[1] |
Rezende D J, Ali Eslami S M, Mohamed S, Battaglia P, Jaderberg M, Heess N. Unsupervised learning of 3D structure from images. In: Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016). New York, USA: Curran Associates, Inc., 2016. 4996-5004 |
[2] |
Haming K, Peters G. The structure-from-motion reconstruction pipeline-a survey with focus on short image sequences. Kybernetika, 2010, 46(5):926-937 https://dml.cz/bitstream/handle/10338.dmlcz/141400/Kybernetika_46-2010-5_8.pdf |
[3] |
Lhuillier M, Quan L. A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3):418-433 doi: 10.1109/TPAMI.2005.44 |
[4] |
Habbecke M, Kobbelt L. A surface-growing approach to multi-view stereo reconstruction. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA: IEEE, 2007. 1-8 |
[5] |
Oswald M R, Töppe E, Nieuwenhuis C, Cremers D. A review of geometry recovery from a single image focusing on curved object reconstruction. Innovations for Shape Analysis. Berlin, Germany: Springer-Verlag, 2013. 343-378 |
[6] |
Yi L, Shao L, Savva M, Huang H B, Zhou Y, Wang Q R, et al. Large-scale 3D shape reconstruction and segmentation from ShapeNet Core55. arXiv preprint arXiv: 1710.06104, 2017. |
[7] |
Aspert N, Santa-Cruz D, Ebrahimi T. MESH: measuring errors between surfaces using the Hausdorff distance. In: Proceedings of the 2002 IEEE International Conference on Multimedia and Expo. Lausanne, Switzerland: IEEE, 2002. 705-708 |
[8] |
Choy C B, Xu D F, Gwak J Y, Chen K, Savarese S. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer, 2016. 628-644 |
[9] |
Fan H Q, Su H, Guibas L. A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, USA: IEEE, 2017. 2463-2471 |
[10] |
Kemelmacher-Shlizerman I, Basri R. 3D face reconstruction from a single image using a single reference face shape. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2):394-405 doi: 10.1109/TPAMI.2010.63 |
[11] |
Wang H K, Stout D B, Chatziioannou A F. Mouse atlas registration with non-tomographic imaging modalities-a pilot study based on simulation. Molecular Imaging and Biology, 2012, 14(4):408-419 doi: 10.1007/s11307-011-0519-x |
[12] |
Dworzak J, Lamecker H, Von Berg J, Klinder T, Lorenz C, Kainmüller D, et al. 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model. International Journal of Computer Assisted Radiology and Surgery, 2010, 5(2):111-124 doi: 10.1007/s11548-009-0390-2 |
[13] |
Baka N, Kaptein B L, De Bruijne M, Van Walsum T, Giphart J E, Niessen W J, et al. 2D-3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models. Medical Image Analysis, 2011, 15(6):840-850 doi: 10.1016/j.media.2011.04.001 |
[14] |
Blanz V, Vetter T. A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM Press, 1999. 187-194 |
[15] |
Cashman T J, Fitzgibbon A W. What shape are dolphins? Building 3D morphable models from 2D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):232-244 doi: 10.1109/TPAMI.2012.68 |
[16] |
Bakshi S, Yang Y H. Shape from shading for non-Lambertian surfaces. In: Proceedings of the 1st International Conference on Image Processing. Austin, TX, USA: IEEE, 1994. 130-134 |
[17] |
Ahmed A, Farag A. Shape from shading for hybrid surfaces. In: Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, TX, USA: IEEE, 2007. Ⅱ-525-Ⅱ-528 |
[18] |
Jin H L, Soatto S, Yezzi A J. Multi-view stereo reconstruction of dense shape and complex appearance. International Journal of Computer Vision, 2005, 63(3):175-189 doi: 10.1007/s11263-005-6876-7 |
[19] |
Vicente S, Carreira J, Agapito L, Batista J. Reconstructing PASCAL VOC. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 41-48 |
[20] |
Kar A, Tulsiani S, Carreira J, Malik J. Category-specific object reconstruction from a single image. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015. 1966-1974 |
[21] |
