[1] 杨兆升.基础交通信息融合技术及其应用.北京:中国铁道出版社, 2005.

Yang Zhao-Sheng. Basic Traffic Information Fusion Technology and Its Application. Beijing:China Railway Publishing House, 2005.
[2] Xia M, Chen Y H, Huang H C, Wang X Y, Chen Y F. Environment-adaptive road traffic measurement with single wireless geomagnetic sensor node. In:Proceedings of the International Conference on Wireless Communication and Sensor Network (WCSN 2015). Changsha, China:World Scientific, 2016. 720-727
[3] 何兆成, 卢瑞琪, 聂佩林.基于浮动车定位数据的高速公路区间平均速度估计.公路交通科技, 2011, 28(6):128-135 doi: 10.3969/j.issn.1002-0268.2011.06.021

He Zhao-Cheng, Lu Rui-Qi, Nie Pei-Lin. Estimation on freeway segment average speed based on probe vehicle data. Journal of Highway and Transportation Research and Development, 2011, 28(6):128-135 doi: 10.3969/j.issn.1002-0268.2011.06.021
[4] 刘俏.基于浮动车技术的城市道路网状况研究[硕士学位论文], 武汉理工大学, 中国, 2013.

Liu Qiao. Studies on the condition of urban road networks based on floating car technology[Master dissertation], Wuhan University of Technology, China, 2013.
[5] 曹艺华.面向视频监控的大尺度人群行为分析[硕士学位论文], 上海交通大学, 中国, 2013.

Cao Yi-Hua. The large-scale crowd analysis in video surveillance[Master dissertation], Shanghai Jiao Tong University, China, 2013.
[6] 肖坦, 杨栩, 李黄煌.基于视频监控的铁路客运站人群密度分析算法.铁道通信信号, 2010, 46(8):80-82 doi: 10.3969/j.issn.1000-7458.2010.08.029

Xiao Tan, Yang Xu, Li Huang-Huang. Railway passenger station crowd density estimation algorithm based video surveillance. Railway Signalling & Communication, 2010, 46(8):80-82 doi: 10.3969/j.issn.1000-7458.2010.08.029
[7] Casas O, López M, Quílez M, Martinez-Farre X, Hornero G, Rovira C, Pinilla M R, RamosP M, Borges B, Marques H, Girão S. Wireless sensor network for smart composting monitoring and control. Measurement, 2014, 47:483-495 doi: 10.1016/j.measurement.2013.09.026
[8] 郑建湖, 王明华.动态交通信息采集技术比较分析.交通标准化, 2009, (4):42-47 http://d.old.wanfangdata.com.cn/Periodical/jtbzh200904045

Zheng Jian-Hu, Wang Ming-Hua. Comparative analysis of collection technologies for dynamic traffic information. Transport Standardization, 2009, (4):42-47 http://d.old.wanfangdata.com.cn/Periodical/jtbzh200904045
[9] 李祖芬, 于雷, 高永, 吴亦政, 龚大鹏, 宋国华.基于手机信令定位数据的居民出行时空分布特征提取方法.交通运输研究, 2016, 2(1):51-57 http://d.old.wanfangdata.com.cn/Periodical/jtbzh201601008

Li Zu-Fen, Yu Lei, Gao Yong, Wu Yi-Zheng, Gong Da-Peng, Song Guo-Hua. Extraction method of temporal and spatial characteristics of residents' trips based on cellular signaling data. Transportation Standardization, 2016, 2(1):51-57 http://d.old.wanfangdata.com.cn/Periodical/jtbzh201601008
[10] 唐小勇, 周涛, 陆百川.基于手机信令的大范围人流移动分析.重庆交通大学学报(自然科学版), 2017, 36(1):82-87, 109 http://d.old.wanfangdata.com.cn/Periodical/cqjtxyxb201701015

Tang Xiao-Yong, Zhou Tao, Lu Bai-Chuan. Analysis of wide range population flow analysis based on mobile phone signaling. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(1):82-87, 109 http://d.old.wanfangdata.com.cn/Periodical/cqjtxyxb201701015
[11] 吴松, 雒江涛, 周云峰, 林举厅, 舒忠玲.基于移动网络信令数据的实时人流量统计方法.计算机应用研究, 2014, 31(3):776-779 doi: 10.3969/j.issn.1001-3695.2014.03.033

Wu Song, Luo Jiang-Tao, Zhou Yun-Feng, Lin Ju-Ting, Shu Zhong-Ling. Method of real-time traffic statistics using mobile network signaling. Application Research of Computers, 2014, 31(3):776-779 doi: 10.3969/j.issn.1001-3695.2014.03.033
[12] Hellinga B, Fu L P, Takada H. Obtaining traveller information via mobile phone location referencing-challenges and opportunities. In: Proceedings of the Annual Conference of the Transportation Association of Canada. St. John's, Canada: National Academy of Sciences, 2003. 21-24
[13] White J, Quick J, Philippou P. The use of mobile phone location data for traffic information. In: Proceedings of the 12th IEE International Conference on Road Transport Information and Control. London, UK: IEEE, 2004. 321-325
[14] Rose G. Mobile phones as traffic probes:practices, prospects and issues. Transport Reviews, 2006, 26(3):275-291 doi: 10.1080/01441640500361108
[15] Qiu Z J, Cheng P. State of the art and practice: cellular probe technology applied in advanced traveler information system. In: Transportation Research Board 86th Annual Meeting (TRB2007). Washington DC, USA: Transportation Research Board. 2007.
[16] Caceres N, Wideberg J P, Benitez F G. Review of traffic data estimations extracted from cellular networks. IET Intelligent Transport Systems, 2008, 2(3):179-192 doi: 10.1049/iet-its:20080003
[17] Valerio D. Road Traffic Information from Cellular Network Signaling, Technical Report FTW-TR-2009-003, Telecommunications Research Center Vienna, Austria, 2009.
[18] 郭晓妮.基于手机信令的交通流监测与出行信息服务系统.通讯世界, 2017, (14):157 doi: 10.3969/j.issn.1006-4222.2017.14.112

