[1] Lee E A. Cyber-physical systems-are computing foundations adequate? Position Paper for NSF Workshop on Cyber, 2006:6-14 https://www.semanticscholar.org/paper/Cyber-Physical-Systems-Are-Computing-Foundations-Lee/7e17f766050b6847566424c0d8bf602b6099f779
[2] Cyber Physical Systems PWG. Framework for CyberPhysical Systems Release 1.0[Online], avaliable: https://s3.amazonaws.com/nist-sgcps/cpspwg/flles/pwgglobal/CPS_PWG_Framework_for_Cyber_Physical_Systems_Release_10_Final.pdf, March 21, 2018
[3] The European Union0s Seventh Framework Programme. CyPhERS. Cyber-Physical EuropeanRoadmap and Strategy[Online], avaliable: http://cyphers.eu/sites/default/flles/d6.1+2report.pdf, March 21, 2018
[4] Acatech. Living in a networked world[Online], avaliable: http://www.cyphers.eu/sites/default/flles/acatechSTUDIEagendaCPSengANSICHT.pdf, March 21, 2018
[5] Thoben K D, Wiesner S A, Wuest T. Industrie 4.0 and smart manufacturing-a review of research issues and application examples. International Journal of Automation Technology, 2017, 11(1):4-16 doi: 10.20965/ijat.2017.p0004
[6] Kagermann H, Wahlster W, Helbig J. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0: Securing the Future of German Manufacturing Industry, Final Report of the Industrie 4.0 Working Group, 2013.
[7] Weyer S, Meyer T, Ohmer M, Gorecky D, Zühlke D. Future modeling and simulation of CPS-based factories:an example from the automotive industry. IFAC-PapersOnLine, 2016, 49(31):97-102 doi: 10.1016/j.ifacol.2016.12.168
[8] Li L. China0s manufacturing locus in 2025:with a comparison of "Made-in-China 2025" and "Industry 4.0". Technological Forecasting and Social Change, 2018, 135:66-74 doi: 10.1016/j.techfore.2017.05.028
[9] Zhang Y F, Zhang G, Wang J Q, Sun S D, Si S B, Yang T. Real-time information capturing and integration framework of the internet of manufacturing things. International Journal of Computer Integrated Manufacturing, 2015, 28(8):811-822 doi: 10.1080/0951192X.2014.900874
[10] Monostori L. Cyber-physical production systems:roots, expectations and R & D challenges. Procedia CIRP, 2014, 17:9-13 doi: 10.1016/j.procir.2014.03.115
[11] Lee J, Bagheri B, Kao H A. A Cyber-Physical Systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 2015, 3:18-23 doi: 10.1016/j.mfglet.2014.12.001
[12] Wiesner S, Marilungo E, Thoben K D. Cyber-physical product-service systems-challenges for requirements engineering. International Journal of Automation Technology, 2017, 11(1):17-28 doi: 10.20965/ijat.2017.p0017
[13] Ecer G. Soziotechnisches potenzial cyber-physischer systeme. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2015, 110(3):142-144 doi: 10.3139/104.111298
[14] 姚锡凡, 练肇通, 杨屹, 张毅, 金鸿.智慧制造-面向未来互联网的人机物协同制造新模式.计算机集成制造系统, 2014, 20(6):1490-1498 http://www.cnki.com.cn/article/cjfdtotal-jsjj201406028.htm

Yao Xi-Fan, Lian Zhao-Tong, Yang Yi, Zhang Yi, Jin Hong. Wisdom manufacturing:new humans-computersthings collaborative manufacturing model. Computer Integrated Manufacturing Systems, 2014, 20(6):1490-1498 http://www.cnki.com.cn/article/cjfdtotal-jsjj201406028.htm
[15] Yao X F, Zhou J J, Lin Y Z, Li Y, Yu H N, Liu Y. Smart manufacturing based on Cyber-Physical Systems and beyond. Journal of Intelligent Manufacturing, 2017:1-13 doi: 10.1007/s10845-017-1384-5
[16] 王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 41(1):1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001

Wang Fei-Yue. Software deflned systems and knowledge automation:a parallel paradigm shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1):1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001
[17] Wang F Y. The emergence of intelligent enterprises:from CPS to CPSS. Social Learning, 2010:85-88 https://www.researchgate.net/publication/220628939_The_emergence_of_intelligent_enterprises_From_CPS_to_CPSS?_sg=rg7ekrVzyJVshX-jOc_CPJ48VpHvDBWZ456Y3V2ikh_2KYtFzZliouyq9UzMcl04NrzCWcYlFLZrsYj0lPeryg
[18] 王飞跃.从社会计算到社会制造:一场即将来临的产业革命.中国科学院院刊, 2012, 6(27):658-669 http://d.old.wanfangdata.com.cn/Periodical/zgkxyyk201206002

Wang Fei-Yue. From social computing to social manufacturing:The coming industrial revolution and new frontier in cyber-physical-social pace. Bulletin of the Chinese Academy of Sciences, 2012, 6(27):658-669 http://d.old.wanfangdata.com.cn/Periodical/zgkxyyk201206002
[19] Yao X F, Lin Y Z. Emerging manufacturing paradigm shifts for the incoming industrial revolution. The International Journal of Advanced Manufacturing Technology, 2016, 85(5-8):1665-1676 doi: 10.1007/s00170-015-8076-0
[20] Lee J, Jin C, Bagheri B. Cyber physical systems for predictive production systems. Production Engineering, 2017, 11(2):155-165 doi: 10.1007/s11740-017-0729-4
[21] Lam H Y, Ho G T S, Wu C H, Choy K L. Customer relationship mining system for efiective strategies formulation. Industrial Management and Data Systems, 2014, 114(5):711-733 doi: 10.1108/IMDS-08-2013-0329
[22] Xu Y P, Chen G X, Zheng J L. An integrated solutionKAGFM for mass customization in customer-oriented product design under cloud manufacturing environment. The International Journal of Advanced Manufacturing Technology, 2016, 84(1-4):85-101 doi: 10.1007/s00170-015-8074-2
[23] Hsiao W P, Chiu M C. A mass personalization methodology based on co-creation. Moving Integrated Product Development to Service Clouds in the Global Economy, 2014, 1:698-705 http://ebooks.iospress.nl/publication/37920
[24] Bertolotti I C, Hu T T. Modular design of an open-source, networked embedded system. Computer Standards and Interfaces, 2015, 37:41-52 doi: 10.1016/j.csi.2014.05.004
