[1] Alamri F F, Al Shoyaib A, Biggers A, Jayaraman S, Guindon J, Karamyan V T. Applicability of the grip strength and automated von Frey tactile sensitivity tests in the mouse photothrombotic model of stroke. Behavioural Brain Research, 2018, 336: 250-255 doi: 10.1016/j.bbr.2017.09.008
[2] Saposnik G, Teasell R, Mamdani M, Hall J, McIlroy W, Cheung D, et al. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke, 2010, 41(7): 1477-1484 doi: 10.1161/STROKEAHA.110.584979
[3] Kwakkel G, Kollen B J, van der Grond J, Prevo J H. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke, 2003, 34(9): 2181-2186 doi: 10.1161/01.STR.0000087172.16305.CD
[4] Mancisidor A, Zubizarreta A, Cabanes I, Bengoa P, Jung J H. Kinematical and dynamical modeling of a multipurpose upper limbs rehabilitation robot. Robotics and Computer-Integrated Manufacturing, 2018, 49: 374-387 doi: 10.1016/j.rcim.2017.08.013
[5] 梁明, 窦祖林, 王清辉, 熊巍, 郑雅丹, 陈颖蓓, 等.虚拟现实技术在脑卒中患者偏瘫上肢功能康复中的应用.中国康复医学杂志, 2013, 28(2): 114-118 doi: 10.3969/j.issn.1001-1242.2013.02.004

Liang Ming, Dou Zu-Lin, Wang Qing-Hui, Xiong Wei, Zheng Ya-Dan, Chen Ying-Bei, et al. Application of virtual reality technique in rehabilitation of hemiplegic upper extremities function of stroke patients. Chinese Journal of Rehabilitation Medicine, 2013, 28(2): 114-118 doi: 10.3969/j.issn.1001-1242.2013.02.004
[6] Trombetta M, Bazzanello Henrique P P, Brum M R, Colussi E L, De Marchi A C B, Rieder R. Motion Rehab AVE 3D: a VR-based exergame for post-stroke rehabilitation. Computer Methods and Programs in Biomedicine, 2017, 151: 15 -20 doi: 10.1016/j.cmpb.2017.08.008
[7] 李雅楠, 左国坤, 崔志琴, 徐佳琳.虚拟现实技术在康复训练中的应用进展.中国康复医学杂志, 2017, 32(9): 1091-1094 doi: 10.3969/j.issn.1001-1242.2017.09.028

Li Ya-Nan, Zuo Guo-Kun, Cui Zhi-Qin, Xu Jia-Lin. Application progress of virtual reality technology in rehabilitation training. Chinese Journal of Rehabilitation Medicine, 2017, 32(9): 1091-1094 doi: 10.3969/j.issn.1001-1242.2017.09.028
[8] 顾莹, 田利华, 陈红.虚拟现实训练系统和康复作业治疗在偏瘫患者上肢功能障碍中的应用.中国康复医学杂志, 2011, 26(6): 579- 581 doi: 10.3969/j.issn.1001-1242.2011.06.021

Gu Ying, Tian Li-Hua, Chen Hong. Application of virtual reality training system and rehabilitation operation in upper limb dysfunction of hemiplegic patients. Chinese Journal of Rehabilitation Medicine, 2011, 26(6): 579-581 doi: 10.3969/j.issn.1001-1242.2011.06.021
[9] Mouawad M R, Doust C G, Max M D, McNulty P A. Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study. Journal of Rehabilitation Medicine, 2011, 43(6): 527-533 doi: 10.2340/16501977-0816
[10] Burdea G C, Cioi D, Martin J, Fensterheim D, Holenski M. The Rutgers Arm Ⅱ rehabilitation system —— a feasibility study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(5): 505-514 doi: 10.1109/TNSRE.2010.2052128
[11] Park D S, Lee D G, Lee K, Lee G. Effects of virtual reality training using Xbox kinect on motor function in stroke survivors: a preliminary study. Journal of Stroke and Cerebrovascular Diseases, 2017, 26(10): 2313-2319 doi: 10.1016/j.jstrokecerebrovasdis.2017.05.019
[12] 锁建军, 杨红旗. Brunnstrom技术治疗脑梗死偏瘫病人临床观察.中西医结合心脑血管病杂志, 2017, 15(11): 1395-1398 doi: 10.3969/j.issn.1672-1349.2017.11.034

Suo Jian-Jun, Yang Hong-Qi. Clinical observation of Brunn- strom technology in treatment of cerebral infarction patients with hemiplegia, Chinese and Western Medicine Journal of Cardiovascular and Cerebrovascular Diseases, 2017, 15(11): 1395-1398 doi: 10.3969/j.issn.1672-1349.2017.11.034
[13] 关秋菊, 罗晓牧, 郭雪梅, 王国利.基于隐马尔科夫模型的人体动作压缩红外分类.自动化学报, 2017, 43(3): 398-406 doi: 10.16383/j.aas.2017.c160130