Prasad M, Zisserman A, Fitzgibbon A W. Fast and controllable 3D modelling from silhouettes. In: Proceedings of the 2005 Eurographics. Hamburg, Federal Republic of Germany: Elsevier Science Publishing Company, 2005. 9-12 |
[22] |
Ikeuchi K, Horn B K P. Numerical shape from shading and occluding boundaries. Artificial Intelligence, 1981, 17(1-3):141-184 doi: 10.1016/0004-3702(81)90023-0 |
[23] |
Prasad M, Fitzgibbon A. Single view reconstruction of curved surfaces. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York, NY, USA: IEEE, 2006. 1345-1354 |
[24] |
Daum M, Dudek G. On 3-D surface reconstruction using shape from shadows. In: Proceedings of the 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Santa Barbara, CA, USA: IEEE, 1998. 461-468 |
[25] |
Kato H, Ushiku Y, Harada T. Neural 3D mesh renderer. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 37-44 |
[26] |
Rother D, Sapiro G. Seeing 3D objects in a single 2D image. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 1819-1826 |
[27] |
Nevatia R, Binford T O. Description and recognition of curved objects. Artificial Intelligence, 1977, 8(1):77-98 https://dl.acm.org/citation.cfm?id=3015410.3015415 |
[28] |
Gupta A, Efros A A, Hebert M. Blocks world revisited: image understanding using qualitative geometry and mechanics. In: Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece: Springer-Verlag, 2010. 482-496 |
[29] |
Xiao J X, Russell B C, Torralba A. Localizing 3D cuboids in single-view images. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA: Curran Associates Inc., 2012. 746-754 |
[30] |
Pentland A P. Perceptual organization and the representation of natural form. Artificial Intelligence, 1986, 28(3):293-331 doi: 10.1016/0004-3702(86)90052-4 |
[31] |
Haag M, Nagel H H. Combination of edge element and optical flow estimates for 3D-model-based vehicle tracking in traffic image sequences. International Journal of Computer Vision, 1999, 35(3):295-319 doi: 10.1023/A:1008112528134 |
[32] |
Koller D, Daniilidis K, Nagel H H. Model-based object tracking in monocular image sequences of road traffic scenes. International Journal of Computer Vision, 1993, 10(3):257-281 doi: 10.1007/BF01539538 |
[33] |
Lim J J, Pirsiavash H, Torralba A. Parsing Ikea objects: fine pose estimation. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia: IEEE, 2013. 2992-2999 |
[34] |
Satkin S, Rashid M, Lin J, Hebert M. 3DNN:3D nearest neighbor. International Journal of Computer Vision, 2015, 111(1):69-97 doi: 10.1007/s11263-014-0734-4 |
[35] |
Pepik B, Stark M, Gehler P, Ritschel T, Schiele B. 3D object class detection in the wild. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Boston, MA, USA: IEEE, 2015. 1-10 |
[36] |
Huang Q X, Wang H, Koltun V. Single-view reconstruction via joint analysis of image and shape collections. ACM Transactions on Graphics (TOG), 2015, 34(4): Article No. 87 |
[37] |
Liu F, Zeng D, Li J, Zhao Q J. Cascaded regressor based 3D face reconstruction from a single arbitrary view image.[Online], available: https://arxiv.org/abs/1509.06161v1, March 25, 2019 |
[38] |
Blanz V, Vetter T. Face recognition based on fitting a 3D morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9):1063-1074 doi: 10.1109/TPAMI.2003.1227983 |
[39] |
Twarog N R, Tappen M F, Adelson E H. Playing with puffball: simple scale-invariant inflation for use in vision and graphics. In: Proceedings of the 2012 ACM Symposium on Applied Perception. Los Angeles, California, USA: ACM, 2012. 47-54 |
[40] |
Aloimonos J. Shape from texture. Biological Cybernetics, 1988, 58(5):345-360 doi: 10.1007/BF00363944 |
[41] |
Marinos C, Blake A. Shape from texture: the homogeneity hypothesis. In: Proceedings of the 3rd International Conference on Computer Vision. Osaka, Japan: IEEE, 1990. 350-353 |
[42] |
Loh A M, Hartley R I. Shape from non-homogeneous, non-stationary, anisotropic, perspective texture. In: Proceedings of the 2005 British Machine Vision Conference. Oxford, UK: BMVC, 2005. 69-78 |
