[1] Song C M, Qu Z H, Blumm N, Barabási A L. Limits of predictability in human mobility. Science, 2010, 327(5968):1018-1021 doi: 10.1126/science.1177170
[2] Mamoulis N, Cao H P, Kollios G, Hadjieleftheriou M, Tao Y F, Cheung D W. Mining, indexing, and querying historical spatiotemporal data. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, USA: ACM, 2004. 236-245
[3] Morzy M. Mining frequent trajectories of moving objects for location prediction. In: Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition. Leipzig, Germany: Springer, 2007. 667-680
[4] Jeung H, Liu Q, Shen H T, Zhou X F. A hybrid prediction model for moving objects. In: Proceedings of the 24th International Conference on Data Engineering. Cancun, Mexico: IEEE, 2008. 70-79
[5] Ying J J C, Lee W C, Weng T C, Tseng V S. Semantic trajectory mining for location prediction. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Chicago, USA: ACM, 2011. 34-43
[6] Zheng Y, Zhang L Z, Xie X, Alma W Y. Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th International Conference on World Wide Web. Madrid, Spain: ACM, 2009. 791-800
[7] Qiao S J, Shen D Y, Wang X T, Han N, Zhu W. A self-adaptive parameter selection trajectory prediction approach via hidden Markov models. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1):284-296 doi: 10.1109/TITS.6979
[8] De Brébisson A, Simon É, Auvolat A, Vincent P, Bengio Y. Artificial neural networks applied to taxi destination prediction. In: Proceedings of the 2015 International Conference on ECML PKDD Discovery Challenge. Aachen, Germany: CEUR-WS.org, 2015. 40-51
[9] Krumm J, Horvitz E. Predestination: inferring destinations from partial trajectories. In: Proceedings of the 8th International Conference on Ubiquitous Computing. Orange County, USA: Springer, 2006. 243-260
[10] Ziebart B D, Maas A L, Dey A K, Bagnell J A. Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In: Proceedings of the 10th International Conference on Ubiquitous computing. Seoul, Korea: ACM, 2008. 322-331
[11] Patterson D J, Liao L, Fox D, Kautz H. Inferring high-level behavior from low-level sensors. In: Proceedings of the 5th International Conference on Ubiquitous Computing. Seattle, WA, USA: Springer, 2003. 73-89
[12] Monreale A, Pinelli F, Trasarti R, Giannotti F. Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France: ACM, 2009. 637-646
[13] Ashbrook D, Starner T. Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing, 2003, 7(5):275-286 doi: 10.1007/s00779-003-0240-0
[14] Gambs S, Killijian M O, Del M N, Cortez P. Next place prediction using mobility markov chains. In: Proceedings of the 1st Workshop on Measurement, Privacy, and Mobility. Bern, Switzerland: ACM, 2012. Article No.3
[15] 乔少杰, 金琨, 韩楠, 唐常杰, 格桑多吉, Gutierrez L A.一种基于高斯混合模型的轨迹预测算法.软件学报, 2015, 26(5):1048-1063 http://d.old.wanfangdata.com.cn/Periodical/rjxb201505005

Qiao Shao-Jie, Jin Kun, Han Nan, Tang Chang-Jie, Gesangduoji, Gutierrez L A. Trajectory prediction algorithm based on Gaussian mixture model. Journal of Software, 2015, 26(5):1048-1063 http://d.old.wanfangdata.com.cn/Periodical/rjxb201505005
[16] Besse P C, Guillouet B, Loubes J M, Royer F. Destination prediction by trajectory distribution based model. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8):2470-2481 doi: 10.1109/TITS.2017.2749413
[17] Willard K E, Connelly D P. Nonparametric probability density estimation:improvements to the histogram for laboratory data. Computers and Biomedical Research, 1992, 25(1):17-28 https://linkinghub.elsevier.com/retrieve/pii/0010480992900326
[18] 王星, 褚挺进.非参数统计(第2版).北京:清华大学出版社, 2014. 361.

Wang Xing, Chu Ting-Jin. Non-parametric Statistics (2nd Edition). Beijing:Tsinghua press, 2014. 361
[19] Yuan J, Zheng Y, Xie X, Sun G Z. Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2011. 316-324
[20] Ferrer G, Sanfeliu A. Bayesian human motion intentionality prediction in urban environments. Pattern Recognition Letters, 2014, 44:134-140 doi: 10.1016/j.patrec.2013.08.013
[21] Bui D T, Tuan T A, Klempe H, Pradhan B, Revhaug I. Spatial prediction models for shallow landslide hazards:a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 2016, 13(2):361-378 doi: 10.1007/s10346-015-0557-6