[25] Stark R, Kind S, Neumeyer S. Innovations in digital modelling for next generation manufacturing system design. CIRP Annals, 2017, 66(1):169-172 doi: 10.1016/j.cirp.2017.04.045
[26] Tan C B, Hu S J, Chung H, Barton K, Piya C, Ramani K, et al. Product personalization enabled by assembly architecture and cyber physical systems. CIRP Annals, 2017, 66(1):33-36 doi: 10.1016/j.cirp.2017.04.106
[27] Mladineo M, Veza I, Gjeldum N. Solving partner selection problem in cyber-physical production networks using the HUMANT algorithm. International Journal of Production Research, 2017, 55(9):2506-2521 doi: 10.1080/00207543.2016.1234084
[28] Wang X V, Lopez N B N, Ijomah W, Wang L H, Li J H. A smart cloud-based system for the WEEE recovery/recycling. Journal of Manufacturing Science and Engineering, 2015, 137(6):061010 doi: 10.1115/1.4030304
[29] Qiu X, Luo H, Xu G Y, Zhong R Y, Huang G Q. Physical assets and service sharing for IoT-enabled supply Hub in industrial park (SHIP). International Journal of Production Economics, 2015, 159:4-15 doi: 10.1016/j.ijpe.2014.09.001
[30] Addo-Tenkorang R, Helo P T, Kantola J. Concurrent enterprise:a conceptual framework for enterprise supplychain network activities. Enterprise Information Systems, 2017, 11(4):474-511 doi: 10.1080/17517575.2016.1212274
[31] Noseworthy J, Leeser M. E-cient communication between the embedded processor and the reconflgurable logic on an FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2008, 16(8):1083-1090 doi: 10.1109/TVLSI.2008.2000525
[32] Long Y H, Zhou Z D, Liu Q, Chen B Y, Zhou H L. Embedded-based modular NC systems. The International Journal of Advanced Manufacturing Technology, 2009, 40(7-8):749-759 doi: 10.1007/s00170-008-1384-x
[33] 徐钢, 张晓彤, 黎敏, 徐金梧.基于嵌入式CPS模型的产品质量在线管控方法.机械工程学报, 2017, 53(12):94-101 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201712012

Xu Gang, Zhang Xiao-Tong, Li Min, Xu Jin-Wu. Online monitoring and control method of product quality based on embedded cyber-physical system models. Journal of Mechanical Engineering, 2017, 53(12):94-101 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201712012
[34] Lien S Y, Liau T H, Kao C Y, Chen K C. Cooperative access class barring for machine-to-machine communications. IEEE Transactions on Wireless Communications, 2012, 11(1):27-32 doi: 10.1109/TWC.2011.111611.110350
[35] Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks:a comprehensive survey. IEEE Communications Surveys and Tutorials, 2016, 18(3):1617-1655 doi: 10.1109/COMST.2016.2532458
[36] Kamel M, Hamouda W, Youssef A. Ultra-dense networks:a survey. IEEE Communications Surveys and Tutorials, 2016, 18(4):2522-2545 doi: 10.1109/COMST.2016.2571730
[37] Gao Z, Dai L L, Mi D, Wang Z C, Imran M A, Shakir M Z. MmWave massive-MIMO-based wireless backhaul for the 5G ultra-dense network. IEEE Wireless Communications, 2015, 22(5):13-21 doi: 10.1109/MWC.2015.7306533
[38] Noura M, Nordin R. A survey on interference management for device-to-device (D2D) communication and its challenges in 5G networks. Journal of Network and Computer Applications, 2016, 71:130-150 doi: 10.1016/j.jnca.2016.04.021
[39] Farhang-Boroujeny B, Moradi H. OFDM inspired waveforms for 5G. IEEE Communications Surveys and Tutorials, 2016, 18(4):2474-2492 doi: 10.1109/COMST.2016.2565566
[40] Thembelihle D, Rossi M, Munaretto D. Softwarization of mobile network functions towards agile and energy e-cient 5G architectures: a survey. Wireless Communications and Mobile Computing, 2017, 2017: Article ID 8618364
[41] Su Z, Xu Q C. Content distribution over content centric mobile social networks in 5G. IEEE Communications Magazine, 2015, 53(6):66-72 doi: 10.1109/MCOM.2015.7120047
[42] Liang C C, Yu F R, Zhang X. Information-centric network function virtualization over 5G mobile wireless networks. IEEE Network, 2015, 29(3):68-74 doi: 10.1109/MNET.2015.7113228
[43] Liu L, Zhao S L, Yu Z L, Dai H J. A big data inspired chaotic solution for fuzzy feedback linearization model in cyber-physical systems. Ad Hoc Networks, 2015, 35:97-104 doi: 10.1016/j.adhoc.2015.07.010
[44] Venkatesan M, Arunkumar T, Prabhavathy P. A novel CpTree-based co-located classifler for big data analysis. International Journal of Communication Networks and Distributed Systems, 2015, 15(2-3):191-211
[45] 姚锡凡, 周佳军, 张存吉, 刘敏.主动制造-大数据驱动的新兴制造范式.计算机集成制造系统, 2017, 23(1):172-185 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjjczzxt201701019

Yao Xi-Fan, Zhou Jia-Jun, Zhang Cun-Ji, Liu Min. Proactive manufacturing-a big-data driven emerging manufacturing paradigm. Computer Integrated Manufacturing Systems, 2017, 23(1):172-185 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjjczzxt201701019
[46] Babiceanu R F, Seker R. Manufacturing cyber-physical systems enabled by complex event processing and big data environments: a framework for development. In: Proceedings of the 2015 Service Orientation in Holonic and MultiAgent Manufacturing. Cham: Springer, 2015, 594: 165-173
[47] Chen J H, Yang J Z, Zhou H C, Xiang H, Zhu Z H, Li Y S, et al. CPS modeling of CNC machine tool work processes using an instruction-domain based approach. Engineering, 2015, 1(2):247-260 doi: 10.15302/J-ENG-2015054
[48] Kuang L, Tang X, Yu M Q, Huang Y J, Guo K H. A comprehensive ranking model for tweets big data in online social network. EURASIP Journal on Wireless Communications and Networking, 2016, 2016:46 doi: 10.1186/s13638-016-0532-5
[49] Glaessgen E, Stargel D. The digital twin paradigm for future NASA and U.S. air force vehicles. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, Hawaii, USA: AIAA, 2012.
