[1] |
Association A P. Diagnostic and Statistical Manual of Mental Disorders:DSM-IV-TR. Virginia:American Psychiatric Publishing, 2000. 59-66 |
[2] |
Fayyad J, De Graaf R, Kessler R, Alonso J, Angermeyer M, Demyttenaere K, et al. Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. British Journal of Psychiatry, 2007, 190(5):402-409 doi: 10.1192/bjp.bp.106.034389 |
[3] |
曹庆久, 王晓丽, 曲姗, 王鹏, 吴赵敏, 孙黎, 等.认知行为治疗对成人注意缺陷多动障碍静息态局部脑功能影响.中国心理卫生杂志, 2017, 31(3):183-189 doi: 10.3969/j.issn.1000-6729.2017.03.002
Cao Qing-Jiu, Wang Xiao-Li, Qu Shan, Wang Peng, Wu Zhao-Min, Sun Li, et al. Effects of cognitive-behavioral therapy on regional homogeneity changes in adults with attention-deficit/hyperactivity disorder. Chinese Mental Health Journal, 2017, 31(3):183-189 doi: 10.3969/j.issn.1000-6729.2017.03.002 |
[4] |
Tian L X, Jiang T Z, Liang M, Zang Y F, He Y, Sui M Q, et al. Enhanced resting-state brain activities in ADHD patients:a fMRI study. Brain and Development, 2008, 30(5):342-348 doi: 10.1016/j.braindev.2007.10.005 |
[5] |
Zhu C Z, Zang Y F, Cao Q J, Yan C G, He Y, Jiang T Z, et al. Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. NeuroImage, 2008, 40(1):110-120 doi: 10.1016/j.neuroimage.2007.11.029 |
[6] |
Wang X H, Jiao Y, Tang T Y, Wang H, Lu Z H. Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder. European Journal of Radiology, 2013, 82(9):1552-1557 doi: 10.1016/j.ejrad.2013.04.009 |
[7] |
Akdeniz G. Complexity analysis of resting-state fMRI in adult patients with attention deficit hyperactivity disorder: brain entropy. Computational Intelligence and Neuroscience, 2017, 2017: Article ID 3091815 |
[8] |
Zhao Q H, Li H, Yu X Y, Huang F, Wang Y F, Liu L, et al. Abnormal resting-state functional connectivity of insular subregions and disrupted correlation with working memory in adults with attention deficit/hyperactivity disorder. Frontiers in Psychiatry, 2017, 8:200 doi: 10.3389/fpsyt.2017.00200 |
[9] |
Du J Q, Wang L P, Jie B, Zhang D Q. Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA. Computerized Medical Imaging and Graphics, 2016, 52:82-88 doi: 10.1016/j.compmedimag.2016.04.004 |
[10] |
Wang X L, Cao Q J, Wang J H, Wu Z M, Wang P, Sun L, et al. The effects of cognitive-behavioral therapy on intrinsic functional brain networks in adults with attention-deficit/hyperactivity disorder. Behaviour Research and Therapy, 2016, 76:32-39 doi: 10.1016/j.brat.2015.11.003 |
[11] |
Mostert J C, Shumskaya E, Mennes M, Onnink A M H, Hoogman M, Kan C C, et al. Characterising resting-state functional connectivity in a large sample of adults with ADHD. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 67:82-91 doi: 10.1016/j.pnpbp.2016.01.011 |
[12] |
Zang Y F, He Y, Zhu C Z, Cao Q J, Sui M Q, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development, 2007, 29(2):83-91 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b932672c6ab3b8ff7fbcb6de239794bf |
[13] |
Sato J R, Takahashi D Y, Hoexter M Q, Massirer K B, Fujita A. Measuring network's entropy in ADHD:a new approach to investigate neuropsychiatric disorders. NeuroImage, 2013, 77:44-51 doi: 10.1016/j.neuroimage.2013.03.035 |
[14] |
Hagmann P, Grant P E, Fair D A. MR connectomics:a conceptual framework for studying the developing brain. Frontiers in Systems Neuroscience, 2012, 6:43 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3374479 |
[15] |
Eklund A, Nichols T E, Knutsson H. Cluster failure:why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28):7900-7905 doi: 10.1073/pnas.1602413113 |
[16] |
Lee K, Tak S, Ye J C. A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion. IEEE Transactions on Medical Imaging, 2011, 30(5):1076-1089 doi: 10.1109/TMI.2010.2097275 |
