2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLO的双网络桥梁表观病害快速检测算法

彭雨诺 刘敏 万智 蒋文博 何文轩 王耀南

彭雨诺, 刘敏, 万智, 蒋文博, 何文轩, 王耀南. 基于改进YOLO的双网络桥梁表观病害快速检测算法. 自动化学报, 2022, 48(4): 1018−1032 doi: 10.16383/j.aas.c210807
引用本文: 彭雨诺, 刘敏, 万智, 蒋文博, 何文轩, 王耀南. 基于改进YOLO的双网络桥梁表观病害快速检测算法. 自动化学报, 2022, 48(4): 1018−1032 doi: 10.16383/j.aas.c210807
Peng Yu-Nuo, Liu Min, Wan Zhi, Jiang Wen-Bo, He Wen-Xuan, Wang Yao-Nan. A dual deep network based on the improved YOLO for fast bridge surface defect detection. Acta Automatica Sinica, 2022, 48(4): 1018−1032 doi: 10.16383/j.aas.c210807
Citation: Peng Yu-Nuo, Liu Min, Wan Zhi, Jiang Wen-Bo, He Wen-Xuan, Wang Yao-Nan. A dual deep network based on the improved YOLO for fast bridge surface defect detection. Acta Automatica Sinica, 2022, 48(4): 1018−1032 doi: 10.16383/j.aas.c210807

基于改进YOLO的双网络桥梁表观病害快速检测算法

doi: 10.16383/j.aas.c210807
基金项目: 国家自然科学基金(61771189, 62073126, 62027810), 湖南省自然科学基金杰出青年基金(2020JJ2008), 湖南省交通运输厅科技进步与创新计划项目(201734, 202138)资助
详细信息
    作者简介:

    彭雨诺:湖南大学电气与信息工程学院硕士研究生. 2019年获得湖南大学学士学位. 主要研究方向为深度学习, 图像处理. E-mail: pengyunuo@hnu.edu.cn

    刘敏:湖南大学电气与信息工程学院教授. 2012年获美国加州大学河滨分校博士学位. 主要研究方向为模式识别和机器学习. 本文通信作者. E-mail: liu_min@hnu.edu.cn

    万智:湖南桥康智能科技有限公司总工程师. 1999年获湖南大学学士学位, 2010年获中南大学博士学位. 主要研究方向为公路交通和环保监测. E-mail: xbh0n3@163.com

    蒋文博:湖南大学电气与信息工程学院硕士研究生. 2018年获桂林电子科技大学学士学位. 主要研究方向为图像处理和模式识别. E-mail: jiang_wenbo@hnu.edu.cn

    何文轩:湖南大学电气与信息工程学院硕士研究生. 2020年获昆明理工大学学士学位. 主要研究方向为图像处理和模式识别. E-mail: hwx@hnu.edu.cn

    王耀南:中国工程院院士, 湖南大学电气与信息工程学院教授. 1995年获湖南大学博士学位. 主要研究方向为机器人学, 智能控制和图像处理. E-mail: yaonan@hnu.edu.cn

A Dual Deep Network Based on the Improved YOLO for Fast Bridge Surface Defect Detection

Funds: Supported by National Natural Science Foundation of China (61771189, 62073126, 62027810), Natural Science Foundation for Distinguished Young Scholars of Hunan Province (2020JJ2008), Science and Technology Progress and Innovation Plan of Department of Transportation of Hunan Province (201734, 202138)
More Information
    Author Bio:

    PENG Yu-Nuo Master student at the College of Electrical and Information Engineering, Hunan University. He received his bachelor degree from the Hunan University in 2019. His research interest covers deep learning and image processing

    LIU Min Professor at the College of Electrical and Information Engineering, Hunan University. He received his Ph.D. degree from University of California, Reverside in 2012. His research interest covers pattern recognition and machine learning. Corresponding author of this paper