[50] Grieves M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication, White Paper, 2015.
[51] Ma J H, Ning H S, Huang R H, Liu H, Yang L T, Chen J J, et al. Cybermatics:a holistic fleld for systematic study of Cyber-Enabled new worlds. IEEE Access, 2015, 3:2270-2280 doi: 10.1109/ACCESS.2015.2498288
[52] Alam K M, El Saddik A. C2PS:a digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access, 2017, 5:2050-2062 doi: 10.1109/ACCESS.2017.2657006
[53] Tao F, Zhang M, Cheng J J, Qi Q L. Digital twin workshop:a new paradigm for future workshop. Computer Integrated Manufacturing Systems, 2017, 23(1):1-9
[54] Tao F, Cheng J F, Qi Q L, Zhang M, Zhang H, Sui F Y. Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 2018, 94(9-12):3563-3576 doi: 10.1007/s00170-017-0233-1
[55] Schroeder G N, Steinmetz C, Pereira C E, Espindola D B. Digital twin data modeling with automationML and a communication methodology for data exchange. IFAC-PapersOnLine, 2016, 49(30):12-17 https://www.sciencedirect.com/science/article/pii/S2405896316325538
[56] Misik S, Cela A, Bradac Z. Distributed systems-a brief review of theory and practice. IFAC-PapersOnLine, 2016, 49(25):318-323 doi: 10.1016/j.ifacol.2016.12.057
[57] Akyildiz I F, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor networks:a survey. Computer Networks, 2002, 38(4):393-422 doi: 10.1016/S1389-1286(01)00302-4
[58] Gupta R A, Chow M Y. Networked control system:overview and research trends. IEEE Transactions on Industrial Electronics, 2010, 57(7):2527-2535 doi: 10.1109/TIE.2009.2035462
[59] Mangharam R, Pajic M. Distributed control for cyberphysical systems. Journal of the Indian Institute of Science, 2013, 93(3):353-387
[60] Lu C Y, Saifullah A, Li B, Sha M, Gonzalez H, Gunatilaka D, et al. Real-time wireless sensor-actuator networks for industrial cyber-physical systems. Proceedings of the IEEE, 2016, 104(5):1013-1024 doi: 10.1109/JPROC.2015.2497161
[61] Ge X H, Yang F W, Han Q L. Distributed networked control systems:a brief overview. Information Sciences, 2017, 380:117-131 doi: 10.1016/j.ins.2015.07.047
[62] Adamson G, Wang L H, Moore P. Feature-based control and information framework for adaptive and distributed manufacturing in cyber physical systems. Journal of Manufacturing Systems, 2017, 43:305-315 doi: 10.1016/j.jmsy.2016.12.003
[63] García-Valls M, Calva-Urrego C, De La Puente J A, Alonso A. Adjusting middleware knobs to assess scalability limits of distributed cyber-physical systems. Computer Standards and Interfaces, 2017, 51:95-103 doi: 10.1016/j.csi.2016.11.003
[64] Etxeberria-Agiriano I, Calvo I, Noguero A, Zulueta E. Towards middleware-based cooperation topologies for the next generation of CPS. International Journal of Online Engineering, 2012, 8:20-27 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_6f6c1866e720cc0a852b5c3bd7b98c9a
[65] Ishizaki T, Sandberg H, Kashima K, Imura J I, Aihara K. Dissipativity-preserving model reduction for large-scale distributed control systems. IEEE Transactions on Automatic Control, 2015, 60(4):1023-1037 doi: 10.1109/TAC.2014.2370271
[66] Zarrin J, Aguiar R L, Barraca J P. Resource discovery for distributed computing systems:a comprehensive survey. Journal of Parallel and Distributed Computing, 2018, 113:127-166 doi: 10.1016/j.jpdc.2017.11.010
[67] Ren L T, Xie S S, Zhang Y, Peng J B, Zhang L D. Chattering analysis for discrete sliding mode control of distributed control systems. Journal of Systems Engineering and Electronics, 2016, 27(5):1096-1107 doi: 10.21629/JSEE.2016.05.17
[68] Cao Y C, Yu W W, Ren W, Chen G R. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Transactions on Industrial Informatics, 2013, 9(1):427-438 doi: 10.1109/TII.2012.2219061
[69] Valckenaers P, Van Brussel H, Holvoet T. Fundamentals of holonic systems and their implications for selfadaptive and self-organizing systems. In: Proceedings of the 2nd IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops. Venice, Veneto, Italy: IEEE, 2008. 168-173
[70] Barbosa J, Leit~ao P, Adam E, Trentesaux D. Dynamic self-organization in holonic multi-agent manufacturing systems:the ADACOR evolution. Computers in Industry, 2015, 66:99-111 doi: 10.1016/j.compind.2014.10.011
[71] Sanislav T, Zeadally S, Mois G, Fouchal H. Multi-agent architecture for reliable cyber-physical systems (CPS). In: Proceedings of the 2017 IEEE Symposium on Computers and Communications. Heraklion, Greece: IEEE, 2017. 170-175
[72] Taboun M S, Brennan R W. An embedded multi-agent systems based industrial wireless sensor network. Sensors, 2017, 17(9):2112 doi: 10.3390/s17092112
[73] Verma P K, Verma R, Prakash A, Agrawal A, Naik K, Tripathi R, et al. Machine-to-machine (M2M) communications:a survey. Journal of Network and Computer Applications, 2016, 66:83-105 doi: 10.1016/j.jnca.2016.02.016
[74] Xu X Y, Hua Q S. Industrial big data analysis in smart factory:current status and research strategies. IEEE Access, 2017, 5:17543-17551 doi: 10.1109/ACCESS.2017.2741105
[75] Zhang Y F, Qian C, Lv J X, Liu Y. Agent and cyberphysical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Transactions on Industrial Informatics, 2017, 13(2):737-747 doi: 10.1109/TII.2016.2618892
[76] Jiang Z Q, Jin Y, Mingcheng E, Li Q. Distributed dynamic scheduling for cyber-physical production systems based on a multi-agent system. IEEE Access, 2017, 6:1855-1869 https://www.onacademic.com/detail/journal_1000040194012310_ce3f.html
[77] Dworschak B, Zaiser H. Competences for cyber-physical systems in manufacturing-flrst flndings and scenarios. In: Proceedings of the International Conference on Digital Enterprise Technology-DET 2014 Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Revolution. Stuttgart, Germany: Elsevier, 2014. 345-350
[78] Castelli F, Michieletto S, Ghidoni S, Pagello E. A machine learning-based visual servoing approach for fast robot control in industrial setting. International Journal of Advanced Robotic Systems, 2017, 14(6):1-10 doi: 10.1177/1729881417738884
