1 1
0 −1 −1

−0.368 0 −1

]
, D =

[
1.3018

0
0

]

M = [ 1 0 0 ] , N = [ 0 0 0 ]

K1 = −0.1, K2 = 0.3

Table 2 shows the maximum allowable delay obtained by
Corollary 1 for h0 = 0.2 and different values of ρ0.

Table 2 Comparison of the delay bounds

Approach Delay bound

Corollary 1 (ρ0 = 0.4) 0.3757

Corollary 1 (ρ0 = 0.7) 0.5190

Corollary 1 (ρ0 = 0.9) 0.9344

Corollary 1 (ρ0 = 0.99) 4.0160

4 Conclusion

In this paper, the problem of robust absolute stability for
Lurie system with stochastic time delay and norm-bounded
parametric uncertainties has been investigated. By us-
ing the information of probability distribution of the time-
delay, a new model of the time delayed Lurie system was
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proposed. In addition to the delay bound, the additional
information about the delay in terms of the probability dis-
tribution was used to derive the stability condition. The
sufficient conditions for the MSS were obtained in terms
of LMIs. Furthermore, it has been shown with the help
of examples that when the probability distribution of the
delay is known a priori, a larger upper delay bound can be
obtained than that obtained by the existing methods.
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