    WAN Zhi Chief engineer at Hunan Qiaokang Intelligent Technology Company Limited. He received his bachelor’s degree from Hunan University in 1999 and Ph.D. degree from the Central South University in 2010. His research interest covers highway traffic and environmental protection monitoring

    JIANG Wen-Bo Master student at the College of Electrical and Information Engineering, Hunan University. He received his bachelor degree from the Guilin University of Electronic Technology in 2018. His research interest covers image processing and pattern recognition

    HE Wen-Xuan Master student at the College of Electrical and Information Engineering, Hunan University. He received his bachelor degree from Kunming University of Science and Technology in 2020. His research interest covers image processing and pattern recognition

    WANG Yao-Nan Academician at Chinese Academy of Engineering, professor at College of Electrical and Information Engineering, Hunan University. He received his Ph.D. degree from the Hunan University in 1995. His research interest covers robotics, intelligent control and image processing

  • 摘要: 桥梁表观病害检测是确保桥梁安全的关键步骤. 然而, 桥梁表观病害类型多样, 不同病害间外观差异显著且病害之间可能发生重叠, 现有算法无法实现快速且准确的桥梁多病害检测. 针对这一问题, 对YOLO (You only look once) 进行了改进, 提出了YOLO-lump和YOLO-crack以提高网络检测多病害的能力, 进而形成基于双网络的桥梁表观病害快速检测算法. 一方面, YOLO-lump在较大的滑动窗口图像上实现块状病害的检测. 在YOLO-lump中, 提出了混合空洞金字塔模块, 其结合了混合空洞卷积与空间金字塔池化, 用于提取稀疏表达的多尺度特征, 同时可以避免空洞卷积造成的局部信息丢失; 另一方面, YOLO-crack在较小的滑动窗口图像上实现裂缝病害的检测. 在YOLO-crack中, 提出了下采样注意力模块, 利用1×1卷积和3×3分组卷积分别解耦特征的通道相关性和空间相关性, 可以增强裂缝在下采样阶段的前景响应, 减少空间信息的损失. 实验结果表明, 该算法能够提高桥梁表观病害检测的精度, 同时可实现病害的实时检测.
    1)  收稿日期 2021-03-06 录用日期 2021-11-17 Manuscript received March 6, 2021; accepted November 17,2021 国家自然科学基金 (61771189, 62073126, 62027810), 湖南省自然科学基金杰出青年基金 (2020JJ2008), 湖南省交通运输厅科技进步与创新计划项目 (201734, 202138) 资助 Supported by National Natural Science Foundation of China (61771189, 62073126, 62027810), Natural Science Foundation for Distinguished Young Scholars of Hunan Province (2020JJ2008), Science and Technology Progress and Innovation Plan of Department of Transportation of Hunan Province (201734, 202138)
    2)  本文责任编委 胡清华 Recommended by Associate Editor HU Qing-Hua 1. 湖南大学电气与信息工程学院 长沙 410082 2. 湖南大学机器人视觉感知与控制技术国家工程研究中心 长沙 410082 3. 湖南桥康智能科技有限公司 长沙 410021 1. College of Electrical and Information Engineering, HunanUniversity, Changsha 410082 2. National Engineering Research Center for Robot Visual Perception and Control Technology, Hunan University, Changsha 410082 3. Hunan Qiaokang Intelligent Technology Company Limited, Changsha 410021
  • 图  1  双网络桥梁表观病害快速检测算法整体框架

    Fig.  1  Overview of the dual deep network for fast bridge surface defect detection

