[1] |
Meng L X, Savaghebi M, Andrad F, Vasquez J C, Guerrero J M, Graells M. Microgrid central controller development and hierarchical control implementation in the intelligent microgrid lab of Aalborg University. In: Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA: IEEE, 2015. 2585−2592 |
[2] |
Brijesh P, Jiju K, Dhanesh P R, Joseph A. Microgrid for sustainable development of remote villages. In: Proceedings of the 2019 IEEE Region 10 Conference, Kochi, India: IEEE, 2019. 2433−2438 |
[3] |
Wang J, Cisse B M, Brown D, Crabb A. Development of a microgrid control system for a solar-plus-battery microgrid to support a critical facility. In: Proceedings of the 2017 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA: IEEE, 2017. 1−5 |
[4] |
Suyanto H, Irawati R. Study trends and challenges of the development of microgrids. In: Proceedings of the 6th IEEE International Conference on Advanced Logistics and Transport (ICALT), Bali, Indonesia: IEEE, 2017. 160−164 |
[5] |
Behera A, Panigrahi T K, Ray P K, Sahoo A K. A novel cascaded PID controller for automatic generation control analysis with renewable sources. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6): 1438−1451 doi: 10.1109/JAS.2019.1911666 |
[6] |
Jagatheesan K, Anand B, Samanta S, Dey N, Ashour A S, Balas V E. Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm. IEEE/CAA Journal of Automatica Sinica, 2019, 6(2): 503−515 doi: 10.1109/JAS.2017.7510436 |
[7] |
赵熙临, 林震宇, 付波, 何莉, 徐光辉. 预测优化PID方法在含风电电力系统AGC中的应用. 电力系统及其自动化学报, 2019, 31: 16−22
Zhao Xi- Lin, Lin Zhen-Yu, Fu Bo, He Li, Xu Guang-Hui. Application of predictive optimization PID method to AGC of power system with windy power. Journal of Power System and Automation, 2019, 31: 16−22 |
[8] |
谢平平, 李银红, 刘晓娟, 石东源, 段献忠. 基于社会学习自适应细菌觅食算法的互联电网AGC最优PI/PID控制器设计. 中国电机工程学报, 2016, 36(20): 5440−5448
Xie Ping-Ping, Li Yin-Hong, Liu Xiao-Juan, Shi Dong-Yuan, Duan Xian-Zhong. Optimal PI/PID controller design of AGC based on social learning adaptive bacteria foraging algorithm for interconnected power grids. Proceedings of the Chinese Society of Electrical Engineering, 2016, 36(20): 5440−5448 |
[9] |
Arya Y. A novel CFFOPI-FOPID controller for AGC performance enhancement of single and multi-area electric power systems. ISA Transactions, 2020, 100: 126−135 |
[10] |
Xi L, Yu L, Xu Y C, Wang S X, Chen X. A novel multi-agent DDQN-AD method-based distributed strategy for automatic generation control of integrated energy systems. IEEE Transactions on Sustainable Energy, 2019, DOI: 10.1109/TSTE.2019.2958361 |
[11] |
吴新, 史军, 马伟哲, 陈俊斌. 基于极限Q学习算法的微电网自动发电控制. 新型工业化, 2019, 9(4): 22−26
Wu Xin, Shi Jun, Ma Wei-Zhe, Chen Jun-Bin. Automatic generation control of micro grid based on extreme Q-learning algorithm. The Journal of New Industrialization, 2019, 9(4): 22−26 |
[12] |
余涛, 梁海华, 周斌. 基于R(λ) 学习的孤岛微电网智能发电控制. 电力系统保护与控制, 2012, 40(13): 7−13 doi: 10.7667/j.issn.1674−3415.2012.13.002
Yu Tao, Liang Hai-Hua, Zhou Bin. Smart power generation control for microgrids islanded operation based on R(λ) learning. Power System Protection and Control, 2012, 40(13): 7−13 doi: 10.7667/j.issn.1674−3415.2012.13.002 |
[13] |
吴丽珍, 雷艾虎, 郝晓弘. 基于模型预测控制的孤岛微电网频率二次控制策略. 兰州理工大学学报, 2019, 45(6): 99−107 doi: 10.3969/j.issn.1673−5196.2019.06.018
Wu Li-Zhen, Lei Ai-Hu, Hao Xiao-Hong. Secondary control strategy of microgrid frequency of isolated island based on model predictive control. Journal of Lanzhou University of Technology, 2019, 45(6): 99−107 doi: 10.3969/j.issn.1673−5196.2019.06.018 |
[14] |
李文浩. 去中心化多智能体强化学习算法研究[硕士学位论文]. 华东师范大学, 中国, 2019.