[17] |
Daubechies I, Roussos E, Takerkart S, Benharrosh M, Golden C, D'Ardenne K, et al. Independent component analysis for brain fMRI does not select for independence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(26):10415-10422 doi: 10.1073/pnas.0903525106 |
[18] |
常振春, 禹晶, 肖创柏, 孙卫东.基于稀疏表示和结构自相似性的单幅图像盲解卷积算法.自动化学报, 2017, 43(11):1908-1919 http://www.aas.net.cn/CN/abstract/abstract19166.shtml
Chang Zhen-Chun, Yu Jing, Xiao Chuang-Bai, Sun Wei-Dong. Single image blind deconvolution using sparse representation and structural self-similarity. Acta Automatica Sinica, 2017, 43(11):1908-1919 http://www.aas.net.cn/CN/abstract/abstract19166.shtml |
[19] |
杨国铮, 禹晶, 肖创柏, 孙卫东.基于形态字典学习的复杂背景SAR图像舰船尾迹检测.自动化学报, 2017, 43(10):1713-1725 http://www.aas.net.cn/CN/abstract/abstract19149.shtml
Yang Guo-Zheng, Yu Jing, Xiao Chuang-Bai, Sun Wei-Dong. Ship wake detection in SAR images with complex background using morphological dictionary learning. Acta Automatica Sinica, 2017, 43(10):1713-1725 http://www.aas.net.cn/CN/abstract/abstract19149.shtml |
[20] |
陈允杰, 葛魏东, 孙乐.一种基于协同稀疏和全变差的高光谱线性解混方法.自动化学报, 2018, 44(1):116-128 http://www.aas.net.cn/CN/abstract/abstract19209.shtml
Chen Yun-Jie, Ge Wei-Dong, Sun Le. A novel linear hyperspectral unmixing method based on collaborative sparsity and total variation. Acta Automatica Sinica, 2018, 44(1):116-128 http://www.aas.net.cn/CN/abstract/abstract19209.shtml |
[21] |
Pessoa L. Beyond brain regions:network perspective of cognition-emotion interactions. Behavioral and Brain Sciences, 2012, 35(3):158-169 doi: 10.1017/S0140525X11001567 |
[22] |
Quiroga R Q, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by single neurons in the human brain. Nature, 2005, 435(7045):1102-1107 doi: 10.1038/nature03687 |
[23] |
Rosa M J, Portugal L, Hahn T, Fallgatter A J, Garrido M I, Shawe-Taylor J, et al. Sparse network-based models for patient classification using fMRI. NeuroImage, 2015, 105:493-506 doi: 10.1016/j.neuroimage.2014.11.021 |
[24] |
Lv J L, Jiang X, Li X, Zhu D J, Chen H B, Zhang T, et al. Sparse representation of whole-brain FMRI signals for identification of functional networks. Medical Image Analysis, 2015, 20(1):112-134 http://cn.bing.com/academic/profile?id=b3e922463feca4c39b85aff49cf00381&encoded=0&v=paper_preview&mkt=zh-cn |
[25] |
Gong J H, Liu X Y, Liu T M, Zhou J S, Sun G, Tian J X. Dual temporal and spatial sparse representation for inferring group-wise brain networks from resting-state fMRI dataset. IEEE Transactions on Biomedical Engineering, 2018, 65(5):1035-1048 http://cn.bing.com/academic/profile?id=46bcd417fad04c25f69fb4b3349ad1a5&encoded=0&v=paper_preview&mkt=zh-cn |
[26] |
Kessler R C, Adler L, Ames M, Demler O, Faraone S, Hiripi E, et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS):a short screening scale for use in the general population. Psychological Medicine, 2005, 35(2):245-256 doi: 10.1017/S0033291704002892 |
[27] |
Reuter M, Kirsch P, Hennig J. Inferring candidate genes for attention deficit hyperactivity disorder (ADHD) assessed by the World Health Organization Adult ADHD Self-Report Scale (ASRS). Journal of Neural Transmission, 2006, 113(7):929-938 doi: 10.1007/s00702-005-0366-5 |
[28] |
Zhang S, Li X, Lv J L, Jiang X, Guo L, Liu T M. Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations. Brain Imaging and Behavior, 2016, 10(1):21-32 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4e1cee730ba9fab6433842610202b44f |
[29] |
Zhao S J, Han J W, Lv J L, Jiang X, Hu X T, Zhao Y, et al. Supervised dictionary learning for inferring concurrent brain networks. IEEE Transactions on Medical Imaging, 2015, 34(10):2036-2045 doi: 10.1109/TMI.2015.2418734 |