    图  2  GAN网络生成的桥梁表观病害图像

    Fig.  2  Bridge surface defect images generated by GAN network

    图  3  混合空洞金字塔模块

    Fig.  3  The hybrid dilated pyramid module

    图  4  下采样注意力模块

    Fig.  4  The downsampling attention module

    图  5  BIR-X-LITE机器人数据采集过程

    Fig.  5  The process of data acquisition by the BIR-X-LITE robot

    图  6  不同病害之间大小比较

    Fig.  6  Comparison of defects with different sizes

    图  7  训练数据示例

    Fig.  7  Examples of the training dataset

    图  8  不同块状病害检测网络的PR曲线

    Fig.  8  Precision-recall curves of different detectors on the lump dataset

    图  9  本文方法和其他方法在不同桥梁表观图像上的测试结果

    Fig.  9  Results of the proposed method and other methods on various bridge surface images

    图  10  不同裂缝病害检测网络的PR曲线

    Fig.  10  Precision-Recall curves of different detectors on the crack dataset

    图  11  Grad-CAM++可视化结果

    Fig.  11  Grad-CAM++ visualization results

    表  1  桥梁表观图像数据库

    Table  1  Dataset of the bridge surface images

    采集时间 桥梁名称 图像数目 数据大小
    2018-09 东临路大桥 2126张 6.4 GB
    红旗二号桥 10470张 31.4 GB
    荒唐亭大桥 6090张 18.2 GB
    马家河大桥 1402张 4.2 GB
    2018-10 南川河大桥 4055张 13.6 GB
    宁家冲大桥 17119张 48.4 GB
    天马大桥 3614张 11.9 GB
    2018-11 铜陵长江大桥 19961张 116.0 GB
    2019-07 新庆大桥 25784张 225.5 GB
    2019-04 广东潮汕大桥 79000张 317.1 GB
    总计 10座大桥 169621张 792.7 GB
    下载: 导出CSV

    表  2  训练/验证/测试数据集

    Table  2  Training/validation/testing datasets

    类型 训练集 (正/负样本) 验证集 (正/负样本) 测试集 (正/负样本)
    块状病害 7668张 (2611/5057) 2924张 (978/1946) 51231张 (345/50886)
    裂缝病害 5643张 (3283/2360) 1453张 (873/580) 51079张 (193/50886)
    下载: 导出CSV

    表  3  不同输入大小下块状病害检测结果对比

    Table  3  Results of lump defect detection with different input sizes

    输入大小 召回率 准确率 F1 mAP 检测时间
    704 × 704 80.6% 79.3% 79.9% 85.6% 37.8 ms
    608 × 608 86.5% 83.9% 85.2% 89.2% 24.7 ms
    512 × 512 85.8% 84.5% 85.1% 88.6% 18.8 ms
    416 × 416 80.7% 77.4% 79.0% 82.1% 16.6 ms
    下载: 导出CSV

    表  4  YOLO-lump网络消融实验

    Table  4  Ablation experiment on the YOLO-lump

    网络模型 召回率 准确率 F1 mAP 检测时间
    YOLOv4 85.8% 84.5% 85.1% 88.6% 18.8 ms
    YOLO-lump-A 86.1% 84.8% 85.4% 89.3% 18.8 ms
    YOLO-lump-B 87.2% 84.4% 85.8% 90.7% 18.8 ms
    YOLO-lump-C 79.3% 68.1% 73.3% 74.9% 26.7 ms
    YOLO-lump-D 84.4% 83.3% 83.8% 87.7% 20.1 ms
    YOLO-lump 86.4% 89.7% 88.0% 92.7% 20.4 ms
    YOLO-lump-E 88.7% 89.5% 89.1% 93.5% 24.3 ms
    下载: 导出CSV

    表  5  块状病害检测网络对比实验

    Table  5  Comparison of different detectors on the lump dataset

    网络模型 特征提取网络 mAP 检测时间
    SSD VGG-16 85.1% 30.3 ms
    Faster-RCNN ResNet-101 86.9% 34.9 ms
    RetinaNet ResNet-101 89.5% 41.5 ms
    FCOS ResNet-101 87.9% 28.8 ms
    EfficientDet EfficientNet 89.6% 22.3 ms
    YOLOv3 Darknet-53 87.6% 15.4 ms
    Improved-YOLOv3 Darknet-53 89.3% 15.4 ms
    YOLOv4 CSPDarknet-53 88.6% 18.8 ms
    YOLO-lump CSPDarknet-53 92.7% 20.4 ms
    下载: 导出CSV