[79] Vafadar M, Behrad A. A vision based system for communicating in virtual reality environments by recognizing human hand gestures. Multimedia Tools and Applications, 2015, 74(18):7515-7535 doi: 10.1007/s11042-014-1989-z
[80] Xu T, Zhang H, Yu C. See you see me: the role of Eye contact in multimodal human-robot interaction. ACM Transactions on Interactive Intelligent Systems, 2016, 6(1): Article No. 2
[81] Rascon C, Meza I, Fuentes G, Salinas L, Pineda L A. Integration of the multi-DOA estimation functionality to human-robot interaction. International Journal of Advanced Robotic Systems, 2015, 12(2):8 doi: 10.5772/59993
[82] Alonso-Martín F, Gamboa-Montero J J, Castillo J C, Castro-GonzÁlez A, Salichs M A. Detecting and classifying Á human touches in a social robot through acoustic sensing and machine learning. Sensors, 2017, 17(5):1138 doi: 10.3390/s17051138
[83] Gastaldo P, Pinna L, Seminara L, Valle M, Zunino R. A tensor-based approach to touch modality classiflcation by using machine learning. Robotics and Autonomous Systems, 2015, 63:268-278 doi: 10.1016/j.robot.2014.09.022
[84] Cherubini A, Passama R, Fraisse P, Crosnier A. A unifled multimodal control framework for human-robot interaction. Robotics and Autonomous Systems, 2015, 70:106-115 doi: 10.1016/j.robot.2015.03.002
[85] Katona J, Kovari A. EEG-based computer control interface for brain-machine interaction. International Journal of Online Engineering, 2015, 11(6):43-48 doi: 10.3991/ijoe.v11i6.5119
[86] Saproo S, Faller J, Shih V, Sajda P, Waytowich N R, Bohannon A, et al. Cortically coupled computing:a new paradigm for synergistic human-machine interaction. Computer, 2016, 49(9):60-68 doi: 10.1109/MC.2016.294
[87] Ma J X, Zhang Y, Cichocki A, Matsuno F. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs:application to robot control. IEEE Transactions on Biomedical Engineering, 2015, 62(3):876-889 doi: 10.1109/TBME.2014.2369483
[88] Karunanayaka K, Johari N, Hariri S, Camelia H, Bielawski K S, Cheok A D. New thermal taste actuation technology for future multisensory virtual reality and internet. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(4):1496-1505 doi: 10.1109/TVCG.2018.2794073
[89] Frank J A, Krishnamoorthy S P, Kapila V. Toward mobile mixed-reality interaction with multi-robot systems. IEEE Robotics and Automation Letters, 2017, 2(4):1901-1908 doi: 10.1109/LRA.2017.2714128
[90] Esposito A, Esposito A M, Vogel C. Needs and challenges in human computer interaction for processing social emotional information. Pattern Recognition Letters, 2015, 66:41-51 doi: 10.1016/j.patrec.2015.02.013
[91] Cooney M D, Nishio S, Ishiguro H. Importance of touch for conveying afiection in a multimodal interaction with a small humanoid robot. International Journal of Humanoid Robotics, 2015, 12(1):1550002 doi: 10.1142/S0219843615500024
[92] Hossain M S, Muhammad G. Audio-visual emotion recognition using multi-directional regression and Ridgelet transform. Journal on Multimodal User Interfaces, 2016, 10(4):325-333 doi: 10.1007/s12193-015-0207-2
[93] Matsas E, Vosniakos G C, Batras D. Prototyping proactive and adaptive techniques for human-robot collaboration in manufacturing using virtual reality. Robotics and Computer-Integrated Manufacturing, 2018, 50:168-180 doi: 10.1016/j.rcim.2017.09.005
[94] Mancisidor A, Zubizarreta A, Cabanes I, Portillo E, Jung J H. Virtual sensors for advanced controllers in rehabilitation robotics. Sensors, 2018, 18(3):785 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876757/
[95] Tabbache B, Benbouzid M E H, Kheloui A, Bourgeot J M. Virtual-sensor-based maximum-likelihood voting approach for fault-tolerant control of electric vehicle powertrains. IEEE Transactions on Vehicular Technology, 2013, 62(3):1075-1083 doi: 10.1109/TVT.2012.2230200
[96] Brizzi F, Peppoloni L, Graziano A, Di Stefano E, Avizzano C A, Rufialdi E. Efiects of augmented reality on the performance of teleoperated industrial assembly tasks in a robotic embodiment. IEEE Transactions on HumanMachine Systems, 2018, 48(2):197-206 doi: 10.1109/THMS.2017.2782490
[97] Soete N, Claeys A, Hoedt S, Mahy B, Cottyn J. Towards mixed reality in SCADA applications. IFAC-PapersOnLine, 2015, 48(3):2417-2422
[98] Wang X V, KemÉny Z, VÁncza J, Wang L H. Human-robot collaborative assembly in cyber-physical production:classiflcation framework and implementation. CIRP Annals, 2017, 66(1):5-8 doi: 10.1016/j.cirp.2017.04.101
[99] Hu W L, Akash K, Jain N, Reid T. Real-time sensing of trust in human-machine interactions. IFAC-PapersOnLine, 2016, 49(32):48-53 doi: 10.1016/j.ifacol.2016.12.188
[100] Rezazadegan F, Geng J, Ghirardi M, Menga G, MurÉ S, Camuncoli G, et al. Risked-based design for the physical human-robot interaction (pHRI):an overview. Chemical Engineering Transactions, 2015, 43:1249-1254 https://iris.polito.it/handle/11583/2626949#.XMU-XPmfCPI
[101] Peng G, Zhou G, Nguyen D T, Qi X, Yang Q, Wang S Q. Continuous authentication with touch behavioral biometrics and voice on wearable glasses. IEEE Transactions on Human-Machine Systems, 2017, 47(3):404-416 doi: 10.1109/THMS.2016.2623562
[102] 沈苏彬, 范曲立, 宗平, 毛燕琴, 黄维.物联网的体系结构与相关技术研究.南京邮电大学学报(自然科学版), 2009, 29(6):1-11 doi: 10.3969/j.issn.1673-5439.2009.06.001

Shen Su-Bin, Fan Qu-Li, Zong Ping, Mao Yan-Qin, Huang Wei. Study on the architecture and associated technologies for internet of things. Journal of Nanjing University of Posts and Telecommunications (Nature Science), 2009, 29(6):1-11 doi: 10.3969/j.issn.1673-5439.2009.06.001
[103] Kafle V P, Fukushima Y, Harai H. Internet of things standardization in ITU and prospective networking technologies. IEEE Communications Magazine, 2016, 54(9):43-49 https://ieeexplore.ieee.org/abstract/document/7565271
[104] Vermesan O, Friess P, Guillemin P, Gusmeroli S, Sundmaeker H, Bassi A, et al. Internet of Things Strategic Research Roadmap. The Cluster of European Research Projects, Technical Report, 2009.
