[1] |
Hutchinson S, Hager G D, Corke P I. A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 1996, 12(5):651-670 doi: 10.1109/70.538972 |
[2] |
Malis E, Chaumette F, Boudet S. 2-1/2-D visual servoing. IEEE Transactions on Robotics and Automation, 1999, 15(2):238-250 doi: 10.1109/70.760345 |
[3] |
Malis E, Chaumette F. 2-1/2 D visual servoing with respect to unknown objects through a new estimation scheme of camera displacement. International Journal of Computer Vision, 2000, 37(1):79-97 http://dl.acm.org/citation.cfm?id=351548 |
[4] |
Hashimoto K. A review on vision-based control of robot manipulators. Advanced Robotics, 2003, 17(10):969-991 doi: 10.1163/156855303322554382 |
[5] |
Kragic D, Christensen H I. A framework for visual servoing. In:Computer Vision Systems, Lecture Notes in Computer Science, Vol. 2626. Berlin, Heidelberg:Springer, 2003. 345-354 |
[6] |
Gans N R, Hutchinson S A, Corke P I. Performance tests for visual servo control systems, with application to partitioned approaches to visual servo control. The International Journal of Robotics Research, 2003, 22(10-11):955-981 doi: 10.1177/027836490302210011 |
[7] |
Marchand E, Spindler F, Chaumette F. ViSP for visual servoing:a generic software platform with a wide class of robot control skills. IEEE Robotics & Automation Magazine, 2005, 12(4):40-52 http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/MRA.2005.1577023&rfr_id=trans/tg/2006/04/ttg2006040615.htm |
[8] |
Mariottini G L, Prattichizzo D. EGT for multiple view geometry and visual servoing-Robotics and vision with pinhole and panoramics cameras. IEEE Robotics & Automation Magazine, 2005, 12(4):26-39 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1577022 |
[9] |
Chaumette F, Hutchinson S. Visual servo control. I. Basic approaches. IEEE Robotics & Automation Magazine, 2006, 13(4):82-90 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212125537/ |
[10] |
Chaumette F, Hutchinson S. Visual servo control. Ⅱ. Advanced approaches. IEEE Robotics & Automation Magazine, 2007, 14(1):109-118 https://ieeexplore.ieee.org/document/4141039 |
[11] |
Miljković Z, Vuković N, Mitić M, Babić B. New hybrid vision-based control approach for automated guided vehicles. The International Journal of Advanced Manufacturing Technology, 2013, 66(1-4):231-249 doi: 10.1007/s00170-012-4321-y |
[12] |
Gans N R, Hutchinson S A. Stable visual servoing through hybrid switched-system control. IEEE Transactions on Robotics, 2007, 23(3):530-540 doi: 10.1109/TRO.2007.895067 |
[13] |
Staniak M, Zieliński C. Structures of visual servos. Robotics and Autonomous Systems, 2010, 58(8):940-954 doi: 10.1016/j.robot.2010.04.004 |
[14] |
Janabi-Sharifi F, Deng L F, Wilson W J. Comparison of basic visual servoing methods. IEEE-ASME Transactions on Mechatronics, 2011, 16(5):967-983 doi: 10.1109/TMECH.2010.2063710 |
[15] |
贾丙西, 刘山, 张凯祥, 陈剑.机器人视觉伺服研究进展:视觉系统与控制策略.自动化学报, 2015, 41(5):861-873 http://www.aas.net.cn/CN/abstract/abstract18661.shtml
Jia Bing-Xi, Liu Shan, Zhang Kai-Xiang, Chen Jian. Survey on robot visual servo control:vision system and control strategies. Acta Automatica Sinica, 2015, 41(5):861-873 http://www.aas.net.cn/CN/abstract/abstract18661.shtml |
[16] |
Espiau B, Chaumette F, Rives P. A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation, 1992, 8(3):313-326 doi: 10.1109/70.143350 |
[17] |
Comport A I, Marchand E, Pressigout M, Chaumette F. Real-time markerless tracking for augmented reality:the virtual visual servoing framework. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(4):615-628 doi: 10.1109/TVCG.2006.78 |
[18] |
徐德, 卢金燕.直线特征的交互矩阵求取.自动化学报, 2015, 41(10):1762-1771 http://www.aas.net.cn/CN/abstract/abstract18750.shtml
Xu De, Lu Jin-Yan. Determination for interactive matrix of line feature. Acta Automatica Sinica, 2015, 41(10):1762-1771 http://www.aas.net.cn/CN/abstract/abstract18750.shtml |
[19] |
Tahri O, Chaumette F. Point-based and region-based image moments for visual servoing of planar objects. IEEE Transactions on Robotics, 2005, 21(6):1116-1127 doi: 10.1109/TRO.2005.853500 |
[20] |
Chaumette F. Image moments:a general and useful set of features for visual servoing. IEEE Transactions on Robotics, 2004, 20(4):713-723 doi: 10.1109/TRO.2004.829463 |
[21] |
