[1] 朱群, 张玉红, 胡学钢, 李培培.一种基于双层窗口的概念漂移数据流分类算法.自动化学报, 2011, 37(9):1077-1084 doi: 10.3724/SP.J.1004.2011.01077

Zhu Qun, Zhang Yu-Hong, Hu Xue-Gang, Li Pei-Pei. A double-window-based classification algorithm for concept drifting data streams. Acta Automatica Sinica, 2011, 37(9):1077-1084 doi: 10.3724/SP.J.1004.2011.01077
[2] Wu X D, Zhu X Q, Wu G Q, Ding W. Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1):97-107 doi: 10.1109/TKDE.2013.109
[3] 孙大为, 张广艳, 郑纬民.大数据流式计算:关键技术及系统实例.软件学报, 2014, 25(4):839-862 http://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201404011.htm

Sun Da-Wei, Zhang Guang-Yan, Zheng Wei-Min. Big data stream computing:technologies and instances. Journal of Software, 2014, 25(4):839-862 http://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201404011.htm
[4] Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 1997, 55(1):119-139 doi: 10.1006/jcss.1997.1504
[5] Breiman L. Bagging predictors. Machine Learning, 1996, 24(2):123-140
[6] Zhang P, Zhou C, Wang P, Gao B J, Zhu X Q, Guo L. E-tree:an efficient indexing structure for ensemble models on data streams. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(2):461-474 doi: 10.1109/TKDE.2014.2298018
[7] Blaser R, Fryzlewicz P. Random rotation ensembles. Journal of Machine Learning Research, 2016, 17(4):1-26
[8] Street W N, Kim Y. A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA: ACM, 2001. 377-382
[9] Bifet A, Holmes G, Pfahringer B, Kirkby R, Gavaldá R. New ensemble methods for evolving data streams. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France: ACM, 2009. 139-148
[10] Polat K, Güneş. A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems. Expert Systems with Applications, 2009, 36(2):1587-1592 doi: 10.1016/j.eswa.2007.11.051
[11] Wozniak M. A hybrid decision tree training method using data streams. Knowledge and Information Systems, 2011, 29(2):335-347 doi: 10.1007/s10115-010-0345-5
[12] Abdulsalam H, Skillicorn D B, Martin P. Classification using streaming random forests. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(1):22-36
[13] Bifet A, Frank E, Holmes G, Pfahringer B. Ensembles of restricted hoeffding trees. ACM Transactions on Intelligent Systems and Technology (TIST), 2012, 3(2):Article No. 30
[14] Ahmad A, Brown G. Random projection random discretization ensembles-ensembles of linear multivariate decision trees. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5):1225-1239 doi: 10.1109/TKDE.2013.134
[15] 毛国君, 胡殿军, 谢松燕.基于分布式数据流的大数据分类模型和算法.计算机学报, 2017, 40(1):161-175 doi: 10.11897/SP.J.1016.2017.00161

Mao Guo-Jun, Hu Dian-Jun, Xie Song-Yan. Models and algorithms for classifying big data based on distributed data streams. Chinese Journal of Computers, 2017, 40(1):161-175 doi: 10.11897/SP.J.1016.2017.00161
[16] Quinlan J R. Induction of decision trees. Machine Learning, 1986, 1(1):81-106
[17] Quinlan J R. C4. 5: Programs for Machine Learning. San Mateo, CA, USA: Morgan Kaufmann, 1993.
[18] Breiman L, Friedman J H, Olshen R A, Stone C J. Classification and Regression Trees. Belmont, CA, USA:CRC Press, 1984.
[19] Brodley C E, Utgoff P E. Multivariate decision trees. Machine Learning, 1995, 19(1):45-77
[20] Ferri C, Flach P A, Hernández-Orallo J. Improving the AUC of probabilistic estimation trees. In: Proceedings of the 2003 European Conference on Machine Learning. Berlin, Heidelberg, Germany: Springer, 2003. 121-132
[21] Mingers J. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 1989, 4(2):227-243 doi: 10.1023/A:1022604100933
[22] Esposito F, Malerba D, Semeraro G, Kay J. A comparative analysis of methods for pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(5):476-491
[23] Fournier D, Crémilleux B. A quality index for decision tree pruning. Knowledge-Based Systems, 2002, 15(1-2):37-43 doi: 10.1016/S0950-7051(01)00119-8
[24] Osei-Bryson K M. Post-pruning in decision tree induction using multiple performance measures. Computers and Operations Research, 2007, 34(11):3331-3345
[25] Elomaa T, Kääriäinen M. An analysis of reduced error pruning. Journal of Artificial Intelligence Research, 2001, 15(1):163-187
[26] Quinlan J R. Simplifying decision trees. International Journal of Man-Machine Studies, 1987, 27(3):221-234 doi: 10.1016/S0020-7373(87)80053-6
[27] 包研科, 赵凤华.多标度数据轮廓相似性的度量公理与计算.辽宁工程技术大学学报(自然科学版), 2012, 31(5):797-800 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb201205053

Bao Yan-Ke, Zhao Feng-Hua. Measure axiom of outline similarity of multi-scale data and its calculation. Journal of Liaoning Technical University (Natural Science), 2012, 31(5):797-800 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb201205053
[28] Bache K, Lichman M. UCI machine learning repository[Online], available: http://archive.ics.uci.edu/ml, January 1, 2016
[29] Stisen A, Blunck H, Bhattacharya S, Prentow T S, Kjaergaard M B, Dey A, Sonne T, Jensen M M. Smart devices are different: assessing and mitigating mobile sensing heterogeneities for activity recognition. In: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. Seoul, South Korea: ACM, 2015. 127-140
[30] Zhou Z H. Ensemble Methods: Foundations and Algorithms. Boca Raton, FL, USA: Chapman and Hall/CRC, 2012.