[105] 温家宝. 2010年政府工作报告[Online], avaliable: , 2018年5月25日

Wen Jia-Bao. Report on Government Work[Online], avaliable: http://www.gov.cn/2010lh/content1555767.htm, May 252018
[106] Romaniuk R S. IoT-review of critical issues. International Journal of Electronics and Telecommunications, 2018, 64(1):95-102 http://journals.pan.pl/Content/102764/PDF/IJET_1_2018_15_1210.pdf
[107] Ma H D. Internet of things:objectives and scientiflc challenges. Journal of Computer Science and Technology, 2011, 26(6):919-924 doi: 10.1007/s11390-011-1189-5
[108] Cheng B, Zhu D, Zhao S, Chen J L. Situation-aware IoT service coordination using the event-driven SOA paradigm. IEEE Transactions on Network and Service Management, 2016, 13(2):349-361 doi: 10.1109/TNSM.2016.2541171
[109] Shokrollahi S, Shams F. Rich Device-Services (RDS):a service-oriented approach to the internet of things (IoT). Wireless Personal Communications, 2017, 97(2):3183-3201 doi: 10.1007/s11277-017-4669-2
[110] Batalla J M, Gajewski M, Latoszek W, Krawiec P, Mavromoustakis C X, Mastorakis G. ID-based service-oriented communications for unifled access to IoT. Computers and Electrical Engineering, 2016, 52:98-113 doi: 10.1016/j.compeleceng.2016.02.020
[111] Binu A, Kumar G S. Virtualization techniques: a methodical review of XEN and KVM. In: Proceedings of the 1st International Conference on Advances in Computing and Communications. Kochi, India: Springer Verlag, 2011. 399-410
[112] Ahmad R W, Gani A, Hamid S H A, Shiraz M, Yousafzai A, Xia F. A survey on virtual machine migration and server consolidation frameworks for cloud data centers. Journal of Network and Computer Applications, 2015, 52:11-25 doi: 10.1016/j.jnca.2015.02.002
[113] Manohar N. A survey of virtualization techniques in cloud computing. In: Proceedings of the 2013 International Conference on VLSI, Communication, Advanced Devices, Signals and Systems and Networking. Bengaluru, Karnataka, India: Springer Verlag, 2013. 461-470
[114] Mell P, Grance T:The NIST Deflnition of Cloud Computing:Recommendations of the National Institute of Standards and Technology. Nova Science Publishers, Inc, USA, 2012. 97-101
[115] Morariu O, Borangiu T, Raileanu S. VMES:virtualization aware manufacturing execution system. Computers in Industry, 2015, 67:27-37 doi: 10.1016/j.compind.2014.11.003
[116] Shu Z G, Wan J F, Zhang D Q, Li D. Cloud-integrated cyber-physical systems for complex industrial applications. Mobile Networks and Applications, 2016, 21(5):865-878 doi: 10.1007/s11036-015-0664-6
[117] Li D, Tang H, Wang S Y, Liu C L. A big data enabled loadbalancing control for smart manufacturing of industry 4.0. Cluster Computing, 2017, 20(2):1855-1864 doi: 10.1007/s10586-017-0852-1
[118] Dehury C K, Sahoo P K. Design and implementation of a novel service management framework for IoT devices in cloud. Journal of Systems and Software, 2016, 119:149-161 doi: 10.1016/j.jss.2016.06.059
[119] Mourtzis D, Vlachou E. Cloud-based cyber-physical systems and quality of services. The TQM Journal, 2016, 28(5):704-733 doi: 10.1108/TQM-10-2015-0133
[120] Colombo A W, Bangemann T, Karnouskos S, Delsing J, Stluka P, Harrison R, et al. Industrial Cloud-Based CyberPhysical Systems:The IMC-AESOP Approach. Switzerland:Springer International Publishing, 2014.