Lin F, Dong X X, Chen B M, Lum K Y, Lee T H. A robust real-time embedded vision system on an unmanned rotorcraft for ground target following. IEEE Transactions on Industrial Electronics, 2012, 59(2):1038-1049 http://www.emeraldinsight.com/servlet/linkout?suffix=b12&dbid=16&doi=10.1108%2FAEAT-10-2012-0164&key=10.1109%2FTIE.2011.2161248 |
[22] |
Tahri O, Araujo H, Chaumette F, Mezouar Y. Robust image-based visual servoing using invariant visual information. Robotics and Autonomous Systems, 2013, 61(12):1588-1600 doi: 10.1016/j.robot.2013.06.010 |
[23] |
Deguchi K. Optimal motion control for image-based visual servoing by decoupling translation and rotation. In:Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Victoria, Canada:IEEE, 1998. 705-711 https://ieeexplore.ieee.org/document/727274 |
[24] |
Crétual A, Chaumette F. Visual servoing based on image motion. The International Journal of Robotics Research, 2001, 20(11):857-877 doi: 10.1177/02783640122068155 |
[25] |
Corke P I, Hutchinson S A. A new partitioned approach to image-based visual servo control. IEEE Transactions on Robotics and Automation, 2001, 17(4):507-515 doi: 10.1109/70.954764 |
[26] |
Iwatsuki M, Okiyama N. A new formulation of visual servoing based on cylindrical coordinate system. IEEE Transactions on Robotics, 2005, 21(2):266-273 doi: 10.1109/TRO.2004.837242 |
[27] |
Kelly R, Carelli R, Nasisi O, Kuchen B, Reyes F. Stable visual servoing of camera-in-hand robotic systems. IEEE-ASME Transactions on Mechatronics, 2000, 5(1):39-48 doi: 10.1109/3516.828588 |
[28] |
Xu D, Lu J Y, Wang P, Zhang Z T, Zhang D P, Liang Z Z. A new image-based visual servoing method with rotational compensation. In:Proceedings of 2016 IEEE International Conference on Robotics and Biomimetics. Qingdao, China:IEEE, 2016. 1099-1104 |
[29] |
徐德, 谭民, 李原.机器人视觉测量与控制.北京:国防工业出版社, 2008.
Xu De, Tan Min, Li Yuan. Visual Measurement and Control for Robots. Beijing:National Defense Industry Press, 2008. |
[30] |
La Anh T, Song J B. Robotic grasping based on efficient tracking and visual servoing using local feature descriptors. International Journal of Precision Engineering and Manufacturing, 2012, 13(3):387-393 doi: 10.1007/s12541-012-0049-8 |
[31] |
Xu D, Lu J Y, Wang P, Zhang Z T, Liang Z Z. Partially decoupled image-based visual servoing using different sensitive features. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(8):2233-2243 doi: 10.1109/TSMC.2016.2641951 |
[32] |
Benhimane S, Malis E. Homography-based 2D visual tracking and servoing. The International Journal of Robotics Research, 2007, 26(7):661-676 doi: 10.1177/0278364907080252 |
[33] |
de Plinval H, Morin P, Mouyon P, Hamel T. Visual servoing for underactuated VTOL UAVs:a linear, homography-based framework. International Journal of Robust and Nonlinear Control, 2014, 24(16):2285-2308 doi: 10.1002/rnc.v24.16 |
[34] |
Jia B X, Liu S, Liu Y. Visual trajectory tracking of industrial manipulator with iterative learning control. Industrial Robot:An International Journal, 2015, 42(1):54-63 doi: 10.1108/IR-09-2014-0392 |
[35] |
Silveira G, Malis E. Direct visual servoing:vision-based estimation and control using only nonmetric information. IEEE Transactions on Robotics, 2012, 28(4):974-980 doi: 10.1109/TRO.2012.2190875 |
[36] |
Kyrki V, Kragic D, Christensen H I. Measurement errors in visual servoing. Robotics and Autonomous Systems, 2006, 54(10):815-827 doi: 10.1016/j.robot.2006.05.002 |
[37] |
Malis E, Chesi G, Cipolla R. 21/2 D visual servoing with respect to planar contours having complex and unknown shapes. International Journal of Robotics Research, 2003, 22(10-11):841-853 doi: 10.1177/027836490302210004 |
[38] |
Malis E, Benhimane S. A unified approach to visual tracking and servoing. Robotics and Autonomous Systems, 2005, 52(1):39-52 doi: 10.1016/j.robot.2005.03.014 |
[39] |
Chen J, Dawson D M, Dixon W E, Behal A. Adaptive homography-based visual servo tracking for a fixed camera configuration with a camera-in-hand extension. IEEE Transactions on Control Systems Technology, 2005, 13(5):814-825 doi: 10.1109/TCST.2005.852150 |
[40] |
Chen J, Dawson D M, Dixon W E, Chitrakaran V K. Navigation function-based visual servo control. Automatica, 2007, 43(7):1165-1177 doi: 10.1016/j.automatica.2006.12.018 |
[41] |
Hu G, MacKunis W, Gans N, Dixon W E, Chen J, Behal A, et al. Homography-based visual servo control with imperfect camera calibration. IEEE Transactions on Automatic Control, 2009, 54(6):1318-1324 doi: 10.1109/TAC.2009.2015541 |
[42] |
