[1] |
李芾, 张丽平, 黄运华. 城市轻轨车辆发展及其应用前景. 西南交通大学学报, 2002, 37(2): 111−116 doi: 10.3969/j.issn.0258-2724.2002.02.001
1 Li Fu, Zhang Li-Ping, Huang Yun-Hua. The development and prospect of application of light rail vehicles. Journal of Southwest Jiaotong University, 2002, 37(2): 111−116 doi: 10.3969/j.issn.0258-2724.2002.02.001 |
[2] |
2 Novales M, Gerezo J A G, Ortega R. Light rail in alicante, spain improving the use of existing railway lines. Transportation Research Record, 2013, 2353: 69−81 doi: 10.3141/2353-07 |
[3] |
3 Currie G, Delbosc A, Forbes P. World transit research trends in need, supply, and use. Transportation Research Record, 2012, 2276: 1−8 doi: 10.3141/2276-01 |
[4] |
4 Kuba T, Lugner P. Dynamic behaviour of tramways with different kinds of bogies. Vehicle System Dynamics, 2012, 50: 277−289 doi: 10.1080/00423114.2012.666356 |
[5] |
5 Péreza J, Busturia J M, Mei T X, Vinolas J. Combined active steering and traction for mechatronic bogie vehicles with independently rotating wheels. Annual Reviews in Control, 2004, 28(2): 207−217 doi: 10.1016/j.arcontrol.2004.02.004 |
[6] |
6 Liang B, Iwnicki S D, Swift F J. Simulation of the behavior of a railway vehicle with independently driven wheels. IFAC Proceedings Volumes, 2002, 35(2): 755−759 doi: 10.1016/S1474-6670(17)34030-2 |
[7] |
黄运华, 李芾. 基于独立旋转车轮的变轨距转向架研究. 中国铁道科学, 2004, 25(2): 139−141 doi: 10.3321/j.issn:1001-4632.2004.02.029
7 Huang Yun-Hua, Li Fu. Research on gauge-changeable bogie based on independently rotating wheel. China Railway Science, 2004, 25(2): 139−141 doi: 10.3321/j.issn:1001-4632.2004.02.029 |
[8] |
张济民, 寇杰, 周和超, 周俊华. 差速器耦合轮对车辆曲线通过性能. 机械工程学报, 2017, 53(10): 94−99
8 Zhang Ji-Min, Kou Jie, Zhou He-Chao, Zhou Jun-Hua. Curving performance of the differential-coupled wheelset vehicle. Journal of Mechanical Engineering, 2017, 53(10): 94−99 |
[9] |
9 Wang W, Suda Y, Michitsuji Y. Running performance of steering truck with independently rotating wheel considering traction and braking. Vehicle System Dynamics, 2008, 46: 899−909 doi: 10.1080/00423110802037149 |
[10] |
10 Andrea B, Gianluca M. Contact mechanics issues of a vehicle equipped with partially independently rotating wheelsets. Wear, 2016, 366−367: 233−240 doi: 10.1016/j.wear.2016.03.037 |
[11] |
11 Sugiyama H, Matsumura R, Suda Y, Ezaki H. Dynamics of independently rotating wheel system in the analysis of multibody railroad vehicles. Journal of Computational and Nonlinear Dynamics, 2011, 6(1): 1−8 |
[12] |
12 Cho Y, Kwak J. Development of a new analytical model for a railway vehicle equipped with independently rotating wheels. International Journal of Automotive Technology, 2012, 13(7): 1047−1056 doi: 10.1007/s12239-012-0107-3 |
[13] |
13 Wang, W J. Design of the wheel profile of an independently rotating wheel with inverse tread conicity by considering the trajectory of the center of gravity. Proceedings of the Institution of Mechanical Engineers Part F−Journal of Rail and Rapid Transit, 2016, 230(3): 672−680 doi: 10.1177/0954409714555380 |
[14] |
14 Jeong N T, Choi S U, Lee H Y, Baek K H, Han S Y , Kim W K, Suh M W. A study on the optimum design of high-speed low-floor bogie with independently rotating wheels. Journal of Mechanical Science and Technology, 2017, 31(5): 2105−2115 doi: 10.1007/s12206-017-0407-7 |
[15] |
15 Kalker J J. Contact mechanical algorithms. Communications in Applied Numerical Methods, 1988, 4(1): 25−32 doi: 10.1002/cnm.1630040105 |