[121] Wang P, Gao R X, Fan Z Y. Cloud computing for cloud manufacturing:beneflts and limitations. Journal of Manufacturing Science and Engineering, 2015, 137(4):040901 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c946c96245a3b8f84df392232be9dc0d
[122] MezgÁr I, Rauschecker U. The challenge of networked enterprises for cloud computing interoperability. Computers in Industry, 2014, 65(4):657-674 doi: 10.1016/j.compind.2014.01.017
[123] Hu P F, Dhelim S, Ning H S, Qiu T. Survey on fog computing:architecture, key technologies, applications and open issues. Journal of Network and Computer Applications, 2017, 98:27-42 doi: 10.1016/j.jnca.2017.09.002
[124] Kumar V S, Marathe M V, Parthasarathy S, Srinivasan A. Distributed algorithms for end-to-end packet scheduling in wireless ad hoc networks. ACM Transactions on Algorithms, 2016, 12(3): Article No. 28 https://www.researchgate.net/publication/301646415_Distributed_Algorithms_for_End-to-End_Packet_Scheduling_in_Wireless_Ad_Hoc_Networks
[125] El-Sayed H, Sankar S, Prasad M, Puthal D, Gupta A, Mohanty M, et al. Edge of things:the big picture on the integration of edge, IoT and the cloud in a distributed computing environment. IEEE Access, 2017, 6:1706-1717 https://www.researchgate.net/publication/321638174_Edge_of_Things_The_Big_Picture_on_the_Integration_of_Edge_IoT_and_the_Cloud_in_a_Distributed_Computing_Environment
[126] Osanaiye O, Chen S, Yan Z, Lu R X, Choo K K R, Dlodlo M. From cloud to fog computing:a review and a conceptual live VM migration framework. IEEE Access, 2017, 5:8284-8300 doi: 10.1109/ACCESS.2017.2692960
[127] Wu D Z, Liu S P, Zhang L, Terpenny J, Gao R X, Kurfess T, et al. A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing. Journal of Manufacturing Systems, 2017, 43:25-34 doi: 10.1016/j.jmsy.2017.02.011
[128] Georgakopoulos D, Jayaraman P P, Fazia M, Villari M, Ranjan R. Internet of things and edge cloud computing roadmap for manufacturing. IEEE Cloud Computing, 2016, 3(4):66-73 doi: 10.1109/MCC.2016.91
[129] Vilalta R, Lopez V, Giorgetti A, Peng S P, Orsini V, Velasco L, et al. TelcoFog:a unifled flexible fog and cloud computing architecture for 5G networks. IEEE Communications Magazine, 2017, 55(8):36-43 doi: 10.1109/MCOM.2017.1600838
[130] Yang P, Zhang N, Bi Y G, Yu L, Shen X S. Catalyzing cloud-fog interoperation in 5G wireless networks:an SDN approach. IEEE Network, 2017, 31(5):14-20 doi: 10.1109/MNET.2017.1600078
[131] Nakamoto S. Bitcoin: a peer-to-peer electronic cash system[Online], available: https://bitcoin.org/bitcoin.pdf, April 2, 2018
[132] Gomber P, Kaufiman R J, Parker C, Weber B W. On the flntech revolution:interpreting the forces of innovation, disruption, and transformation in flnancial services. Journal of Management Information Systems, 2018, 35(1):220-265 doi: 10.1080/07421222.2018.1440766
[133] Nordrum A. Govern by blockchain dubai wants one platform to rule them all, while Illinois will try anything. IEEE Spectrum, 2017, 54(10):54-55 doi: 10.1109/MSPEC.2017.8048841
[134] Kang J W, Yu R, Huang X M, Maharjan S, Zhang Y, Hossain E. Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains. IEEE Transactions on Industrial Informatics, 2017, 13(6):3154-3164 doi: 10.1109/TII.2017.2709784
[135] Zhang J, Xue N, Huang X. A secure system for pervasive social network-based healthcare. IEEE Access, 2016, 4:9239-9250 doi: 10.1109/ACCESS.2016.2645904
[136] Li Z, Wang W M, Liu G, Liu L, He J D, Huang G Q. Toward open manufacturing:a cross-enterprises knowledge and services exchange framework based on blockchain and edge computing. Industrial Management and Data Systems, 2018, 118(1):303-320 doi: 10.1108/IMDS-04-2017-0142
[137] 袁勇, 王飞跃.区块链技术发展现状与展望.自动化学报, 2016, 42(4):481-494 http://www.aas.net.cn/CN/abstract/abstract18837.shtml

Yuan Yong, Wang Fei-Yue. Blockchain:the state of the art and future trends. Acta Automatica Sinica, 2016, 42(4):481-494 http://www.aas.net.cn/CN/abstract/abstract18837.shtml
[138] 袁勇, 周涛, 周傲英, 段永朝, 王飞跃.区块链技术:从数据智能到知识自动化.自动化学报, 2017, 43(9):1485-1490 http://www.aas.net.cn/CN/abstract/abstract19125.shtml

Yuan Yong, Zhou Tao, Zhou Ao-Ying, Duan Yong-Chao, Wang Fei-Yue. Blockchain technology:from data intelligence to knowledge automation. Acta Automatica Sinica, 2017, 43(9):1485-1490 http://www.aas.net.cn/CN/abstract/abstract19125.shtml
[139] Petersen M, Hackius N, Kersten W. Blockchain for manufacturing and logistics:basics, beneflts, and use cases. ZWF Zeitschrift für Wirtschaftlichen Fabrikbetrieb, 2016, 111(10):626-629 doi: 10.3139/104.111603
[140] Preuveneers D, Joosen W, Ilie-Zudor E. Trustworthy datadriven networked production for customer-centric plants. Industrial Management and Data Systems, 2017, 117(10):2305-2324 doi: 10.1108/IMDS-10-2016-0419
[141] Huckle S, White M. Socialism and the blockchain. Future Internet, 2016, 8(4):49 doi: 10.3390/fi8040049
[142] Atzori L, Iera A, Morabito G, Nitti M. The social internet of things (SIoT)-when social networks meet the internet of things:concept, architecture and network characterization. Computer Networks, 2012, 56(16):3594-3608 doi: 10.1016/j.comnet.2012.07.010
[143] 王飞跃, 王晓, 袁勇, 王涛, 林懿伦.社会计算与计算社会:智慧社会的基础与必然.科学通报, 2015, 60(5-6):460-469 http://d.old.wanfangdata.com.cn/Periodical/fzxtyfzxkx200404002

Wang Fei-Yue, Wang Xiao, Yuan Yong, Wang Tao, Lin YiLun. Social computing and computational societies:the foundation and consequence of smart societies. Chinese Science Bulletin, 2015, 60(5-6):460-469 http://d.old.wanfangdata.com.cn/Periodical/fzxtyfzxkx200404002
[144] Chen Z K, Ling R C, Huang C M, Zhu X. A scheme of access service recommendation for the social internet of things. International Journal of Communication Systems, 2016, 29(4):694-706 doi: 10.1002/dac.v29.4
[145] Shen H Y, Liu J W, Chen K, Liu J W, Moyer S. SCPS:a social-aware distributed cyber-physical human-centric search engine. IEEE Transactions on Computers, 2015, 64(2):518-532 doi: 10.1109/TC.2013.211
