Robust Control of Uncertain Markov Jump Singularly Perturbed Systems

LIU Hua-Ping1, 2 SUN Fu-Chun1, 2 LI Chun-Wen3 SUN Zeng-Qi1, 2
1(Department of Computer Science and Technology, Tsinghua University, Beijing 100084)
2(State Key Laboratory of Intelligent Technology and Systems, Beijing 100084)
3(Department of Automation, Tsinghua University, Beijing 100084)
(E-mail: hpliu00@mails.tsinghua.edu.cn)

Abstract In this paper, we study the robust control for uncertain Markov jump linear singularly perturbed systems (MJLSPS), whose transition probability matrix is unknown. An improved heuristic algorithm is proposed to solve the nonlinear matrix inequalities. The results of this paper can be generalized to uncertain cases. Furthermore, a more relaxed algorithm is also proposed.

Key words Singular perturbations, Markov jump parameters, matrix inequality, robust control

1 Introduction

Recently, the singular perturbation technique has been a strong tool to study multiple-time-scale systems[1]. On the other hand, Markov jump system has been noticed for many years[2]. In [3] the bounded real property was utilized to study the H_{∞} control for Markov jump linear singularly perturbed systems (MJLSPS), which result in a set of coupled Riccati equations. A set of coupled matrix inequality condition was constructed in [4], and an iterative algorithm was given to solve it. However, the initial values can be obtained only under some conservative conditions. In this paper, the results in [4] are generalized to uncertain cases. Furthermore, a more relaxed algorithm is also proposed.

2 Problem formulations

Consider the following uncertain MJLSPs:

$$\begin{align*}
\dot{x}(t) &= \tilde{A}_{11}(r(t))x_1(t) + \tilde{A}_{12}(r(t))x_2(t) + \tilde{B}_1(r(t))u(t) + D_1(r(t))w(t) \\
\dot{x}(t) &= \tilde{A}_{21}(r(t))x_1(t) + \tilde{A}_{22}(r(t))x_2(t) + \tilde{B}_2(r(t))u(t) + D_2(r(t))w(t) \\
\dot{z}(t) &= G_1(r(t))x_1(t) + G_2(r(t))x_2(t) + H(r(t))u(t) + L(r(t))w(t)
\end{align*}$$

(1)

where $x_1(t) \in R^{n_1}$ and $x_2(t) \in R^{n_2}$ are the slow, fast state variables, $u(t) \in R^m$ is the control input, $w(t) \in R^p$ is the external disturbance, $z(t) \in R^r$ is the output vector. ε is the singular perturbation parameter which satisfies $0 < \varepsilon \ll 1$. $\tilde{A}_{11}(r(t))$, $\tilde{A}_{12}(r(t))$, $\tilde{A}_{21}(r(t))$, $\tilde{A}_{22}(r(t))$, $\tilde{B}_1(r(t))$, $\tilde{B}_2(r(t))$, $D_1(r(t))$, $D_2(r(t))$, $G_1(r(t))$, $G_2(r(t))$, $H(r(t))$ and $L(r(t))$ are the functions of the stochastically jumping process $r(t)$, where $r(t)$ is a Markov jump process taking values in the finite set $S = \{1, 2, \ldots, s\}$. Denote $\Pi = [\pi_{ij}]$ as the transition matrix, where $i, j = 1, 2, \ldots, s$. Then the transition probability is $Pr\{r(t + \Delta) = j | r(t) = i\} = \begin{cases} \pi_{ij}\Delta + o(\Delta), i \neq j \\
1 + \pi_{ii}\Delta + o(\Delta), i = j \end{cases}$, where $\Delta > 0$, $\pi_{ij} \geq 0$, $i \neq j$. For every i, we have $\sum_{j=1}^{s} \pi_{ij} = 0$. In this paper, we assume that Π is unknown, but can be represented as a poltope, i.e., $\Pi = \sum_{l=1}^{s} \mu_l \Pi_l$, where $\Pi_l = [\pi^l_{ij}]$ is a known transition matrix and

1) Supported by National Excellent Doctoral Dissertation Foundation (200041), National Natural Key Project for Basic Research of P. R. China (G2002cb312205), National Natural Science Foundation of P. R. China (60474025, 60321002, 6034020, 90405017), Basic Research Foundation of Tsinghua University (JC2003028)