Hu G Q, Gans N, Fitz-Coy N, Dixon W. Adaptive homography-based visual servo tracking control via a quaternion formulation. IEEE Transactions on Control Systems Technology, 2010, 18(1):128-135 doi: 10.1109/TCST.2008.2009227 |
[43] |
Fang Y C, Dixon W E, Dawson D M, Chawda P. Homography-based visual servo regulation of mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, Part B-Cybernetics, 2005, 35(5):1041-1050 doi: 10.1109/TSMCB.2005.850155 |
[44] |
Chen J, Dixon W E, Dawson D M, McIntyre M. Homography-based visual servo tracking control of a wheeled mobile robot. IEEE Transactions on Robotics, 2006, 22(2):406-415 doi: 10.1109/TRO.2006.862476 |
[45] |
Lopez-Nicolas G, Gans N R, Bhattacharya S, Sagüés C, Guerrero J J, Hutchinson S. Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints. IEEE Transactions on Systems, Man, and Cybernetics, Part B-Cybernetics, 2010, 40(4):1115-1127 doi: 10.1109/TSMCB.2009.2034977 |
[46] |
Zhang X B, Fang Y C, Liu X. Motion-estimation-based visual servoing of nonholonomic mobile robots. IEEE Transactions on Robotics, 2011, 27(6):1167-1175 doi: 10.1109/TRO.2011.2162765 |
[47] |
Basri R, Rivlin E, Shimshoni I. Visual homing:surfing on the epipoles. International Journal of Computer Vision, 1999, 33(2):117-137 doi: 10.1023/A:1008194012143 |
[48] |
Sebastián J M, L Pari, L Angel, Traslosheros A. Uncalibrated visual servoing using the fundamental matrix. Robotics and Autonomous Systems, 2009, 57(1):1-10 doi: 10.1016/j.robot.2008.04.002 |
[49] |
Mariottini G L, Oriolo G, Prattichizzo D. Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Transactions on Robotics, 2007, 23(1):87-100 doi: 10.1109/TRO.2006.886842 |
[50] |
Becerra H M, López-Nicolás G, Sagüés C. A sliding-mode-control law for mobile robots based on epipolar visual servoing from three views. IEEE Transactions on Robotics, 2011, 27(1):175-183 doi: 10.1109/TRO.2010.2091750 |
[51] |
Mariottini G L, Prattichizzo D. Image-based visual servoing with central catadioptric cameras. The International Journal of Robotics Research, 2008, 27(1):41-56 http://dl.acm.org/citation.cfm?id=1325586 |
[52] |
Montijano E, Thunberg J, Hu X M, Sagues C. Epipolar visual servoing for multirobot distributed consensus. IEEE Transactions on Robotics, 2013, 29(5):1212-1225 doi: 10.1109/TRO.2013.2271101 |
[53] |
Mitić M, Miljković Z. Neural network learning from demonstration and epipolar geometry for visual control of a nonholonomic mobile robot. Soft Computing, 2014, 18(5):1011-1025 doi: 10.1007/s00500-013-1121-8 |
[54] |
Andreff N, Espiau B, Horaud R. Visual servoing from lines. The International Journal of Robotics Research, 2002, 21(8):679-699 doi: 10.1177/027836402761412430 |
[55] |
Wang H S, Liu Y H, Zhou D X. Adaptive visual servoing using point and line features with an uncalibrated eye-in-hand camera. IEEE Transactions on Robotics, 2008, 24(4):843-857 doi: 10.1109/TRO.2008.2001356 |
[56] |
Liu Y H, Wang H S, Chen W D, Zhou D X. Adaptive visual servoing using common image features with unknown geometric parameters. Automatica, 2013, 49(8):2453-2460 doi: 10.1016/j.automatica.2013.04.018 |
[57] |
López-Nicolás G, Guerrero J J, Sagüés C. Visual control of vehicles using two-view geometry. Mechatronics, 2010, 20(2):315-325 doi: 10.1016/j.mechatronics.2010.01.005 |
[58] |
Drummond T, Cipolla R. Real-time visual tracking of complex structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):932-946 doi: 10.1109/TPAMI.2002.1017620 |
[59] |
Marchand É, Bouthemy P, Chaumette F. A 2D-3D model-based approach to real-time visual tracking. Image and Computing, 2001, 19(13):941-955 doi: 10.1016/S0262-8856(01)00054-3 |
[60] |
Marchand É, Chaumette F. Feature tracking for visual servoing purposes. Robotics and Autonomous Systems, 2005, 52(1):53-70 doi: 10.1016/j.robot.2005.03.009 |
[61] |
Yesin K B, Nelson B J. A CAD model based tracking system for visually guided microassembly. Robotica, 2005, 23(4):409-418 doi: 10.1017/S0263574704000840 |
[62] |
Tamadazte B, Marchand E, Dembélé S, Le Fort-Piat N. CAD model-based tracking and 3D visual-based control for MEMS microassembly. The International Journal of Robotics Research, 2010, 29(11):1416-1434 doi: 10.1177/0278364910376033 |
[63] |
Dame A, Marchand E. Mutual information-based visual servoing. IEEE Transactions on Robotics, 2011, 27(5):958-969 doi: 10.1109/TRO.2011.2147090 |
[64] |