Guan Qiu-Ju, Luo Xiao-Mu, Guo Xue-Mei, Wang Guo-Li. Compressive infrared classification of human motion using HMM. Acta Automatica Sinica, 2017, 43(3): 398-406 doi: 10.16383/j.aas.2017.c160130
[14] 左国玉, 于双悦, 龚道雄.遥操作护理机器人系统的操作者姿态解算方法研究.自动化学报, 2016, 42(12): 1839-1848 doi: 10.16383/j.aas.2016.c160137

Zuo Guo-Yu, Yu Shuang-Yue, Gong Dao-Xiong. Operator attitude algorithm for telerobotic nursing system. Acta Automatica Sinica, 2016, 42(12): 1839-1848 doi: 10.16383/j.aas.2016.c160137
[15] Yurtman A, Barshan B. Activity recognition invariant to sensor orientation with wearable motion sensors. Sensors, 2017, 17(8): Article No. 1838
[16] Foerster F, Smeja M, Fahrenberg J. Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Computers in Human Behavior, 1999, 15(5): 571-583 doi: 10.1016/S0747-5632(99)00037-0
[17] Lee S H, Park H D, Hong S Y, Lee K J, Kim Y H. A study on the activity classification using a triaxial accelerometer. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Cancun, Mexico: IEEE, 2003. 2941-2943
[18] Karantonis D M, Narayanan M R, Mathie M, Lovell N H, Celler B G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine, 2006, 10(1): 156-167 doi: 10.1109/TITB.2005.856864
[19] Khan A M, Lee Y K, Lee S Y, Kim T S. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Transactions on Information Technology in Biomedi- cine, 2010, 14(5): 1166-1172 doi: 10.1109/TITB.2010.2051955
[20] Zhang M, Sawchuk A A. Human daily activity recognition with sparse representation using wearable sensors. IEEE Journal of Biomedical and Health Informatics, 2013, 17(3): 553-560 doi: 10.1109/JBHI.2013.2253613
[21] Vital J P M, Faria D R, Dias G, Couceiro M S, Coutinho F, Ferreira N M F. Combining discriminative spatiotemporal features for daily life activity recognition using wearable motion sensing suit. Pattern Analysis and Applications, 2017, 20(4): 1179-1194 doi: 10.1007/s10044-016-0558-7
[22] Ghaddar B, Naoum-Sawaya J. High dimensional data classification and feature selection using support vector machines. European Journal of Operational Research, 2018, 265(3): 993-1004 doi: 10.1016/j.ejor.2017.08.040
[23] Wu H F, Wang D Q, Huang Q, Gao L F. Real-time continuous recognition of knee motion using multi-channel mechanomyography signals detected on clothes. Journal of Electromyography and Kinesiology, 2018, 38: 94-102 doi: 10.1016/j.jelekin.2017.10.010
[24] Wang H F, Zheng B C, Yoon S W, Ko H S. A support vector machine-based ensemble algorithm for breast cancer diagnosis. European Journal of Operational Research, 2018, 267(2): 687-699 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c332f6be473abadc9f328e4c1d98eb65
[25] Platt J C, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification. Advances in Neural Information Processing Systems, 1999, 12(3): 547-553 https://core.ac.uk/display/24720690
[26] Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999 doi: 10.1109/72.788640
[27] Dietterich T G. Ensemble methods in machine learning. In: Proceedings of the 1st International Workshop on Multiple Classifier Systems. Cagliari, Italy: Springer-Verlag, 2000. 1 -15
[28] Garcia L P F, Sáez J A, Luengo J, Lorena A C, de Carvalho A C P L F, Herrera F. Using the one-vs-one decomposition to improve the performance of class noise filters via an aggregation strategy in multi-class classification problems. Knowledge-Based Systems, 2015, 90: 153-164 doi: 10.1016/j.knosys.2015.09.023
[29] Krawczyk B, Woźniak M, Herrera F. On the usefulness of one-class classifier ensembles for decomposition of multi-class problems. Pattern Recognition, 2015, 48(12): 3969- 3982 doi: 10.1016/j.patcog.2015.06.001
[30] Sesmero M P, Alonso-Weber J M, Gutierrez G, Ledezma A, Sanchis A. An ensemble approach of dual base learners for multi-class classification problems. Information Fusion, 2015, 24: 122-136 doi: 10.1016/j.inffus.2014.09.002
[31] Montañés E, Barranquero J, Díez J, del Coz J J. Enhancing directed binary trees for multi-class classification. Information Sciences, 2013, 223: 42-55 doi: 10.1016/j.ins.2012.10.011
[32] Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425 http://web.cs.iastate.edu/~honavar/multiclass-svm.pdf
[33] Xie J Y, Wang C X. Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases. Expert Systems with Applications, 2011, 38(5): 5809-5815 doi: 10.1016/j.eswa.2010.10.050
[34] 谢娟英, 谢维信.基于特征子集区分度与支持向量机的特征选择算法.计算机学报, 2014, 37(8): 1704-1718 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201408006

Xie Juan-Ying, Xie Wei-Xin. Several feature selection algorithms based on the discernibility of a feature subset and support vector machines. Chinese Journal of Computers, 2014, 37(8): 1704-1718 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201408006