Copyright © 2005 by Editorial Office of Acta Automatica Sinica. All rights reserved.
\(\mu_i \) is the unknown scalar satisfying \(\sum_{i=1}^{h} \mu_i = 1 \). For simplicity, we denote \(\tilde{A}_{11}(r(t)) = \tilde{A}_{111} \) when \(r(t) = i \). The unknown matrix can be represented as \(\tilde{A}_{111} = A_{111} + \Delta A_{111}, \tilde{A}_{211} = A_{211} + \Delta A_{211}, \tilde{A}_{121} = A_{121} + \Delta A_{121}, \tilde{A}_{221} = A_{221} + \Delta A_{221}, \tilde{B}_1 = B_1 + \Delta B_1, \tilde{B}_2 = B_2 + \Delta B_2, \) where \(A_{111}, A_{121}, A_{211}, A_{221}, B_1 \) and \(B_2 \) are known matrices. \(\Delta A_{111}, \Delta A_{211}, \Delta A_{121}, \Delta A_{221}, \Delta B_1 \) and \(\Delta B_2 \) are uncertain terms which satisfy

\[
\begin{bmatrix}
\Delta A_{111} & \Delta A_{121} & \Delta B_1 \\
\Delta A_{211} & \Delta A_{221} & \Delta B_2
\end{bmatrix} =
\begin{bmatrix}
\tilde{I}_{111} & \tilde{I}_{211} \\
\tilde{I}_{121} & \tilde{I}_{221}
\end{bmatrix} \Gamma_i(t)[\Theta_1, \Theta_2, Z_i],
\]

where \(\Gamma_i \in R^{n_i \times n_i}, \) \(\Theta_1 \in R^{r \times n_1}, \Theta_2 \in R^{r \times n_2} \) and \(Z_i \in R^{r \times m} \) are known matrices. The uncertain matrix \(\tilde{\Gamma}_i(t) \in R^{r \times n_i} \) satisfies \(\tilde{\Gamma}_i(t)Y_i(t) \geq I_{n_i} \). For \(r(t) = i, i \in S \), we define \(x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \),

\[
\begin{bmatrix}
E_i \dot{x}(t) = \tilde{A}_i x(t) + \tilde{B}_i u(t) + D_i w(t) \\
z(t) = G_i x(t) + H_i u(t) + L_i w(t)
\end{bmatrix}
\]

(2)

3 Design of \(H_{\infty} \) controller

Consider the state-feedback controller \(u(t) = K(r(t))x(t) \). In this case, the closed-loop system becomes

\[
\begin{bmatrix}
E_i \dot{x}(t) = (\tilde{A}_i x(t)) + \tilde{B}_i K(t) x(t) + D_i w(t) \\
z(t) = (G_i x(t) + H_i K(t)) x(t) + L_i w(t)
\end{bmatrix}
\]

(3)

Theorem 1. If there exist matrices \(P_i > 0, P_{211} > 0, P_{221} \) and real number \(\alpha_i > 0 \) for \(i = 1, 2, \ldots, s \) and \(l = 1, 2, \ldots, h \), such that the following inequalities hold:

\[
\Phi_i(\alpha_i, K, P_i) = \begin{bmatrix}
(A_i + B_i K_i)^T P_i + P_i^T (A_i + B_i K_i) + \sum_{j=1}^{s} \pi_{ij} E P_j + \\
\alpha_i P_i^T \Gamma_i \Gamma_i^T P_i + \alpha_i^{-1} (\Theta_1 + Z_i K_i)^T (\Theta_1 + Z_i K_i)
\end{bmatrix} \begin{bmatrix}
\alpha_i P_i^T \Gamma_i \Gamma_i^T P_i + \alpha_i^{-1} (\Theta_1 + Z_i K_i)^T (\Theta_1 + Z_i K_i)
\end{bmatrix} \geq 0 \tag{4}
\]

where \(P_i = \begin{bmatrix} P_{111} & 0 \\ P_{211} & P_{221} \end{bmatrix} \) and \(E = \begin{bmatrix} I_{n_1} & 0 \\ 0 & 0 \end{bmatrix} \), then there exists \(\varepsilon > 0 \) such that for any \(\varepsilon \in (0, \varepsilon^*) \), the closed-loop system (3) is robustly stochastically stable, and for any \(T_f > 1 \), one has \(E \{ \int_{0}^{T_f} \varepsilon^2(t) z(t) dt \} < \gamma^2 \int_{0}^{T_f} w(t) dt \).