Gaspar J, Winters N, Santos-Victor J. Vision-based navigation and environmental representations with an omnidirectional camera. IEEE Transactions on Robotics and Automation, 2000, 16(6):890-898 doi: 10.1109/70.897802 |
[65] |
Goedemé T, Nuttin M, Tuytelaars T, Van Gool L. Omnidirectional vision based topological navigation. International Journal of Computer Vision, 2007, 74(3):219-236 doi: 10.1007/s11263-006-0025-9 |
[66] |
Hadj-Abdelkader H, Mezouar Y, Martinet P, Chaumette F. Catadioptric visual servoing from 3-D straight lines. IEEE Transactions on Robotics, 2008, 24(3):652-665 doi: 10.1109/TRO.2008.919288 |
[67] |
Becerra H M, López-Nicolás G, Sagüés C. Omnidirectional visual control of mobile robots based on the 1D trifocal tensor. Robotics and Autonomous Systems, 2010, 58(6):796-808 doi: 10.1016/j.robot.2010.02.011 |
[68] |
Copot C, Lazar C, Burlacu A. Predictive control of nonlinear visual servoing systems using image moments. IET Control Theory and Applications, 2012, 6(10):1486-1496 doi: 10.1049/iet-cta.2011.0118 |
[69] |
Tahri O, Tamtsia A Y, Mezouar Y, Demonceaux C. Visual servoing based on shifted moments. IEEE Transactions on Robotics, 2015, 31(3):798-804 doi: 10.1109/TRO.2015.2412771 |
[70] |
Zheng D L, Wang H S, Wang J C, Chen S S, Chen W D, Liang X W. Image-based visual servoing of a quadrotor using virtual camera approach. IEEE-ASME Transactions on Mechatronics, 2017, 22(2):972-982 doi: 10.1109/TMECH.2016.2639531 |
[71] |
Dame A, Marchand E. Using mutual information for appearance-based visual path following. Robotics and Autonomous Systems, 2013, 61(3):259-270 doi: 10.1016/j.robot.2012.11.004 |
[72] |
Janabi-Sharifi F, Wilson W J. Automatic selection of image features for visual servoing. IEEE Transactions on Robotics and Automation, 1997, 13(6):890-903 doi: 10.1109/70.650168 |
[73] |
Cowan N J, Weingarten J D, Koditschek D E. Visual servoing via navigation functions. IEEE Transactions on Robotics and Automation, 2002, 18(4):521-533 doi: 10.1109/TRA.2002.802202 |
[74] |
Mahony R, Hamel T. Image-based visual servo control of aerial robotic systems using linear image features. IEEE Transactions on Robotics, 2005, 21(2):227-239 doi: 10.1109/TRO.2004.835446 |
[75] |
Mahony R, Corke P, Hamel T. Dynamic image-based visual servo control using centroid and optic flow features. Journal of Dynamic Systems, Measurement, and Control, 2007, 130(1):011005 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214090175/ |
[76] |
Yu Y K, Wong K H, Or S H, Chang M M Y. Robust 3-D motion tracking from stereo images:a model-less method. IEEE Transactions on Instrumentation and Measurement, 2008, 57(3):622-630 doi: 10.1109/TIM.2007.911641 |
[77] |
López-Nicolás G, Guerrero J J, Sagüés C. Visual control through the trifocal tensor for nonholonomic robots. Robotics and Autonomous Systems, 2010, 58(2):216-226 doi: 10.1016/j.robot.2009.09.005 |
[78] |
Chen J, Jia B X, Zhang K X. Trifocal tensor-based adaptive visual trajectory tracking control of mobile robots. IEEE Transactions on Cybernetics, 2017, 47(11):3784-3798 doi: 10.1109/TCYB.2016.2582210 |
[79] |
Matthies L, Xiong Y, Hogg R, Zhu D, Rankin A, Kennedy B, et al. A portable, autonomous, urban reconnaissance robot. Robotics and Autonomous Systems, 2002, 40(2-3):163-172 doi: 10.1016/S0921-8890(02)00241-5 |
[80] |
Lane D M, Chantler M J, Dai D Y. Robust tracking of multiple objects in sector-scan sonar image sequences using optical flow motion estimation. IEEE Journal of Oceanic Engineering, 1998, 23(1):31-46 doi: 10.1109/48.659448 |
[81] |
Campoy P, Correa J F, Mondragón I, Martínez C, Olivares M, Mejías L, et al. Computer vision onboard UAVs for civilian tasks. Journal of Intelligent & Robotics Systems, 2009, 54(1-3):105-135 doi: 10.1007/978-1-4020-9137-7_8 |
[82] |
Zhao Y M, Xie W F, Liu S N. Image-based visual servoing using improved image moments in 6-DOF robot systems. International Journal of Control, Automation and Systems, 2013, 11(3):586-596 doi: 10.1007/s12555-012-0232-9 |
[83] |
Pressigout M, Marchand E. Real-time hybrid tracking using edge and texture information. The International Journal of Robotics Research, 2007, 26(7):689-713 doi: 10.1177/0278364907080477 |
[84] |
Fomena R T, Tahri O, Chaumette F. Distance-based and orientation-based visual servoing from three points. IEEE Transactions on Robotics, 2011, 27(2):256-267 doi: 10.1109/TRO.2011.2104431 |
[85] |
Collewet C, Marchand E. Photometric visual servoing. IEEE Transactions on Robotics, 2011, 27(4):828-834 doi: 10.1109/TRO.2011.2112593 |