[146] Ahmad A, Paul A, Rathore M M, Chang H. Smart cyber society:integration of capillary devices with high usability based on cyber-physical system. Future Generation Computer Systems, 2016, 56:493-503 doi: 10.1016/j.future.2015.08.004
[147] Ding K, Jiang P Y. Social Sensors (S2ensors):a kind of hardware-software-integrated mediators for social manufacturing systems under mass individualization. Chinese Journal of Mechanical Engineering, 2017, 30(5):1150-1161 doi: 10.1007/s10033-017-0167-4
[148] Milgram S. The small world problem. Psychology Today, 1967, 2(1):60-67 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1305.0513
[149] 姚锡凡, 张剑铭, Lin Ying-Zi.智慧制造系统的基础理论与技术体系.系统工程理论与实践, 2016, 36(10):2699-2711 doi: 10.12011/1000-6788(2016)10-2699-13

Yao Xi-Fan, Zhang Jian-Ming, Lin Ying-Zi. The basic theory and technical framework for wisdom manufacturing systems. Systems Engineering Theory and Practice, 2016, 36(10):2699-2711 doi: 10.12011/1000-6788(2016)10-2699-13
[150] Szolnoki A, Xie N G, Ye Y, Perc M. Evolution of emotions on networks leads to the evolution of cooperation in social dilemmas. Physical Review E, 2013, 87(4):042805 doi: 10.1103/PhysRevE.87.042805
[151] Ang J H, Goh C, Li Y. Smart design for ships in a smart product through-life and industry 4.0 environment. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation. Vancouver, BC, Canada: IEEE, 2016. 5301-5308
[152] Lou S H, Feng Y X, Tian G D, Lv Z H, Li Z W, Tan J R. A cyber-physical system for product conceptual design based on an intelligent psycho-physiological approach. IEEE Access, 2017, 5:5378-5387 doi: 10.1109/ACCESS.2017.2686986
[153] Galambos P, Csapó A, Zentay P, Fülöp I M, Haidegger T, Baranyi P, et al. Design, programming and orchestration of heterogeneous manufacturing systems through VRpowered remote collaboration. Robotics and ComputerIntegrated Manufacturing, 2015, 33:68-77 doi: 10.1016/j.rcim.2014.08.012
[154] Berg L P, Vance J M. An industry case study:investigating early design decision making in virtual reality. Journal of Computing and Information Science in Engineering, 2016, 17(1):011001 doi: 10.1115/1.4034267
[155] Carulli M, Bordegoni M, Cugini U. An approach for capturing the voice of the customer based on virtual prototyping. Journal of Intelligent Manufacturing, 2013, 24(5):887-903 doi: 10.1007/s10845-012-0662-5
[156] Doshi A, Smith R T, Thomas B H, Bouras C. Use of projector based augmented reality to improve manual spotwelding precision and accuracy for automotive manufacturing. The International Journal of Advanced Manufacturing Technology, 2017, 89(5-8):1279-1293 doi: 10.1007/s00170-016-9164-5
[157] Cheng F T, Tieng H, Yang H C, Hung M H, Lin Y C, Wei C F, et al. Industry 4.1 for wheel machining automation. IEEE Robotics and Automation Letters, 2016, 1(1):332-339 doi: 10.1109/LRA.2016.2517208
[158] Putman N M, Maturana F, Barton K, Tilbury D M. Virtual fusion:a hybrid environment for improved commissioning in manufacturing systems. International Journal of Production Research, 2017, 55(21):6254-6265 doi: 10.1080/00207543.2017.1334974
[159] Mourtzis D, Vlachou A, Zogopoulos V. Cloud-based augmented reality remote maintenance through shop-floor monitoring:a product-service system approach. Journal of Manufacturing Science and Engineering, 2017, 139(6):061011 doi: 10.1115/1.4035721
[160] Liu C, Cao S, Tse W, Xu X. Augmented reality-assisted intelligent window for cyber-physical machine tools. Journal of Manufacturing Systems, 2017, 44:280-286 doi: 10.1016/j.jmsy.2017.04.008
[161] Turner C J, Hutabarat W, Oyekan J, Tiwari A. Discrete event simulation and virtual reality use in industry:new opportunities and future trends. IEEE Transactions on Human-Machine Systems, 2016, 46(6):882-894 doi: 10.1109/THMS.2016.2596099
[162] Fainshmidt S, Frazier M L. What facilitates dynamic capabilities? The role of organizational climate for trust. Long Range Planning, 2017, 50(5):550-566 doi: 10.1016/j.lrp.2016.05.005
[163] Luo N, Zhang M L, Hu M, Wang Y. How community interactions contribute to harmonious community relationships and customers0 identiflcation in online brand community. International Journal of Information Management, 2016, 36(5):673-685 doi: 10.1016/j.ijinfomgt.2016.04.016
[164] Wang B, Childerhouse P, Kang Y F, Huo B F, Mathrani S. Enablers of supply chain integration:interpersonal and interorganizational relationship perspectives. Industrial Management and Data Systems, 2016, 116(4):838-855 doi: 10.1108/IMDS-09-2015-0403
[165] Pticek M, Podobnik V, Jezic G. Beyond the internet of things: the social networking of machines. International Journal of Distributed Sensor Networks, 2016, 2016: Article ID 8178417
[166] Ding K, Jiang P Y, Su S L. RFID-enabled social manufacturing system for inter-enterprise monitoring and dispatching of integrated production and transportation tasks. Robotics and Computer-Integrated Manufacturing, 2018, 49:120-133 doi: 10.1016/j.rcim.2017.06.009
[167] Leng J W, Jiang P Y. Mining and matching relationships from interaction contexts in a social manufacturing paradigm. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(2):276-288 https://ieeexplore.ieee.org/abstract/document/7747452
[168] Chen L J, Feldmann A, Tang O. The relationship between disclosures of corporate social performance and flnancial performance:evidences from GRI reports in manufacturing industry. International Journal of Production Economics, 2015, 170:445-456 doi: 10.1016/j.ijpe.2015.04.004
[169] Jiang P Y, Ding K, Leng J W. Towards a cyberphysical-social-connected and service-oriented manufacturing paradigm:social manufacturing. Manufacturing Letters, 2016, 7:15-21 doi: 10.1016/j.mfglet.2015.12.002