[43] |
Horn B K P. Obtaining Shape from Shading Information. Cambridge:MIT Press, 1989. 123-171 |
[44] |
Robles-Kelly A, Hancock E R. An eigenvector method for shape-from-shading. In: Proceedings of the 12th International Conference on Image Analysis and Processing. Mantova, Italy: IEEE, 2003. 474-479 |
[45] |
Cheung W P, Lee C K, Li K C. Direct shape from shading with improved rate of convergence. Pattern Recognition, 1997, 30(3):353-365 doi: 10.1016/S0031-3203(96)00097-0 |
[46] |
Yang L, Han J Q. 3D shape reconstruction of medical images using a perspective shape-from-shading method. Measurement Science and Technology, 2008, 19(6): Article No. 065502 |
[47] |
Tankus A, Kiryati N. Photometric stereo under perspective projection. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 611-616 |
[48] |
Saxena A, Chung S H, Ng A Y. Learning depth from single monocular images. In: Proceedings of the 18th International Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: MIT Press, 2005. 1161-1168 |
[49] |
Saxena A, Sun M, Ng A Y. Make3D:learning 3D scene structure from a single still image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(5):824-840 doi: 10.1109/TPAMI.2008.132 |
[50] |
Delage E, Lee H, Ng A Y. A dynamic Bayesian network model for autonomous 3D reconstruction from a single indoor image. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). New York, USA: IEEE, 2006. 2418-2428 |
[51] |
Tulsiani S, Kar A, Carreira J, Malik J. Learning category-specific deformable 3D models for object reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):719-731 doi: 10.1109/TPAMI.2016.2574713 |
[52] |
王伟, 高伟, 朱海, 胡占义.快速鲁棒的城市场景分段平面重建.自动化学报, 2017, 43(4):674-684 http://www.aas.net.cn/CN/abstract/abstract19045.shtml
Wang Wei, Gao Wei, Zhu Hai, Hu Zhan-Yi. Rapid and robust piecewise planar reconstruction of urban scenes. Acta Automatica Sinica, 2017, 43(4):674-684 http://www.aas.net.cn/CN/abstract/abstract19045.shtml |
[53] |
缪君, 储珺, 张桂梅, 王璐.基于稀疏点云的多平面场景稠密重建.自动化学报, 2015, 41(4):813-822 http://www.aas.net.cn/CN/abstract/abstract18655.shtml
Miao Jun, Chu Jun, Zhang Gui-Mei, Wang Lu. Dense multi-planar scene reconstruction from sparse point cloud. Acta Automatica Sinica, 2015, 41(4):813-822 http://www.aas.net.cn/CN/abstract/abstract18655.shtml |
[54] |
张峰, 史利民, 孙凤梅, 胡占义.一种基于图像的室内大场景自动三维重建系统.自动化学报, 2010, 36(5):625-633 http://www.aas.net.cn/CN/abstract/abstract13353.shtml
Zhang Feng, Shi Li-Min, Sun Feng-Mei, Hu Zhan-Yi. An image based 3D reconstruction system for large indoor scenes. Acta Automatica Sinica, 2010, 36(5):625-633 http://www.aas.net.cn/CN/abstract/abstract13353.shtml |
[55] |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436-444 doi: 10.1038/nature14539 |
[56] |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088):533-536 doi: 10.1038/323533a0 |
[57] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507 doi: 10.1126/science.1127647 |
[58] |
焦李成, 杨淑媛, 刘芳, 王士刚, 冯志玺.神经网络七十年:回顾与展望.计算机学报, 2016, 39(8):1697-1716 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201608015
Jiao Li-Cheng, Yang Shu-Yuan, Liu Fang, Wang Shi-Gang, Feng Zhi-Xi. Seventy years beyond neural networks:retrospect and prospect. Chinese Journal of Computers, 2016, 39(8):1697-1716 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201608015 |
[59] |
Feng X, Zhang Y D, Glass J. Speech feature denoising and dereverberation via deep autoencoders for noisy reverberant speech recognition. In: Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy: IEEE, 2014. 1759-1763 |
[60] |
Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada: IEEE, 2013. 6645-6649 |
[61] |
Collobert R, Weston J. A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland: ACM, 2008. 160-167 |
[62] |