    表  6  YOLO-crack网络消融实验

    Table  6  Ablation experiment on the YOLO-crack

    网络模型 召回率 准确率 F1 mAP 检测时间
    YOLOv4 80.8% 79.4% 80.2% 84.5% 29.7 ms
    YOLO-crack-A 77.5% 82.6% 80.0% 85.0% 29.7 ms
    YOLO-crack-B 85.6% 76.7% 81.0% 85.7% 29.7 ms
    YOLO-crack-C 78.7% 79.1% 78.9% 83.8% 17.1 ms
    YOLO-crack-D 79.0% 79.5% 79.2% 84.6% 16.5 ms
    YOLO-crack 80.2% 81.2% 80.7% 86.2% 17.6 ms
    YOLO-crack-E 77.9% 80.9% 79.4% 82.5% 17.7 ms
    下载: 导出CSV

    表  7  注意力模块对比实验

    Table  7  Comparison of different attention modules

    网络模型 mAP 检测时间
    YOLO-crack-D 84.6% 16.5 ms
    YOLO-crack-D+SE注意力模块 84.9% 16.9 ms
    YOLO-crack-D+CBAM注意力模块 85.7% 17.4 ms
    YOLO-crack-D+下采样注意力模块 86.2% 17.6 ms
    下载: 导出CSV

    表  8  裂缝病害检测网络对比实验

    Table  8  Comparison of different detectors on the crack dataset

    网络模型 特征提取网络 mAP 检测时间
    SSD VGG-16 79.8% 45.2 ms
    Faster-RCNN ResNet-101 81.2% 54.7 ms
    RetinaNet ResNet-101 82.9% 58.4 ms
    FCOS ResNet-101 83.4% 42.9 ms
    EfficientDet EfficientNet 83.5% 27.4 ms
    YOLOv3 Darknet-53 82.3% 23.8 ms
    Improved-YOLOv3 Darknet-53 84.1% 23.8 ms
    YOLOv4 CSPDarknet-53 84.5% 29.7 ms
    YOLO-crack CSPDarknet-39 86.2% 17.6 ms
    下载: 导出CSV

    表  9  实际应用测试结果

    Table  9  Results of the practical application

    测试数据集 图像数量 块状病害检测 裂缝病害检测 检测时间
    GT TP FN FP 召回率 GT TP FN FP 召回率
    东临路大桥 872 8 8 0 907 100% 6 5 1 1478 83.3% 995 ms/张
    红旗二号桥 3265 26 25 1 2132 96.2% 17 17 0 13582 100% 995 ms/张
    荒唐亭大桥 2929 22 19 3 3295 86.4% 26 25 1 10115 96.2% 994 ms/张
    马家河大桥 836 11 9 2 1041 81.8% 7 7 0 3569 100% 993 ms/张
    南川河大桥 2617 20 20 0 4238 100% 23 21 2 5331 91.3% 996 ms/张
    宁家冲大桥 2453 28 27 1 3145 96.4% 28 26 2 9504 92.9% 997 ms/张
    天马大桥 7107 65 62 3 7294 95.4% 90 86 4 22383 95.6% 996 ms/张
    铜陵长江大桥 5962 46 45 1 8505 97.8% 57 55 2 26237 96.5% 996 ms/张
    新庆大桥 6194 63 61 2 5598 96.8% 46 45 1 15394 97.8% 995 ms/张
    广东潮汕大桥 19189 130 124 6 19869 95.4% 186 179 7 41908 96.2% 995 ms/张
    总计 51424 419 400 19 56024 95.5% 486 466 20 149501 95.9% 995 ms/张
    下载: 导出CSV