Li Wen-hao. Decentralized Multi-Agent Reinforcement Learning Algorithm Research. [Master thesis]. East China Normal University, China, 2019. |
[15] |
綦晓. 基于多智能体系统及自抗扰控制理论的微网负荷频率控制策略研究[博士学位论文]. 华北电力大学(北京), 中国, 2019.
Qi Xiao. Research on Microgrid Load Frequency Control Strategy Based on Multi-Agent System and Active Disturbance Rejection Control Algorithm [Ph.D. dissertation]. North China Electric Power University, China, 2019. |
[16] |
曹倩. 多智能体系统一致性算法及其在微网中的应用[博士学位论文]. 电子科技大学, 中国, 2016.
Cao Qian. Consensus Algorithms Of Multi-Agent Systems And Its Application On Micro-Grid [Ph.D. dissertation]. University of Electronic Science and Technology of China, China, 2016. |
[17] |
衣楠. 微网分布式协调控制系统设计及仿真实现[硕士学位论文]. 华北电力大学, 中国, 2014.
Yi Nan. Design and Simulation of Microgrid Distributed Coordination Control System [Master thesis]. North China Electric Power University, China, 2014. |
[18] |
李楠芳. 基于多智能体技术的微电网控制算法的研究[硕士学位论文]. 华北电力大学, 中国, 2011.
Li Nan-Fang. Research on Control Algorithms Based on Multi-agent Technology of Microgrid [Master thesis]. North China Electric Power University, China, 2011. |
[19] |
Xi L, Li Y D, Huang Y H, Lu L, Chen J F. A novel automatic generation control method based on the ecological population cooperative control for the islanded smart grid. Complexity, 2018, 2018: 1−17 |
[20] |
Watkins C J C H. Learning from Delayed Rewards. [Ph.D. dissertation]. King's College, Cambridge, England, 1989. |
[21] |
De Asis K, Hernandez-Garcia J F, Holland G Z, Sutton R S. Multi-step reinforcement learning: A unifying algorithm. AAAI, 2018, arXiv: 1703.01327 |
[22] |
Hasselt H V. Double Q-learning. Neural Information Processing Systems 23, Curran Associates, Inc. 2613–2621 |
[23] |
Sutton R S. Learning to predict by the methods of temporal differences. Machine Learning, 1988, 3(1): 9–44 |
[24] |
Van Seijen H, Van Hasselt H, Whiteson S, Wiering M A. A theoretical and empirical analysis of expected sarsa. In: Proceedings of the 2009 IEEE Symposium Conference on Adaptive Dynamic Programming and Reinforcement Learning. 2009. 177−184 |
[25] |
Jaleeli N, Vanslyck L S. NERC's new control performance standards. IEEE Transactions on Power Systems, 1999, 14(3): 1091−1099 |
[26] |
Zhang X S, Yu T, Pan Z N, Yang B, Bao T. Lifelong learning for complementary generation control of interconnected power grids with high-penetration renewables and EVs. IEEE Transactions on Power Systems, 2018, 33(4): 4097−4110 doi: 10.1109/TPWRS.2017.2767318 |
[27] |
黄际元. 储能电池参与电网调频的优化配置及控制策略研究[博士学位论文]. 湖南大学, 中国, 2015.
Huang Ji-Yuan. Study on Optimal Allocation and Control Strategy Design of Battery Energy Storage System for Power Grid Frequency Regulation [Ph.D. dissertation]. Hunan University, China, 2015. |
[28] |
Sun Q Y, Huang B N, Li D S, Ma D H, Zhang Y B. Optimal placement of energy storage devices in microgrids via structure preserving energy function, IEEE Transactions on Industrial Informatics, 2016, 12(3): 1166−1179 |
[29] |
Xu D, Wu Q, Zhou B, Li C, Bai L, Huang S. Distributed multi-energy operation of coupled electricity, heating and natural gas networks, IEEE Transactions on Sustainable Energy, 2019, DOI: 10.1109/TSTE.2019.2961432 |
[30] |
Yu T, Zhou B, Chan K W, Chen L, Yang B. Stochastic optimal relaxed automatic generation control in non-Markov environment based on multi-step Q (λ) learning. IEEE Transactions on Power Systems, 2011, 26 (3): 1272−1282 |
[31] |
Sun Q Y, Han R K, Zhang H G, Zhou J G, Guerrero J M. A multi-agent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet. IEEE Transactions on Smart Grid, 2015, 6(6): 3006−3019 doi: 10.1109/TSG.2015.2412779 |
[32] |
Saha A K, Chowdhury S, Chowdhury S P, Crossley A. Modelling and simulation of microturbine in islanded and grid-connected mode as distributed energy resource. In: Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, PA, USA: IEEE, 2008. 1−7 |
[33] |
Zhang X S, Li Q, Yu T, Yang B. Consensus transfer Q-learning for decentralized generation command dispatch based on virtual generation tribe. IEEE Transactions on Smart Grid, 2018, 9(3): 2152−2165 |