Huang E H, Socher R, Manning C D, Ng A Y. Improving word representations via global context and multiple word prototypes. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Jeju Island, Korea: Association for Computational Linguistics, 2012. 873-882 |
[63] |
Mikolov T, Chen K, Corrado G S, Dean J. Efficient estimation of word representations in vector space.[Online], available: http://www.oalib.com/paper/4057741, March 25, 2019 |
[64] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA: Curran Associates Inc., 2012. 1097-1105 |
[65] |
Le Q V. Building high-level features using large scale unsupervised learning. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada: IEEE, 2013. 8595-8598 |
[66] |
Socher R, Huval B, Bath B, Manning C D, Ng A Y. Convolutional-recursive deep learning for 3D object classification. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA: Curran Associates Inc., 2012. 656-664 |
[67] |
Wu Z R, Song S R, Khosla A, Yu F, Zhang L G, Tang X O, et al. 3D shapeNets: a deep representation for volumetric shapes. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015. 1912-1920 |
[68] |
Gupta S, Girshick R, ArbelÁez P, Malik J. Learning rich features from RGB-D images for object detection and segmentation. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer-Verlag, 2014. 345-360 |
[69] |
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7):1527-1554 doi: 10.1162/neco.2006.18.7.1527 |
[70] |
Schölkopf B, Platt J, Hofmann T. Greedy layer-wise training of deep networks. In: Proceedings of the 19th International Conference on Neural Information Processing Systems. Canada: MIT Press, 2006. 153-160 |
[71] |
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324 doi: 10.1109/5.726791 |
[72] |
Williams R J, Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1989, 1(2):270-280 doi: 10.1162/neco.1989.1.2.270 |
[73] |
Girdhar R, Fouhey D F, Rodriguez M, Gupta A. Learning a predictable and generative vector representation for objects. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer-Verlag, 2016. 484-499 |
[74] |
Kar A, Hane C, Malik J. Learning a multi-view stereo machine. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017). New York, USA: Curran Associates, Inc., 2017. 364-375 |
[75] |
Wu J J, Wang Y F, Xue T F, Sun X Y, Freeman W T, Tenenbaum J B. MarrNet: 3D shape reconstruction via 2.5D sketches. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017). New York, USA: Curran Associates, Inc., 2017. 8-15 |
[76] |
Kanazawa A, Jacobs D W, Chandraker M. WarpNet: weakly supervised matching for single-view reconstruction. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 3253-3261 |
[77] |
Tulsiani S, Zhou T H, Efros A A, Malik J. Multi-view supervision for single-view reconstruction via differentiable ray consistency. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawaii, USA: IEEE, 2017. 209-217 |
[78] |
Tulsiani S. Learning Single-view 3D Reconstruction of Objects and Scenes[Ph. D. dissertation], UC Berkeley, USA, 2018 |
[79] |
Yan X C, Yang J M, Yumer E, Guo Y J, Lee H. Perspective transformer nets: learning single-view 3D object reconstruction without 3D supervision. In: Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016). New York, USA: Curran Associates, Inc., 2016. 1696-1704 |
[80] |
Gwak J Y, Choy C B, Garg A, Chandraker M, Savarese S. Weakly supervised generative adversarial networks for 3D reconstruction. arXiv preprint arXiv: 1705.10904, 2017. 263-272 |
[81] |
Rosca M, Lakshminarayanan B, Warde-Farley D, Mohamed S. Variational approaches for auto-encoding generative adversarial networks. arXiv preprint arXiv: 1706. 04987, 2017. |
[82] |
Zhu R, Galoogahi H K, Wang C Y, Lucey S. Rethinking reprojection: closing the loop for pose-aware shape reconstruction from a single image. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 57-65 |
[83] |