[16] |
张丽平, 李芾. 独立旋转车轮轮轨蠕滑率研究. 中国铁道科学, 2002, 23(4): 18−23 doi: 10.3321/j.issn:1001-4632.2002.04.004
16 Zhang Li-Ping, Li Fu. Research on the creepages of independently rotating wheels. China Railway Science, 2002, 23(4): 18−23 doi: 10.3321/j.issn:1001-4632.2002.04.004 |
[17] |
17 Ahn H, Lee H, Go S, Cho Y, Lee J. Control of the lateral displacement restoring force of irws for sharp curved driving. Journal of Electrical Engineering and Technology, 2016, 11: 1042−1048 doi: 10.5370/JEET.2016.11.4.1042 |
[18] |
18 Lu Z G, Yang, Z, Huang Q, Wang X C. Robust active guidance control using the mu-synthesis method for a tramcar with independently rotating wheelsets. Proceedings of the Institution of Mechanical Engineers Part F−Journal of Rail and Rapid Transit, 2019, 233: 33−48 doi: 10.1177/0954409718777374 |
[19] |
19 Lu Z G, Sun X J, Yang J Q. Integrated active control of independently rotating wheels on rail vehicles via observers. Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit, 2017, 231(3): 295−305 doi: 10.1177/0954409716629705 |
[20] |
20 Oh Y J, Liu H C, Cho S, Won J H, Lee H, Lee J. Design, modeling, and analysis of a railway traction motor with independently rotating wheelsets. IEEE Transactions on Magnetics, 2018, 54(11): 1−5 |
[21] |
21 Ji Y J, Ren L H, Zhou J S. Boundary conditions of active steering control of independent rotating wheelset based on hub motor and wheel rotating speed difference feedback. Vehicle System Dynamics, 2018, 56(12): 1883−1898 doi: 10.1080/00423114.2018.1437273 |
[22] |
季元进, 李锐, 任利惠. 基于轮毂电机和转速差反馈的独立车轮轮对主动导向控制的影响因素. 机械工程学报, 2018, 54(8): 48−56
22 Ji Yuan-Jin, Li Rui, Ren Li-Hui. Influence factors of active steering control of independent wheel set based on hub motor and speed difference feedback. Journal of Mechanical Engineering, 2018, 54(8): 48−56 |
[23] |
23 Oh Y J, Cho Y, Kim I G, Lee J, Lee H. Restoring torque control strategy of IPMSM for the independently rotating wheelsets in wireless trams. Journal of Electrical Engineering and Technology, 2017, 12(4): 1683−1689 |
[24] |
薛定宇, 赵春娜. 分数阶系统的分数阶PID控制器设计. 控制理论与应用, 2007, 24(5): 771−776 doi: 10.3969/j.issn.1000-8152.2007.05.015
24 Xue Ding-Yu, Zhao Chun-Na. Fractional order PID controller design for fractional order system. Control Theory and Applications, 2007, 24(5): 771−776 doi: 10.3969/j.issn.1000-8152.2007.05.015 |
[25] |
张冬丽, 唐英干, 关新平. 用改进的人工蜂群算法设计AVR系统最优分数阶PID控制器. 自动化学报, 2014, 40(5): 973−980
25 Zhang Dong-Li, Tang Yin-Gan, Guan Xin-Ping. Optimum design of fractional order PID controller for an AVR system using an improved artiflcial bee colony algorithm. Acta Automatica Sinica, 2014, 40(5): 973−980 |
[26] |
高哲. 一类采用分数阶PIλ控制器的分数阶系统可镇定性判定准则. 自动化学报, 2017, 43(11): 1993−2002
26 Gao Zhe. Stabilization criterion for a class of interval fractional-order systems using fractional-order PIλ controllers. Acta Automatica Sinica, 2017, 43(11): 1993−2002 |
[27] |
27 Farahani G, Rahmani K. Speed control of a separately excited dc motor using new proposed fuzzy neural algorithm based on fopid controller. Journal of Control, Automation and Electrical Systems, 2019, 30(5): 728−740 doi: 10.1007/s40313-019-00485-8 |
[28] |
魏立新, 王浩, 穆晓伟. 基于粒子群算法倒立摆分数阶PID参数优化. 控制工程, 2019, 26(2): 196−201
28 Wei Li-Xin, Wang Hao, Mu Xiao-Wei. Control of revolving inverted pendulum based on PSO-FOPID controller. Control Engineerig of China, 2019, 26(2): 196−201 |