Guo Xiao-Ni. Traffic flow monitoring and travel information service system based on mobile phone signaling. Telecom World, 2017, (14):157 doi: 10.3969/j.issn.1006-4222.2017.14.112
[19] 陈欢.基于手机信令数据的人员出行特征跟踪调查.交通与运输, 2017, (S1):92-94, 98 http://d.old.wanfangdata.com.cn/Periodical/jtyys2017z1022

Chen Huan. Survey of pedestrian travel characteristics based on mobile phone signaling data. Traffic & Transportation, 2017, (S1):92-94, 98 http://d.old.wanfangdata.com.cn/Periodical/jtyys2017z1022
[20] Wang F Y. Parallel control and management for intelligent transportation systems:concepts, architectures, and applications. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3):630-638
[21] 王飞跃.平行系统方法与复杂系统的管理和控制.控制与决策, 2004, 19(5):485-489, 514 doi: 10.3321/j.issn:1001-0920.2004.05.002

Wang Fei-Yue. Parallel system methods for management and control of complex systems. Control and Decision, 2004, 19(5):485-489, 514 doi: 10.3321/j.issn:1001-0920.2004.05.002
[22] 王飞跃.人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论.复杂系统与复杂性科学, 2004, 1(4):25-35 doi: 10.3969/j.issn.1672-3813.2004.04.002

Wang Fei-Yue. Artificial societies, computational experiments, and parallel systems:a discussion on computational theory of complex social-economic systems. Complex Systems and Complexity Science, 2004, 1(4):25-35 doi: 10.3969/j.issn.1672-3813.2004.04.002
[23] 王飞跃.计算实验方法与复杂系统行为分析和决策评估.系统仿真学报, 2004, 16(5):893-897 doi: 10.3969/j.issn.1004-731X.2004.05.009

Wang Fei-Yue. Computational experiments for behavior analysis and decision evaluation of complex systems. Journal of System Simulation, 2004, 16(5):893-897 doi: 10.3969/j.issn.1004-731X.2004.05.009
[24] 王飞跃.关于复杂系统研究的计算理论与方法.中国基础科学, 2004, 6(5):3-10 doi: 10.3969/j.issn.1009-2412.2004.05.001

Wang Fei-Yue. Computational theory and method on complex system. China Basic Science, 2004, 6(5):3-10 doi: 10.3969/j.issn.1009-2412.2004.05.001
[25] Zhang N, Wang F Y, Zhu F H, Zhao D B, Tang S M. DynaCAS:computational experiments and decision support for ITS. IEEE Intelligent Systems, 2008, 23(6):19-23 doi: 10.1109/MIS.2008.101
[26] 王飞跃, 刘德荣, 熊刚, 程长建, 赵冬斌.复杂系统的平行控制理论及应用.复杂系统与复杂性科学, 2012, 9(3):1-12 doi: 10.3969/j.issn.1672-3813.2012.03.001

Wang Fei-Yue, Liu De-Rong, Xiong Gong, Cheng Chang-Jian, Zhao Dong-Bin. Parallel control theory of complex systems and applications. Complex Systems and Complexity Science, 2012, 9(3):1-12 doi: 10.3969/j.issn.1672-3813.2012.03.001
[27] Wang F Y, Wang X, Li L X, Li L. Steps toward parallel intelligence. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4):345-348 doi: 10.1109/JAS.2016.7510067
[28] Wang F Y, Yang L Q, Cheng X, Han S S, Yang J. Network softwarization and parallel networks:beyond software-defined networks. IEEE Network, 2016, 30(4):60-65 doi: 10.1109/MNET.2016.7513865
[29] 王飞跃, 杨柳青, 胡晓娅, 程翔, 韩双双, 杨坚.平行网络与网络软件化:一种新颖的网络架构.中国科学:信息科学, 2017, 47(7):811-831 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201707001.htm

Wang Fei-Yue, Yang Liu-Qing, Hu Xiao-Ya, Cheng Xiang, Han Shuang-Shuang, Yang Jian. Parallel networks and network softwarization:a novel network architecture. Scientia Sinica (Informationis), 2017, 47(7):811-831 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201707001.htm
[30] 李力, 林懿伦, 曹东璞, 郑南宁, 王飞跃.平行学习——机器学习的一个新型理论框架.自动化学报, 2017, 43(1):1-8 doi: 10.3969/j.issn.1003-8930.2017.01.001

Li Li, Lin Yi-Lun, Cao Dong-Pu, Zheng Nan-Ning, Wang Fei-Yue. Parallel learning——a new framework for machine learning. Acta Automatica Sinica, 2017, 43(1):1-8 doi: 10.3969/j.issn.1003-8930.2017.01.001
[31] Lv Y S, Duan Y J, Kang W W, Li Z X, Wang F Y. Traffic flow prediction with big data:a deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2):865-873
[32] Wen J, Zhao J L, Luo S W, Han Z. The improvements of BP neural network learning algorithm. In: Proceedings of the 5th International Conference on Signal Processing. Beijing, China: IEEE, 2000, 3: 1647-1649