Liu J, Yu F, Funkhouser T. Interactive 3D modeling with a generative adversarial network. In: Proceedings of the 2017 International Conference on 3D Vision (3DV). Qingdao, China: IEEE, 2018. 126-134 |
[84] |
Wu J J, Zhang C K, Xue T F, Freeman W T, Tenenbaum J B. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016). New York, USA: Curran Associates, Inc., 2016. 82-90 |
[85] |
Gadelha M, Maji S, Wang R. 3D shape induction from 2D views of multiple objects. In: Proceedings of the 2017 International Conference on 3D Vision (3DV). Qingdao, China: IEEE, 2017. 402-411 |
[86] |
Wang P S, Liu Y, Guo Y X, Sun C Y, Tong X. O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Transactions on Graphics (TOG), 2017, 36(4): Article No. 72 |
[87] |
Sun Y B, Liu Z W, Wang Y, Sarma S E. Im2avatar: Colorful 3D reconstruction from a single image.[Online], available: https://arxiv.org/abs/1804.06375, March 25, 2019 |
[88] |
Tatarchenko M, Dosovitskiy A, Brox T. Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 2107-2115 |
[89] |
Riegler G, Ulusoys A O, Geiger A. Octnet: learning deep 3D representations at high resolutions. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawaii, USA: IEEE, 2017. 6620-6629 |
[90] |
Häne C, Tulsiani S, Malik J. Hierarchical surface prediction for 3D object reconstruction. In: Proceedings of the 2017 International Conference on 3D Vision (3DV). Qingdao, China: IEEE, 2017. 76-84 |
[91] |
Charles R Q, Su H, Mo K, Guibas L J. PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawaii, USA: IEEE, 2017. 77-85 |
[92] |
Qi C R, Yi L, Su H, Guibas L J. Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017). New York, USA: Curran Associates, Inc., 2017. 5099-5108 |
[93] |
Klokov R, Lempitsky V. Escape from cells: deep Kd-networks for the recognition of 3D point cloud models. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 863-872 |
[94] |
Newell A, Yang K Y, Deng J. Stacked hourglass networks for human pose estimation. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands: Springer, 2016. 483-499 |
[95] |
Lin C H, Kong C, Lucey S. Learning efficient point cloud generation for dense 3D object reconstruction. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, California, USA: AAAI, 2017. 3-11 |
[96] |
Pontes J K, Kong C, Sridharan S, Lucey S, Eriksson A, Fookes C. Image2mesh: A learning framework for single image 3D reconstruction.[Online], available: https://arxiv.org/abs/1711.10669v1, March 25, 2019 |
[97] |
Wang N Y, Zhang Y D, Li ZW, Fu Y W, Liu W, Jiang Y G. Pixel2mesh: Generating 3D mesh models from single rgb images.[Online], available: https://arxiv.org/abs/1804.01654v1, March 25, 2019 |
[98] |
Xiang Y, Mottaghi R, Savarese S. Beyond PASCAL: a benchmark for 3D object detection in the wild. In: Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision. Steamboat Springs, CO, USA: IEEE, 2014. 75-82 |
[99] |
Everingham M, Van Gool L, Williams C K I, Winn J, Zisserman A. The PASCAL visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2):303-338 doi: 10.1007/s11263-009-0275-4 |
[100] |
Deng J, Dong W, Socher R, Li L J, Li K, Li F F. ImageNet: a large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009. 248-255 |
[101] |
Chang A X, Funkhouser T, Guibas L, Hanrahan P, Huang Q X, Li Z M, et al. Shapenet: An information-rich 3d model repository.[Online], available: https://arxiv.org/abs/1512.03012v1, March 25, 2019 |
[102] |
Miller G A. WordNet:a lexical database for English. Communications of the ACM, 1995, 38(11):39-41 doi: 10.1145/219717.219748 |
[103] |
Song H O, Xiang Y, Jegelka S, Savarese S. Deep metric learning via lifted structured feature embedding. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 4004-4012 |
[104] |
Shilane P, Min P, Kazhdan M, Funkhouser T. The princeton shape benchmark. In: Proceedings of the 2004 Shape Modeling Applications. Genova, Italy: IEEE, 2004. 167-178 |