The proof is just like those in [4]. In the following, we propose an iterative approach to solve (4), which is different from the one in [4]. First, we define

\[
\Sigma_i(\alpha_i, K_i, P_i, \lambda) = \begin{bmatrix}
(A_i + B_i K_i)^T P_i + P_i^T (A_i + B_i K_i) + \sum_{j=1}^{s} \pi_{ij} E P_j + \\
\lambda \sum_{j=1, j \neq i}^{s} \pi_{ij} E P_j + \alpha_i P_i^T \Gamma_i \Gamma_i^T P_i + \alpha_i^{-1} (\Theta_1 + Z_i K_i)^T (\Theta_1 + Z_i K_i)
\end{bmatrix} \begin{bmatrix}
\alpha_i P_i^T \Gamma_i \Gamma_i^T P_i + \alpha_i^{-1} (\Theta_1 + Z_i K_i)^T (\Theta_1 + Z_i K_i)
\end{bmatrix} \geq 0 \tag{5}
\]

where \(\lambda \) is a real number in \([0,1]\). If \(P_i \) is fixed as \(P_i^* \), \(\Sigma_i(\alpha_i, K_i, P_i^*, \lambda) \) can be transformed as LMI, and we denote it as \(\tilde{\Sigma}_i(\alpha_i, K_i, P_i^*, \lambda) < 0 \); if \(K_i \) is fixed as \(K_i^* \) and \(\alpha_i \) is fixed as \(\alpha_i^* \), \(\Sigma_i(\alpha_i^*, K_i^*, P_i, \lambda) \) can also be transformed as LMI, and we denote it as \(\tilde{\Sigma}_i(\alpha_i^*, K_i^*, P_i, \lambda) < 0 \). Then, we can summarize the iterative algorithm as follows:

Step 1. Let \(k = 0, A = 0, \lambda = 0 \). Compute the initial values \(\alpha_i(0), K_i(0) \) and \(P_i \) which satisfy \(\tilde{\Sigma}_i(\alpha_i(0), K_i(0), P_i(0), \lambda) < 0 \).
Step 2. Let $k = k + 1$, $\lambda_k = k/2^4$ and fix P_i as $P_i(k-1)$. If the LMI $\sum_i^j (\alpha_i, K_i, P_i(k-1), \lambda_k) < 0$ upon α_i and K_i is feasible, we denote the solutions as $\alpha_i(k)$ and $K_i(k)$. Let $P_i(k) = P_i(k-1)$, then goto Step 4. Otherwise, goto Step 3.

Step 3. Fix α_i, K_i as $\alpha_i(k-1)$ and $K_i(k-1)$, respectively. If the LMI $\sum_i^j (\alpha_i(k-1), K_i(k-1), P_i, \lambda_k) < 0$ upon P_i is feasible, then we can minimize $\sum_{i=1}^n \text{trace}(P_i)$ subject to $\sum_i^j (\alpha_i(k-1), K_i(k-1), P_i, \lambda_k) < 0$. Denote the corresponding solutions as $\bar{P}_i(k)$. Let $\alpha_i(k) = \alpha_i(k-1)$ and $K_i(k) = K_i(k-1)$, goto Step 4. Otherwise, Let $A = A + 1$. If $A \leq A_{\text{max}}$ (A is a prescribed threshold), then let $K = 0$ and return to Step 2. If $A > A_{\text{max}}$, this algorithm cannot give feasible solutions, it exits.

Step 4. If $k < 2^4$, then return to Step 2. If $k = 2^4$, we obtain the feasible solutions $\alpha_i(k), K_i(k)$ and $P_i(k)$.

Remark. In [4], one necessary condition for the initial problem is feasible is that each sub-system has to be stabilizable. This is a rather conservative condition for Markov jump systems. In this paper, the solution space of initial problem $\sum_i^j (\alpha_i, K_i, P_i, 0) < 0$ is a subset of that of the original problem $\sum_i^j (\alpha_i, K_i, P_i, 1) < 0$. Therefore the above-mentioned problem is avoided. In addition, we do not require the input matrix to be square, which is an assumption of [5].

4 Conclusions

This paper proposed some new results based on [4]. A more effective algorithm is proposed, which can eliminate some unnecessary assumptions in [4].

References

LIU Hua-Ping Received Ph.D degree in 2004. His research interests include fuzzy systems and matrix inequality.

SUN Fu-Chun Professor in the Department of Computer Sciences and Technology at Tsinghua University. His research interests include neuro-fuzzy systems and robots.

LI Chun-Wen Professor in the Department of Automation at Tsinghua University. His research interests include analysis and control of nonlinear systems.

SUN Zeng-Qi Professor in the Department of Computer Sciences and Technology at Tsinghua University. His research interests include intelligent control and robots.