[1] |
Julesz B. Visual pattern discrimination. IRE Transactions on Information Theory, 1962, 8(2):84-92 doi: 10.1109/TIT.1962.1057698 |
[2] |
Tuceryan M, Jain A K. Texture analysis. Handbook of Pattern Recognition and Computer Vision. Singapore:World Scientiflc, 1993. 235-276 |
[3] |
Reed T R, Dubuf J M H. A review of recent texture segmentation and feature extraction techniques. CVGIP:Image Understanding, 1993, 57(3):359-372 doi: 10.1006/ciun.1993.1024 |
[4] |
Randen T, Husoy J H. Filtering for texture classiflcation:a comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4):291-310 doi: 10.1109/34.761261 |
[5] |
Zhang J G, Tan T N. Brief review of invariant texture analysis methods. Pattern Recognition, 2002, 35(3):735-747 doi: 10.1016/S0031-3203(01)00074-7 |
[6] |
Zhang J G, Marszalek M, Lazebnik S, Schmid C. Local features and kernels for classiflcation of texture and object categories:a comprehensive study. International Journal of Computer Vision, 2007, 73(2):213-238 doi: 10.1007/s11263-006-9794-4 |
[7] |
Xie X H, Mirmehdi M. A galaxy of texture features. Handbook of Texture Analysis. London:Imperial College Press, 2008. 375-406 |
[8] |
刘丽, 匡纲要.图像纹理特征提取方法综述.中国图象图形学报, 2009, 14(4):622-635 doi: 10.11834/jig.20090409
Liu Li, Kuang Gang-Yao. Overview of image textural feature extraction methods. Journal of Image and Graphics, 2009, 14(4):622-635 doi: 10.11834/jig.20090409 |
[9] |
Pietikäinen M, Zhao G Y. Two decades of local binary patterns: a survey. Advances in Independent Component Analysis and Learning Machines. Amsterdam, The Netherlands: Elsevier, 2015. |
[10] |
宋克臣, 颜云辉, 陈文辉, 张旭.局部二值模式方法研究与展望.自动化学报, 2013, 39(6):730-744 http://www.aas.net.cn/CN/abstract/abstract18099.shtml
Song Ke-Chen, Yan Yun-Hui, Chen Wen-Hui, Zhang Xu. Research and perspective on local binary pattern. Acta Automatica Sinica, 2013, 39(6):730-744 http://www.aas.net.cn/CN/abstract/abstract18099.shtml |
[11] |
Liu L, Fieguth P, Guo Y L, Wang X G, Pietikäinen M. Local binary features for texture classiflcation:taxonomy and experimental study. Pattern Recognition, 2017, 62:135-160 doi: 10.1016/j.patcog.2016.08.032 |
[12] |
Brodatz P. Textures:A Photographic Album for Artists and Designers. New York:Dover, 1966. |
[13] |
Brodatz textures[Online], available: http://www.ux.uis.no/tranden/brodatz.html, April 18, 2018 |
[14] |
Vision texture[Online], available: http://vismod.media.mit.edu/vismod/imagery/VisionTexture/, April 18, 2018 |
[15] |
CURRET: columbia-Utrecht reflectance and texture database[Online], available: http://www.cs.columbia.edu/CAVE/software/curet/html/about.php, April 18, 2018 |
[16] |
Outex texture database[Online], available: http://www.outex.oulu.fl/index.php?page=outexhome, April 18, 2018 |
[17] |
The KTH-TIPS and KTH-TIPS2: image databases[Online], available: http://www.nada.kth.se/cvap/databases/kth-tips/download.html, April 18, 2018 |
[18] |
UIUC Database[Online], available: http://wwwcvr.ai.uiuc.edu/poncegrp/data/, April 18, 2018 |
[19] |
Viewpoint invariant texture description[Online], available: http://www.cfar.umd.edu/fer/website-texture/texture.htm, April 18, 2018 |
[20] |
ALOT Database[Online], available: http://aloi.science.uva.nl/publicalot/, April 18, 2018 |
[21] |
Flickr material database (FMD)[Online], available: http://people.csail.mit.edu/celiu/CVPR2010/FMD/, April 18, 2018 |
[22] |
DRexel Database[Online], available: https://www.cs.drexel.edu/kon/texture/, April 18, 2018 |
[23] |
Bell S, Upchurch P, Snavely N, Bala K. OpenSurfaces[Online], available: http://opensurfaces.cs.cornell.edu/, April 18, 2018 |
[24] |
Describable textures dataset (DTD)[Online], available: http://www.robots.ox.ac.uk/vgg/data/dtd/, April 18, 2018 |
[25] |
Bell S, Upchurch P, Snavely N, Bala K. Material recognition in the wild with the materials in context database[Online], available: http://opensurfaces.cs.cornell.edu/publications/minc/, April 18, 2018 |
[26] |
Dana K J, Van Ginneken B, Nayar S K, Koenderink J J. Reflectance and texture of real-world surfaces. ACM Transactions on Graphics, 1999, 18(1):1-34 doi: 10.1145/300776.300778 |
[27] |
Varma M, Zisserman A. A statistical approach to texture classiflcation from single images. International Journal of Computer Vision, 2005, 62(1-2):61-81 doi: 10.1007/s11263-005-4635-4 |
[28] |
Hayman E, Caputo B, Fritz M, Eklundh J O. On the significance of real-world conditions for material classiflcation. In: Proceedings of the 8th European Conference on Computer Vision. Prague, Czech: Springer, 2004. 253-266 |
[29] |
Ojala T, Mäenpää T, Pietikäinen M, Viertola J, Kyllönen J, Huovinen S. Outex-new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of the 16th International Conference on Pattern Recognition. Quebec City, Canada: IEEE, 2002. 701-706 |
[30] |
Ojala T, Pietikäinen M, Mäenpää T. Multiresolution grayscale and rotation invariant texture classiflcation with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987 doi: 10.1109/TPAMI.2002.1017623 |
[31] |
Matthews T, Nixon M S, Niranjan M. Enriching texture analysis with semantic data. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, USA: IEEE, 2013. 1248-1255 |
[32] |
Lazebnik S, Schmid C, Ponce J. A sparse texture representation using a-ne-invariant regions. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Madison, Wisconsin, USA: IEEE, 2003. Ⅱ-319-Ⅱ-324 |
[33] |
Lazebnik S, Schmid C, Ponce J. A sparse texture representation using local a-ne regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8):1265-1278 doi: 10.1109/TPAMI.2005.151 |
[34] |
Xu Y, Ji H, Fermüller C. Viewpoint invariant texture description using fractal analysis. International Journal of Computer Vision, 2009, 83(1):85-100 doi: 10.1007/s11263-009-0220-6 |
[35] |
Burghouts G J, Geusebroek J M. Material-speciflc adaptation of color invariant features. Pattern Recognition Letters, 2009, 30(3):306-313 doi: 10.1016/j.patrec.2008.10.005 |
[36] |
Oxholm G, Bariya P, Nishino K. The scale of geometric texture. In: Proceedings of the 12th European Conference on Computer Vision (ECCV). Florence, Italy: Springer, 2012. 58-71 |
[37] |
Sharan L, