[1] World Health Organization. Cardiovascular diseases (CVDs)[Online], available:http://www.who.int/mediacentre/factsheets/fs317/en/, November 3, 2017.
[2] Gasparyan A Y. Cardiovascular Risk Factor. Rijeka, Croatia:InTech, 2012. 1-102
[3] Friedman C, Kra P, Rzhetsky A. Two biomedical sublanguages:a description based on the theories of Zellig Harris. Journal of Biomedical Informatics, 2002, 35(4):222-235 doi: 10.1016/S1532-0464(03)00012-1
[4] Stubbs A, Uzuner Ö. Annotating risk factors for heart disease in clinical narratives for diabetic patients. Journal of Biomedical Informatics, 2015, 58(S):S78-S91 http://www.sciencedirect.com/science/article/pii/S1532046415000891
[5] Marcus M P, Marcinkiewicz M A, Santorini B. Building a large annotated corpus of English:the Penn Treebank. Computational linguistics, 1993, 19(2):313-330 http://portal.acm.org/citation.cfm?id=972475
[6] Kim J D, Ohta T, Tateisi Y, Tsujii J. GENIA corpus-semantically annotated corpus for bio-textmining. Bioinformatics, 2003, 19(S1):i180-i182 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005822068
[7] Uzuner Ö, Goldstein I, Luo Y, Kohane I. Identifying patient smoking status from medical discharge records. Journal of the American Medical Informatics Association, 2008, 15(1):14-24 doi: 10.1197/jamia.M2408
[8] Uzuner Ö. Recognizing obesity and comorbidities in sparse data. Journal of the American Medical Informatics Association, 2009, 16(4):561-570 doi: 10.1197/jamia.M3115
[9] Uzuner Ö, Solti I, Cadag E. Extracting medication information from clinical text. Journal of the American Medical Informatics Association, 2010, 17(5):514-518 doi: 10.1136/jamia.2010.003947
[10] Uzuner Ö, South B R, Shen S Y, DuVall S L. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. Journal of the American Medical Informatics Association, 2011, 18(5):552-556 doi: 10.1136/amiajnl-2011-000203
[11] Sun W Y, Rumshisky A, Uzuner Ö. Evaluating temporal relations in clinical text:2012 i2b2 Challenge. Journal of the American Medical Informatics Association, 2013, 20(5):806-813 doi: 10.1136/amiajnl-2013-001628
[12] Pradhan S, Elhadad N, South B R, Martinez D, Christensen L, Vogel A, Suominen H, Chapman W W, Savova G. Evaluating the state of the art in disorder recognition and normalization of the clinical narrative. Journal of the American Medical Informatics Association, 2015, 22(1):143-154 doi: 10.1136/amiajnl-2013-002544
[13] Meystre S M, Kim Y, Gobbel G T, Matheny M E, Redd A, Bray B E, Garvin J H. Congestive heart failure information extraction framework for automated treatment performance measures assessment. Journal of the American Medical Informatics Association, 2017, 24(e1):e40-e46 http://jamia.oxfordjournals.org/content/early/2016/07/12/jamia.ocw097
[14] Ford E, Carroll J A, Smith H E, Scott D, Cassell J A. Extracting information from the text of electronic medical records to improve case detection:a systematic review. Journal of the American Medical Informatics Association, 2016, 23(5):1007-1015 doi: 10.1093/jamia/ocv180
[15] Styler IV W F, Bethard S, Finan S, Palmer M, Pradhan S, de Groen P C, Erickson B, Miller T, Lin C, Savova G, Pustejovsky J. Temporal annotation in the clinical domain. Transactions of the Association for Computational Linguistics, 2014, 2:143-154 doi: 10.1162/tacl_a_00172
[16] Bethard S, Savova G, Chen W T, Derczynski L, Pustejovsky J, Verhagen M. Semeval-2016 task 12:clinical tempeval. In:Proceedings of the 2016 SemEval. San Diego, USA:SemEval, 2016. 1052-1062