    表  10  双网络算法与单网络性能比较

    Table  10  Comparison of performance between the dual deep network and the single network

    检测策略 蜂窝病害 漏筋病害 孔洞病害 裂缝病害 检测时间
    召回率 准确率 F1 mAP 召回率 准确率 F1 mAP 召回率 准确率 F1 mAP 召回率 准确率 F1 mAP
    双网络 85.2% 84.6% 84.9% 86.7% 87.1% 86.5% 86.8% 89.8% 87.3% 85.2% 86.2% 89.3% 80.8% 79.4% 80.1% 84.5% 34.8 ms
    单网络 78.5% 77.2% 77.8% 80.6% 83.8% 84.3% 84.0% 84.4% 84.4% 83.1% 83.7% 85.0% 78.7% 76.8% 77.7% 80.1% 30.3 ms
    下载: 导出CSV
  • [1] 马建, 孙守增, 杨琦. 中国桥梁工程学术研究综述: 2014. 中国公路学报, 2014, 27(5): 1-96 doi: 10.3969/j.issn.1001-7372.2014.05.001

    Ma Jian, Sun Shou-Zeng, Yang Qi. Review on china's bridge engineering research: 2014. China Journal of High-way and Transport, 2014, 27(5): 1-96 doi: 10.3969/j.issn.1001-7372.2014.05.001
    [2] 陈榕峰, 徐群丽, 秦凯强. 桥梁裂缝智能检测系统的研究新进展. 公路, 2019, 64(05): 101-105

    Chen Rong-Feng, Xu Kai-Li, Qin Kai-Qiang. Research progress of intelligent bridge crack detection system. Highway, 2019, 64(05): 101-105
    [3] 钟新谷, 彭雄, 沈明燕. 基于无人飞机成像的桥梁裂缝宽度识别可行性研究. 土木工程学报, 2019, 52(4): 52-61

    Zhong Xin-Gu, Peng Xiong, Shen Ming-Yan. Study on the feasibility of identifying concrete crack width with images acquired by unmanned aerial vehicles. China Civil Engineering Journal, 2019, 52(4): 52-61
    [4] Lin W G, Sun Y C, Yang Q N. Real-time comprehensive image processing system for detecting concrete bridges crack. Computers and Concrete, 2019, 23(6): 445-457
    [5] Sutter B, Lelevé A, Pham M T, Gouin O, Jupille N, Kuhn M. A semi-autonomous mobile robot for bridge inspection. Automation Construction, 2018, 91(JUL.): 111-119
    [6] Hirai H, Ishii K. Development of dam inspection underwater robot. Journal of Robotics, Networking and Artificial Life, 2019, 6(1): 18-22 doi: 10.2991/jrnal.k.190531.004
    [7] 钟钒, 周激流, 郎方年, 何坤, 黄梅. 边缘检测滤波尺度自适应选择算法. 自动化学报, 2007, 33(8): 867-870

    Zhong Fan, Zhou Ji-Liu, He Kun, Huang Mei. Adaptive scale filtering for edge detection. Acta Automatica Sinica, 2007, 33(8): 867-870
    [8] Win M, Bushroa A R, Hassan M A. A contrast adjustment thresholding method for surface defect detection based on mesoscopy. IEEE Transactions on Industrial Informatics, 2017, 11(3): 642-649
    [9] Kamaliardakani M, Sun L, Ardakani M K. Sealed-crack detection algorithm using heuristic thresholding approach. Journal of Computing in Civil Engineering, 2016, 30(1): 04014110 doi: 10.1061/(ASCE)CP.1943-5487.0000447
    [10] German S, Brilakis I, Desroches R. Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments. Advanced Engineering Informatics, 2012, 26(4): 846-858 doi: 10.1016/j.aei.2012.06.005
    [11] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望. 自动化学报, 2017, 43(8): 1289−1305