[86] |
Silveira G. On intensity-based 3D visual servoing. Robotics and Autonomous Systems, 2014, 62(11):1636-1645 doi: 10.1016/j.robot.2014.03.008 |
[87] |
Silveira G. On intensity-based nonmetric visual servoing. IEEE Transactions on Robotics, 2014, 30(4):1019-1026 doi: 10.1109/TRO.2014.2315712 |
[88] |
De Luca A, Oriolo G, Giordano P R. Feature depth observation for image-based visual servoing:theory and experiments. The International Journal of Robotics Research, 2008, 27(10):1093-1116 doi: 10.1177/0278364908096706 |
[89] |
Cheah C C, Liu C, Slotine J J E. Adaptive Jacobian vision based control for robots with uncertain depth information. Automatica, 2010, 46(7):1228-1233 doi: 10.1016/j.automatica.2010.04.009 |
[90] |
Xie W F, Li Z, Tu X W, Perron C. Switching control of image-based visual servoing with laser pointer in robotic manufacturing systems. IEEE Transactions on Industrial Electronics, 2009, 56(2):520-529 doi: 10.1109/TIE.2008.2003217 |
[91] |
Cherubini A, Chaumette F, Oriolo G. Visual servoing for path reaching with nonholonomic robots. Robotica, 2011, 29(7):1037-1048 doi: 10.1017/S0263574711000221 |
[92] |
Malis E, Chaumette F. Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods. IEEE Transactions on Robotics and Automation, 2002, 18(2):176-186 doi: 10.1109/TRA.2002.999646 |
[93] |
Park D H, Kwon J H, Ha I J. Novel position-based visual servoing approach to robust global stability under field-of-view constraint. IEEE Transactions on Industrial Electronics, 2012, 59(12):4735-4752 doi: 10.1109/TIE.2011.2179270 |
[94] |
Xu D, Li Y F, Tan M. A general recursive linear method and unique solution pattern design for the perspective-n-point problem. Image and Vision Computing, 2008, 26(6):740-750 doi: 10.1016/j.imavis.2007.08.008 |
[95] |
Metni N, Hamel T. A UAV for bridge inspection:visual servoing control law with orientation limits. Automation in Construction, 2007, 17(1):3-10 http://www.sciencedirect.com/science/article/pii/S0926580507000052 |
[96] |
Chesi G, Hashimoto K, Prattichizzo D, Vicino A. Keeping features in the field of view in eye-in-hand visual servoing:a switching approach. IEEE Transactions on Robotics, 2004, 20(5):908-913 doi: 10.1109/TRO.2004.829456 |
[97] |
Deng L F, Janabi-Sharifi F, Wilson W J. Hybrid motion control and planning strategies for visual servoing. IEEE Transactions on Industrial Electronics, 2005, 52(4):1024-1040 doi: 10.1109/TIE.2005.851651 |
[98] |
Mezouar Y, Chaumette F. Optimal camera trajectory with image-based control. The International Journal of Robotics Research, 2003, 22(10-11):781-803 doi: 10.1177/027836490302210001 |
[99] |
Kragic D, Christensen H I. Robust visual servoing. International Journal of Robotics Research, 2003, 22(10-11):923-939 doi: 10.1177/027836490302210009 |
[100] |
Ibarguren A, Martínez-Otzeta J M, Maurtua I. Particle filtering for industrial 6DOF visual servoing. Journal of Intelligent & Robotic Systems, 2014, 74(3-4):689-696 doi: 10.1007/s10846-013-9854-2 |
[101] |
Chesi G, Vicino A. Visual servoing for large camera displacements. IEEE Transactions on Robotics, 2004, 20(4):724-735 doi: 10.1109/TRO.2004.829465 |
[102] |
Cowan N J, Chang D E. Geometric visual servoing. IEEE Transactions on Robotics, 2005, 21(6):1128-1138 doi: 10.1109/TRO.2005.853491 |
[103] |
Schramm F, Morel G. Ensuring visibility in calibration-free path planning for image-based visual servoing. IEEE Transactions on Robotics, 2006, 22(4):848-854 doi: 10.1109/TRO.2006.878955 |
[104] |
Wang Y, Lang H X, de Silva C W. A hybrid visual servo controller for robust grasping by wheeled mobile robots. IEEE-ASME Transactions on Mechatronics, 2010, 15(5):757-769 doi: 10.1109/TMECH.2009.2034740 |
[105] |
Gans N R, Hu G Q, Nagarajan K, Dixon W E. Keeping multiple moving targets in the field of view of a mobile camera. IEEE Transactions on Robotics, 2011, 27(4):822-828 doi: 10.1109/TRO.2011.2158695 |
[106] |
Fang Y C, Liu X, Zhang X B. Adaptive active visual servoing of nonholonomic mobile robots. IEEE Transactions on Industrial Electronics, 2012, 59(1):486-497 doi: 10.1109/TIE.2011.2143380 |
[107] |
Goncalves P J S, Mendonca L F, Sousa J M C, Pinto J R C. Uncalibrated eye-to-hand visual servoing using inverse fuzzy models. IEEE Transactions on Fuzzy Systems, 2008, 16(2):341-353 doi: 10.1109/TFUZZ.2007.896226 |
[108] |