[30] |
Park H J, Friston K. Structural and functional brain networks:from connections to cognition. Science, 2013, 342(6158):1238411-1238411 doi: 10.1126/science.1238411 |
[31] |
Zhang S, Li X, Lv J L, Jiang X, Zhu D J, Chen H B, et al. Sparse representation of higher-order functional interaction patterns in task-based fMRI data. In: Proceedings of the 2013 Medical Image Computing and Computer-Assisted Intervention-MICCAI. Berlin, Heidelberg, Germany: Springer, 2013. 626-634 |
[32] |
Zubair S, Yan F, Wang W W. Dictionary learning based sparse coefficients for audio classification with max and average pooling. Digital Signal Processing, 2013, 23(3):960-970 doi: 10.1016/j.dsp.2013.01.004 |
[33] |
Paisitkriangkrai S, Shen C H, van den Hengel A. Pedestrian detection with spatially pooled features and structured ensemble learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(6):1243-1257 doi: 10.1109/TPAMI.2015.2474388 |
[34] |
Coates A, Ng A Y. The importance of encoding versus training with sparse coding and vector quantization. In: Proceedings of the 28th International Conference on Machine Learning. Washington, USA: Omnipress, 2011. 921-928 |
[35] |
Liang X, Zou Q H, He Y, Yang Y H. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(5):1929-1934 doi: 10.1073/pnas.1214900110 |
[36] |
Barkhof F, Haller S, Rombouts S A R B. Resting-state functional MR imaging:a new window to the brain. Radiology, 2014, 272(1):29-49 doi: 10.1148/radiol.14132388 |
[37] |
Smith S M, Fox P T, Miller K L, Glahn D C, Fox P M, Mackay C E, et al. Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(31):13040-13045 doi: 10.1073/pnas.0905267106 |
[38] |
Kim K I. False Discovery Rate Procedures for High-Dimensional Data[Ph.D. dissertation], Eindhoven University of Technology, Holland, 2008. http://cn.bing.com/academic/profile?id=656b471f63e10a8daf0ce98ab4e85098&encoded=0&v=paper_preview&mkt=zh-cn |
[39] |
Lei X, Wang Y L, Yuan H, Mantini D. Neuronal oscillations and functional interactions between resting state networks. Human Brain Mapping, 2014, 35(7):3517-3528 doi: 10.1002/hbm.22418 |
[40] |
Sokunbi M O, Fung W, Sawlani V, Choppin S, Linden D E J, Thome J. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD. Psychiatry Research:Neuroimaging, 2013, 214(3):341-348 doi: 10.1016/j.pscychresns.2013.10.001 |
[41] |
Schneider M F, Krick C M, Retz W, Hengesch G, Retz-Junginger P, Reith W, et al. Impairment of fronto-striatal and parietal cerebral networks correlates with attention deficit hyperactivity disorder (ADHD) psychopathology in adults——a functional magnetic resonance imaging (fMRI) study. Psychiatry Research:Neuroimaging, 2010, 183(1):75-84 doi: 10.1016/j.pscychresns.2010.04.005 |
[42] |
Fan J, McCandliss B D, Fossella J, Flombaum J I, Posner M I. The activation of attentional networks. NeuroImage, 2005, 26(2):471-479 doi: 10.1016/j.neuroimage.2005.02.004 |
[43] |
Posner J, Park C, Wang Z S. Connecting the dots:a review of resting connectivity MRI studies in attention-deficit/hyperactivity disorder. Neuropsychology Review, 2014, 24(1):3-15 http://cn.bing.com/academic/profile?id=b8bd70bf1cafdc8a8e45b29444d44109&encoded=0&v=paper_preview&mkt=zh-cn |
[44] |
Bush G. Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology, 2010, 35(1):278-300 http://cn.bing.com/academic/profile?id=712659b53576c37cff3fd30cec30af47&encoded=0&v=paper_preview&mkt=zh-cn |
[45] |
Francx W, Oldehinkel M, Oosterlaan J, Heslenfeld D, Hartman C A, Hoekstra P J, et al. The executive control network and symptomatic improvement in attention-deficit/hyperactivity disorder. Cortex, 2015, 73:62-72 doi: 10.1016/j.cortex.2015.08.012 |