[170] Ye J M. Optimization path of industrial real estate development under the mass entrepreneurship and innovation environment. Boletin Tecnico, 2017, 55(14):231-235 http://boletintecnico.com/index.php/bt/article/view/1353
[171] Yoo B, Ko H, Chun S. Prosumption perspectives on additive manufacturing:reconflguration of consumer products with 3D printing. Rapid Prototyping Journal, 2016, 22(4):691-705 doi: 10.1108/RPJ-01-2015-0004
[172] Yang C, Lan S L, Shen W M, Huang G Q, Wang X B, Lin T Y. Towards product customization and personalization in IoT-enabled cloud manufacturing. Cluster Computing, 2017, 20(2):1717-1730 doi: 10.1007/s10586-017-0767-x
[173] Patel P, Intizar Ali M, Sheth A. On using the intelligent edge for IoT analytics. IEEE Intelligent Systems, 2017, 32(5):64-69 doi: 10.1109/MIS.2017.3711653
[174] Thames L, Schaefer D. Software-deflned cloud manufacturing for industry 4.0. Procedia CIRP, 2016, 52:12-17 doi: 10.1016/j.procir.2016.07.041
[175] Calvo I, López F, Zulueta E, GonzÁlez-Nalda P. Towards a methodology to build virtual reality manufacturing systems based on free open software technologies. International Journal on Interactive Design and Manufacturing, 2017, 11(3):569-580 doi: 10.1007/s12008-016-0311-x
[176] Weber A. GE "predix" the future of manufacturing. Assembly, 2017, 60(3):GE70-GE76
[177] Trappey A J C, Trappey C V, Govindarajan U H, Sun J J, Chuang A C. A review of technology standards and patent portfolios for enabling cyber-physical systems in advanced manufacturing. IEEE Access, 2016, 4:7356-7382 doi: 10.1109/ACCESS.2016.2619360
[178] Jirkovsky V, Obitko M, Marik V. Understanding data heterogeneity in the context of cyber-physical systems integration. IEEE Transactions on Industrial Informatics, 2017, 13(2):660-667 doi: 10.1109/TII.2016.2596101
[179] Guan Y Q, Ji Z J, Zhang L, Wang L. Controllability of heterogeneous multi-agent systems under directed and weighted topology. International Journal of Control, 2016, 89(5):1009-1024 doi: 10.1080/00207179.2015.1110756
[180] Sztipanovits J, Koutsoukos X, Karsai G, Kottenstette N, Antsaklis P, Gupta V, et al. Toward a science of cyberphysical system integration. Proceedings of the IEEE, 2012, 100(1):29-44 https://www.researchgate.net/publication/220473367_Toward_a_Science_of_Cyber-Physical_System_Integration?citationList=incoming
[181] Chen T S, Du Z D, Sun N H, Wang J, Wu C Y, Chen Y J, et al. DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-learning. In: Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems. Salt Lake City, UT, USA: ACM, 2014. 269-284 https://www.researchgate.net/publication/261845797_DianNao_A_Small-Footprint_High-Throughput_Accelerator_for_Ubiquitous_Machine-Learning
[182] Luo T, Liu S L, Li L, Wang Y Q, Zhang S J, Chen T S, et al. DaDianNao:a neural network supercomputer. IEEE Transactions on Computers, 2017, 66(1):73-88 https://www.researchgate.net/publication/303695762_DaDianNao_A_Neural_Network_Supercomputer
[183] Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, et al. TrueNorth:design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(10):1537-1557 doi: 10.1109/TCAD.2015.2474396
[184] Cavallo F, Semeraro F, Fiorini L, Magyar G, Sin·cÁk P, Dario P. Emotion modelling for social robotics applications:a review. Journal of Bionic Engineering, 2018, 15(2):185-203 doi: 10.1007/s42235-018-0015-y
[185] Hui T K L, Sherratt R S. Towards disappearing user interfaces for ubiquitous computing:human enhancement from sixth sense to super senses. Journal of Ambient Intelligence and Humanized Computing, 2017, 8(3):449-465 doi: 10.1007/s12652-016-0409-9
[186] Tian Y H, Chen X L, Xiong H K, Li H L, Dai L R, Chen J, et al. Towards human-like and transhuman perception in AI 2.0:a review. Frontiers of Information Technology and Electronic Engineering, 2017, 18(1):58-67 doi: 10.1631/FITEE.1601804
[187] Bu T Z, Xiao T X, Yang Z W, Liu G X, Fu X P, Nie J H, et al. Stretchable triboelectric-photonic smart skin for tactile and gesture sensing. Advanced Materials, 2018, 30(16):1800066 doi: 10.1002/adma.v30.16
[188] Persaud K C. Towards bionic noses. Sensor Review, 2017, 37(2):165-171 doi: 10.1108/SR-10-2016-0238
[189] 邓良辰, 刘艳丽, 余贻鑫, 柏天缘.考虑故障处理全过程的配电网信息物理系统可靠性评估.电力自动化设备, 2017, 37(12):22-29 http://d.old.wanfangdata.com.cn/Periodical/dlzdhsb201712005

Deng Liang-Chen, Liu Yan-Li, Yu Yi-Xin, Bai Tian-Yuan. Reliability assessment of distribution network CPS considering whole fault processing. Electric Power Automation Equipment, 2017, 37(12):22-29 http://d.old.wanfangdata.com.cn/Periodical/dlzdhsb201712005
[190] Sajid A, Abbas H, Saleem K. Cloud-assisted IoT-based SCADA systems security:a review of the state of the art and future challenges. IEEE Access, 2016, 4:1375-1384 doi: 10.1109/ACCESS.2016.2549047
[191] Styugin M. Establishing systems secure from research with implementation in encryption algorithms. International Journal of Network Security, 2018, 20(1):35-40 http://ijns.femto.com.tw/contents/ijns-v20-n1/ijns-2018-v20-n1-p35-40.pdf
[192] Coutinho M, de Oliveira Albuquerque R, Borges F, Villalba L J G, Kim T H. Learning perfectly secure cryptography to protect communications with adversarial neural cryptography. Sensors, 2018, 18(5):1306 doi: 10.3390/s18051306
[193] Lee W, Kim N. Security policy scheme for an e-cient security architecture in software-deflned networking. Information, 2017, 8:65 doi: 10.3390/info8020065
[194] Khan M A, Salah K. IoT security:review, blockchain solutions, and open challenges. Future Generation Computer Systems, 2018, 82:395-411 doi: 10.1016/j.future.2017.11.022
[195] De Graaf M M A. An ethical evaluation of human-robot relationships. International Journal of Social Robotics, 2016, 8(4):589-598 doi: 10.1007/s12369-016-0368-5
[196] Pagallo U. When morals ain0t enough:robots, ethics, and the rules of the law. Minds and Machines, 2017, 27(4):625-638 doi: 10.1007/s11023-017-9418-5