Kim G W. Uncalibrated visual servoing through the efficient estimation of the image Jacobian for large residual. Journal of Electrical Engineering & Technology, 2013, 8(2):385-392 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JAKO201310559989999 |
[109] |
Piepmeier J A, Lipkin H. Uncalibrated eye-in-hand visual servoing. The International Journal of Robotics Research, 2003, 22(10-11):805-819 doi: 10.1177/027836490302210002 |
[110] |
Piepmeier J A, McMurray G V, Lipkin H. Uncalibrated dynamic visual servoing. IEEE Transactions on Robotics and Automation, 2004, 20(1):143-147 doi: 10.1109/TRA.2003.820923 |
[111] |
Bonkovic M, Hace A, Jezernik K. Population-based uncalibrated visual servoing. IEEE-ASME Transactions on Mechatronics, 2008, 13(3):393-397 doi: 10.1109/TMECH.2008.924135 |
[112] |
Shen Y T, Sun D, Liu Y H, Li K J. Asymptotic trajectory tracking of manipulators using uncalibrated visual feedback. IEEE-ASME Transactions on Mechatronics, 2003, 8(1):87-98 doi: 10.1109/TMECH.2003.809133 |
[113] |
Liu Y H, Wang H S, Wang C Y, Lam K K. Uncalibrated visual servoing of robots using a depth-independent interaction matrix. IEEE Transactions on Robotics, 2006, 22(4):804-817 doi: 10.1109/TRO.2006.878788 |
[114] |
Zhang X B, Fang Y C, Li B Q, Wang J. Visual servoing of nonholonomic mobile robots with uncalibrated camera-to-robot parameters. IEEE Transactions on Industrial Electronics, 2017, 64(1):390-400 doi: 10.1109/TIE.2016.2598526 |
[115] |
Wang H S, Liu Y H, Chen W D. Uncalibrated visual tracking control without visual velocity. IEEE Transactions on Control Systems Technology, 2010, 18(6):1359-1370 doi: 10.1109/TCST.2010.2041457 |
[116] |
Malis E. Visual servoing invariant to changes in camera-intrinsic parameters. IEEE Transactions on Robotics and Automation, 2004, 20(1):72-81 doi: 10.1109/TRA.2003.820847 |
[117] |
Kosmopoulos D I. Robust Jacobian matrix estimation for image-based visual servoing. Robotics and Computer-Integrated Manufacturing, 2011, 27(1):82-87 doi: 10.1016/j.rcim.2010.06.013 |
[118] |
Horaud R, Dornaika F, Espiau B. Visually guided object grasping. IEEE Transactions on Robotics and Automation, 1998, 14(4):525-532 doi: 10.1109/70.704214 |
[119] |
Xiao D, Ghosh B K, Xi N, Tarn T J. Sensor-based hybrid position/force control of a robot manipulator in an uncalibrated environment. IEEE Transactions on Control Systems Technology, 2000, 8(4):635-645 doi: 10.1109/87.852909 |
[120] |
Lippiello V, Siciliano B, Villani L. Position-based visual servoing in industrial multirobot cells using a hybrid camera configuration. IEEE Transactions on Robotics, 2007, 23(1):73-86 doi: 10.1109/TRO.2006.886832 |
[121] |
Tamadazte B, Piat N L F, Dembélé S. Robotic micromanipulation and microassembly using monoview and multiscale visual servoing. IEEE-ASME Transactions on Mechatronics, 2011, 16(2):277-287 doi: 10.1109/TMECH.2010.2040900 |
[122] |
Tamadazte B, Piat N L F, Marchand E. A direct visual servoing scheme for automatic nanopositioning. IEEE-ASME Transactions on Mechatronics, 2012, 17(4):728-736 doi: 10.1109/TMECH.2011.2128878 |
[123] |
Ralis S J, Vikramaditya B, Nelson B J. Micropositioning of a weakly calibrated microassembly system using coarse-to-fine visual servoing strategies. IEEE Transactions on Electronics Packaging Manufacturing, 2000, 23(2):123-131 doi: 10.1109/6104.846935 |
[124] |
Ferreira A, Cassier C, Hirai S. Automatic microassembly system assisted by vision servoing and virtual reality. IEEE-ASME Transactions on Mechatronics, 2004, 9(2):321-333 doi: 10.1109/TMECH.2004.828655 |
[125] |
Wang J P, Cho H. Micropeg and hole alignment using image moments based visual servoing method. IEEE Transactions on Industrial Electronics, 2008, 55(3):1286-1294 doi: 10.1109/TIE.2007.911206 |
[126] |
Wang L D, Mills J K, Cleghorn W L. Automatic microassembly using visual servo control. IEEE Transactions on Electronics Packaging Manufacturing, 2008, 31(4):316-325 doi: 10.1109/TEPM.2008.926118 |
[127] |
Ouyang P R, Zhang W J, Gupta M M, Zhao W. Overview of the development of a visual based automated bio-micromanipulation system. Mechatronics, 2007, 17(10):578-588 doi: 10.1016/j.mechatronics.2007.06.002 |
[128] |
Sun Y, Nelson B J. Biological cell injection using an autonomous microrobotic system. The International Journal of Robotics Research, 2002, 21(10-11):861-868 doi: 10.1177/0278364902021010833 |
[129] |