    Zhang Hui, Wang Kun-Feng, Wang Fei-Yue. Advances and perspectives on applications of deep learning in visual object detection. Acta Automatica Sinica, 2017, 43(8): 1289-1305
    [12] Shi Y, Cui L, Qi Z. Automatic road crack detection using random structured forests. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445 doi: 10.1109/TITS.2016.2552248
    [13] 勾红叶, 杨彪, 华辉, 谢蕊. 桥梁信息化及智能桥梁2019年度研究进展. 土木与环境工程学报, 2020, 42(5): 14-27

    Gou Ye-Hong, Yang Biao, Hua Hui, Xie Rui. Research progress of bridge informatization and intelligent bridge in 2019. Journal of Civil and Environmental Engineering, 2020, 42(5): 14-27
    [14] Zou Q, Zhang Z, Li Q, Qi X, Wang Q, Wang S. Deepcrack: Learning hierarchical convolutional features for crack detection. IEEE Transactions on Image Processing, 2019, 28(3): 1498-1512 doi: 10.1109/TIP.2018.2878966
    [15] 李良福, 马卫飞, 李丽, 陆铖. 基于深度学习的桥梁裂缝检测算法研究. 自动化学报, 2019, 45(9): 1727−1742

    Li Liang-Fu, Ma Wei-Fei, Li Li, Lu Cheng. Research on detection algorithm for bridge cracks based on deep learning. Acta Automatica Sinica, 2019, 45(9): 1727-1742
    [16] Kim I H, Jeon H, Baek S C, Hong W H. Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle. Sensors, 2018, 18(6): 1881 doi: 10.3390/s18061881
    [17] Zhang C B, Chang C, Maziar J. Concrete bridge surface damage detection using a single-stage detector. Computer‐Aided Civil and Infrastructure Engineering, 2020, 35(4): 389-409 doi: 10.1111/mice.12500
    [18] Li S Y, Zhao X F, Zhou G Y. Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network. Computer‐Aided Civil and Infrastructure Engineering, 2019, 34(7): 616-634 doi: 10.1111/mice.12433
    [19] Yang L, Li B, Li W. Deep concrete inspection using unmanned aerial vehicle towards CSSC database. In: Proceeding of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canada: IEEE, 2017. 24−28
    [20] Mundt M, Majumder S, Murali S. Meta-learning convolutional neural architectures for multi-target concrete defect classification with the concrete defect bridge image dataset. In: Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 11188−11197
    [21] Hüthwohla P, Lu R D, Brilakisa I. Multi-classifier for reinforced concrete bridge defect. Automation in Construction, 2019, 105(SEP.): 102824.1-102826.15
    [22] Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. 779−788
    [23] Bochkovskiy A, Wang C Y. Yolov4: Optimal speed and accuracy of object detection [Online], available: https://arxiv.org/abs/2004.10934, April 23, 2020
    [24] He K M, Zhang X, Ren S. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9): 1904-1916
    [25] Wang P, Chen P, Yuan Y. Understanding convolution for semantic segmentation. In: Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, USA: IEEE, 2018. 1451−1460
    [26] Hu J, Shen L, Surr G. Squeeze-and-excitation networks. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 7132−7141
    [27] Woo S, Park J, Lee J Y. CBAM: Convolutional block attention module. In: Proceedings of the 2018 European Conference on Computer Vision. Munich, Germany: Springer, 2018. 3−19
    [28] Chollet F. Xception: Deep learning with depth-wise separable convolutions. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 2017
    [29] Tan M X, Le Q V. EfficientNet: Rethinking model scaling for convolutional neural networks. In: Proceedings of the 2019 International Conference on Machine Learning. Los Angeles, USA: IEEE, 2019. 97: 6105−6114
    [30] Wang C Y, Mark-Liao H Y, Wu Y H, Chen P Y. CSPNet: A new backbone that can enhance learning capability of CNN. In: Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition Workshop. Seattle, USA: IEEE, 2020. 390−391
    [31] Wang T H, Liu M Y, Zhu J Y, Tao A, Catanzaro B. High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 8798−8807
    [32] Lin T Y, Goyal P, Girshick R. Focal loss for dense object detection. In: Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 2999−3007
    [33] Jiang W B, Liu M, Peng Y N, Wu L H, Wang Y N. HDCB-Net: A neural network with the hybrid dilated convolution for pixel-level crack detection on concrete bridges. IEEE Transactions on Industrial Informatics, 2020
    [34] Goodfellow I, Mirza M, Xu B, Courville A, Bengio Y. Generative adversarial networks. In: Proceedings of the 2014 Conference and Workshop on Neural Information Processing Systems. Montreal, Canada: 2014.
    [35] 刘建伟, 谢浩杰, 罗雄麟. 生成对抗网络在各领域应用研究进展. 自动化学报, 2020, 46(12): 2500−2536