[17] Roberts A, Gaizauskas R, Hepple M, Demetriou G, Guo Y, Setzer A. Semantic annotation of clinical text:the CLEF corpus. In:Proceedings of the 2008 LREC Workshop on Building and Evaluating Resources for Biomedical Text Mining. Marrakech, Morocco:LREC, 2008. 19-26
[18] Rink B, Harabagiu S, Roberts K. Automatic extraction of relations between medical concepts in clinical texts. Journal of the American Medical Informatics Association, 2011, 18(5):594-600 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3168312
[19] Quan H D, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi J C, Saunders L D, Beck CA, Feasby T E, Ghali W A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Medical Care, 2005, 43(11):1130-1139 doi: 10.1097/01.mlr.0000182534.19832.83
[20] Stearns M Q, Price C, Spackman K A, Wang A Y. SNOMED clinical terms:overview of the development process and project status. In:Proceedings of the 2001 AMIA Symposium. Washington DC, USA:AMIA, 2001. 662-666
[21] Bodenreider O. The unified medical language system (UMLS):integrating biomedical terminology. Nucleic Acids Research, 2004, 32(S1):D267-D270 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2245702
[22] 杨锦锋, 于秋滨, 关毅, 蒋志鹏.电子病历命名实体识别和实体关系抽取研究综述.自动化学报, 2014, 40 (8):1537-1562 http://www.aas.net.cn/CN/abstract/abstract18425.shtml

Yang Jin-Feng, Yu Qiu-Bin, Guan Yi, Jiang Zhi-Peng. An overview of research on electronic medical record oriented named entity recognition and entity relation extraction. Acta Automatica Sinica, 2014, 40(8):1537-1562 http://www.aas.net.cn/CN/abstract/abstract18425.shtml
[23] Lei J B. Named Entity Recognition in Chinese Clinical Text[Ph.D. dissertation], The University of Texas, USA, 2014.
[24] Xu Y, Wang Y, Liu T, Liu J, Fan Y, Qian Y. Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries. Journal of the American Medical Informatics Association, 2014, 21(e1):e84-e92 doi: 10.1136/amiajnl-2013-001806
[25] Wang H, Zhang W D, Zeng Q, Li Z F, Feng K Y, Liu L. Extracting important information from Chinese Operation Notes with natural language processing methods. Journal of Biomedical Informatics, 2014, 48:130-136 doi: 10.1016/j.jbi.2013.12.017
[26] Wu Y H, Jiang M, Lei J B, Xu H. Named entity recognition in Chinese clinical text using deep neural network. Studies in Health Technology & Informatics, 2015, 216:624-628 http://europepmc.org/articles/PMC4624324
[27] Lei J B, Tang B Z, Lu X Q, Gao K H, Jiang M, Xu H. A comprehensive study of named entity recognition in Chinese clinical text. Journal of the American Medical Informatics Association, 2014, 21(5):808-814 doi: 10.1136/amiajnl-2013-002381
[28] Wang Y Q, Yu Z H, Chen L, Chen Y H, Liu Y G, Hu X G. Supervised methods for symptom name recognition in free-text clinical records of traditional Chinese medicine:an empirical study. Journal of Biomedical Informatics, 2014, 47:91-104 doi: 10.1016/j.jbi.2013.09.008
[29] Stubbs A, Kotfila C, Xu H, Uzuner Ö. Identifying risk factors for heart disease over time:overview of 2014 i2b2/UTHealth shared task Track 2. Journal of Biomedical Informatics, 2015, 58(S):S67-S77 http://www.sciencedirect.com/science/article/pii/S1532046415001409
[30] World Heart Federation. Cardiovascular disease risk factors[Online], available:https://www.world-heart-federation.org/resources/risk-factors/, March 28, 2017.
[31] Tesseract[Online], available:https://github.com/tesseract-ocr, November 3, 2017.
[32] Artstein R, Poesio M. Inter-coder agreement for computational linguistics. Computational Linguistics, 2008, 34(4):555-596 doi: 10.1162/coli.07-034-R2
[33] Chen T Q, Guestrin C. Xgboost:a scalable tree boosting system. In:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA:ACM, 2016. 785-794