Zhang Y, Tan K K, Huang S. Vision-servo system for automated cell injection. IEEE Transactions on Industrial Electronics, 2009, 56(1):231-238 doi: 10.1109/TIE.2008.925771 |
[130] |
Sakaki K, Dechev N, Burke R D, Park E J. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities. IEEE Transactions on Biomedical Engineering, 2009, 56(8):2064-2074 doi: 10.1109/TBME.2009.2021577 |
[131] |
Zhuang S L, Lin W Y, Gao H J, Shang X X, Li L. Visual servoed zebrafish larva heart microinjection system. IEEE Transactions on Industrial Electronics, 2017, 64(5):3727-3736 doi: 10.1109/TIE.2017.2652380 |
[132] |
Wei G Q, ARbter K, Hirzinger G. Real-time visual servoing for laparoscopic surgery. Controlling robot motion with color image segmentation. IEEE Engineering in Medicine and Biology Magazine, 1997, 16(1):40-45 doi: 10.1109/51.566151 |
[133] |
Krupa A, Gangloff J, Doignon C, de Mathelin M F, Morel G, Leroy J, et al. Autonomous 3-D positioning of surgical instruments in robotized Laparoscopic surgery using visual servoing. IEEE Transactions on Robotics and Automation, 2003, 19(5):842-853 doi: 10.1109/TRA.2003.817086 |
[134] |
Abolmaesumi P, Salcudean S E, Zhu W H, Sirouspour M R, DiMaio S P. Image-guided control of a robot for medical ultrasound. IEEE Transactions on Robotics and Automation, 2002, 18(1):11-23 doi: 10.1109/70.988970 |
[135] |
Hamel T, Mahony R. Image based visual servo control for a class of aerial robotic systems. Automatica, 2007, 43(11):1975-1983 doi: 10.1016/j.automatica.2007.03.030 |
[136] |
Huh S, Shim D H. A vision-based landing system for small unmanned aerial vehicles using an airbag. Control Engineering Practice, 2010, 18(7):812-823 doi: 10.1016/j.conengprac.2010.05.003 |
[137] |
Azinheira J R, Rives P. Image-based visual servoing for vanishing features and ground lines tracking:application to a UAV automatic landing. International Journal of Optomechatronics, 2008, 2(3):275-295 doi: 10.1080/15599610802303314 |
[138] |
Huh S, Shim D H. A vision-based automatic landing method for fixed-wing UAVs. Journal of Intelligent & Robotic Systems, 2010, 57(1-4):217-231 doi: 10.1007/s10846-009-9382-2 |
[139] |
Le Bras F, Hamel T, Mahony R, Barat C, Thadasack J. Approach maneuvers for autonomous landing using visual servo control. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):1051-1065 doi: 10.1109/TAES.2013.110780 |
[140] |
Mejías L, Saripalli S, Campoy P, Sukhatme G S. Visual servoing of an autonomous helicopter in urban areas using feature tracking. Journal of Field Robotics, 2006, 23(3-4):185-199 doi: 10.1002/(ISSN)1556-4967 |
[141] |
Guenard N, Hamel T, Mahony R. A practical visual servo control for an unmanned aerial vehicle. IEEE Transactions on Robotics, 2008, 24(2):331-340 doi: 10.1109/TRO.2008.916666 |
[142] |
Bourquardez O, Mahony R, Guenard N, Chaumette F, Hamel T, Eck L. Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE Transactions on Robotics, 2009, 25(3):743-749 doi: 10.1109/TRO.2008.2011419 |
[143] |
Xie H, Lynch A F. Input saturated visual servoing for unmanned aerial vehicles. IEEE-ASME Transactions on Mechatronics, 2017, 22(2):952-960 doi: 10.1109/TMECH.2016.2608862 |
[144] |
Mahony R, Kumar V, Corke P. Multirotor aerial vehicles:modeling, estimation, and control of quadrotor. IEEE Robotics & Automation Magazine, 2012, 19(3):20-32 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6289431 |
[145] |
Serra P, Cunha R, Hamel T, Cabecinhas D, Silvestre C. Landing of a quadrotor on a moving target using dynamic image-based visual servo control. IEEE Transactions on Robotics, 2016, 32(6):1524-1535 doi: 10.1109/TRO.2016.2604495 |
[146] |
Marchand É, Chaumette F. Virtual visual servoing:a framework for real-time augmented reality. Computer Graphics Forum, 2002, 21(3):289-297 doi: 10.1111/cgf.2002.21.issue-3 |
[147] |
Gracias N R, van der Zwaan S, Bernardino A, Santos-Victor J. Mosaic-based navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 2003, 28(4):609-624 doi: 10.1109/JOE.2003.819156 |
[148] |
Mehta S S, Burks T F. Vision-based control of robotic manipulator for citrus harvesting. Computers and Electronics in Agriculture, 2014, 102:146-158 doi: 10.1016/j.compag.2014.01.003 |
[149] |
Mehta S S, Ton C, Kan Z, Curtis J W. Vision-based navigation and guidance of a sensorless missile. Journal of the Franklin Institute, 2015, 352(12):5569-5598 doi: 10.1016/j.jfranklin.2015.09.010 |
[150] |