    Liu Jian-Wei, Xie Hao-Jie, Luo Xiong-Lin. Research progress on application of generative adversarial networks in various fields. Acta Automatica Sinica, 2020, 46(12): 2500−2536
    [36] 林懿伦, 戴星原, 李力, 王晓, 王飞跃. 人工智能研究的新前线: 生成式对抗网络. 自动化学报, 2018, 44(5): 775-792

    Lin Yi-Lun, Dai Xing-Yuan, Li Li, Wang Xiao, Wang Fei-Yue. The new frontier of AI research: generative adversarial networks. Acta Automatica Sinica, 2018, 44(5): 775-792
    [37] Zheng Z, Zheng L, Yang Y. Unlabeled samples generated by GAN improve the person reidentification baseline in vitro. In: Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 3774−3782
    [38] Yang Q, Yan P, Zhang Y. Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Transactions on Medical Imaging, 2018: 1348-1357
    [39] Nie D, Trullo R, Lian J, Wang L, Petitjean C. Medical image synthesis with deep convolutional adversarial networks. IEEE Transactions on Biomedical Engineering, 2018, 65(12): 2720-2730 doi: 10.1109/TBME.2018.2814538
    [40] Chen L, Papandreou G, Kokkinos I. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848 doi: 10.1109/TPAMI.2017.2699184
    [41] Misra D. Mish: A self regularized non-monotonic activation function. In: Proceedings of the 2020 British Machine Vision Virtual Conference. Virtual Event, UK: 2020.
    [42] Sandler M, Howard A, Zhu M, Zhmoginov A. MobileNetV2: Inverted residuals and linear bottlenecks. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 4510−4520
    [43] Liu S, Qi L, Qin H F, Shi J P, Jia J Y. Path aggregation network for instance segmentation. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 8759−8768
    [44] Lin T Y, Dollar P, Girshick R, He K M, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Venice, Italy: IEEE, 2017. 2117–2125
    [45] Dollár P, Zitnick C L. Fast edge detection using structured forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(8): 1558-1570.
    [46] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S. SSD: Single shot multi-box detector. In: Proceedings of the 2016 European Conference on Computer Vision. Amsterdam, Netherlands: Springer, 2016. 21−37
    [47] Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149 doi: 10.1109/TPAMI.2016.2577031
    [48] Tian Z, Shen C H, Chen H, He T. FCOS: Fully convolutional one-stage object detection. In: Proceedings of the 2019 IEEE International Conference on Computer Vision. Seoul, Korea: IEEE, 2019. 9627–9636
    [49] Chattopadhyay A, Sarkar A, Howlader P. Grad-CAM++: Improved visual explanations for deep convolutional networks. In: Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, USA: IEEE, 2018.
  • 加载中
图(11) / 表(10)
计量
  • 文章访问数:  1650
  • HTML全文浏览量:  709
  • PDF下载量:  612
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-06
  • 录用日期:  2021-11-17
  • 网络出版日期:  2021-12-20
  • 刊出日期:  2022-04-13

目录

    /

    返回文章
    返回