Cai J, Huang P F, Zhang B, Wang D K. A TSR visual servoing system based on a novel dynamic template matching method. Sensors, 2015, 15(12):32152-32167 doi: 10.3390/s151229884 |
[151] |
Wang H S, Yang B H, Liu Y T, Chen W D, Liang X W, Pfeifer R. Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE-ASME Transactions on Mechatronics, 2017, 22(1):41-50 doi: 10.1109/TMECH.2016.2613410 |
[152] |
Pomares J, Torres F. Movement-flow-based visual servoing and force control fusion for manipulation tasks in unstructured environments. IEEE Transactions on Systems, Man, and Cybernetics, Part C-Applications and Reviews, 2005, 35(1):4-15 doi: 10.1109/TSMCC.2004.840045 |
[153] |
Chesi G, Hung Y S. Global path-planning for constrained and optimal visual servoing. IEEE Transactions on Robotics, 2007, 23(5):1050-1060 doi: 10.1109/TRO.2007.903817 |
[154] |
Shen T T, Chesi G. Visual servoing path planning for cameras obeying the unified model. Advanced Robotics, 2012, 26(8-9):843-860 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0227270387 |
[155] |
Gracia L, Perez-Vidal C. A new control scheme for visual servoing. International Journal of Control, Automation and Systems, 2009, 7(5):764-776 doi: 10.1007/s12555-009-0509-9 |
[156] |
Fontanelli D, Danesi A, Belo F A W, Salaris P, Bicchi A. Visual servoing in the large. The International Journal of Robotics Research, 2009, 28(6):802-814 doi: 10.1177/0278364908097660 |
[157] |
Kazemi M, Gupta K K, Mehrandezh M. Randomized kinodynamic planning for robust visual servoing. IEEE Transactions on Robotics, 2013, 29(5):1197-1211 doi: 10.1109/TRO.2013.2264865 |
[158] |
Tahri O, Mezouar Y. On visual servoing based on efficient second order minimization. Robotics and Autonomous Systems, 2010, 58(5):712-719 doi: 10.1016/j.robot.2009.11.003 |
[159] |
Hajiloo A, Keshmiri M, Xie W F, Wang T T. Robust online model predictive control for a constrained image-based visual servoing. IEEE Transactions on Industrial Electronics, 2016, 63(4):2242-2250 http://ieeexplore.ieee.org/document/7362013/ |
[160] |
Gao J, Proctor A A, Shi Y, Bradley C. Hierarchical model predictive image-based visual servoing of underwater vehicles with adaptive neural network dynamic control. IEEE Transactions on Cybernetics, 2016, 46(10):2323-2334 doi: 10.1109/TCYB.2015.2475376 |
[161] |
Zhao Q J, Sun Z Q, Sun F C, Zhu J H. Appearance-based robot visual servo via a wavelet neural network. International Journal of Control Automation and Systems, 2008, 6(4):607-612 http://www.ijcas.org/admin/paper/files/IJCAS_v6_n4_pp.607-612.pdf |
[162] |
Miljković Z, Mitić M, Lazarević M, Babić B. Neural network reinforcement learning for visual control of robot manipulators. Expert Systems with Applications, 2013, 40(5):1721-1736 doi: 10.1016/j.eswa.2012.09.010 |
[163] |
Sadeghzadeh M, Calvert D, Abdullah H A. Self-learning visual servoing of robot manipulator using explanation-based fuzzy neural networks and Q-learning. Journal of Intelligent & Robotic Systems, 2015, 78(1):83-104 doi: 10.1007/s10846-014-0151-5 |
[164] |
Shi H B, Li X S, Hwang K S, Pan W, Xu G J. Decoupled visual servoing with fuzzy Q-learning. IEEE Transactions on Industrial Informatics, 2018, 14(1):241-252 doi: 10.1109/TII.2016.2617464 |
[165] |
Zhao Y M, Xie W F, Liu S N, Wang T T. Neural network-based Image moments for robotic visual servoing. Journal of Intelligent & Robotic Systems, 2015, 78(2):239-256 doi: 10.1007/s10846-014-0065-2 |
[166] |
Jiang P, Bamforth L C A, Feng Z R, Baruch J E F, Chen Y Q. Indirect iterative learning control for a discrete visual servo without a camera-robot model. IEEE Transactions on Systems, Man, and Cybernetics, Part B-Cybernetics, 2007, 37(4):863-876 doi: 10.1109/TSMCB.2007.895355 |
[167] |
Mansard N, Chaumette F. Task sequencing for high-level sensor-based control. IEEE Transactions on Robotics, 2007, 23(1):60-72 doi: 10.1109/TRO.2006.889487 |
[168] |
Larouche B P, Zhu Z H. Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control. Autonomous Robots, 2014, 37(2):157-167 doi: 10.1007/s10514-014-9383-2 |
[169] |
Tsai C Y, Wong C C, Yu C J, Liu C C, Liu T Y. A hybrid switched reactive-based visual servo control of 5-DOF robot manipulators for pick-and-place tasks. IEEE Systems Journal, 2015, 9(1):119-130 doi: 10.1109/JSYST.2014.2358876 |
[170] |
Wu H Y, Lou L, Chen C C, Hirche S, Kuhnlenz K. Cloud-based networked visual servo control. IEEE Transactions on Industrial Electronics, 2013, 60(2):554-566 doi: 10.1109/TIE.2012.2186775 |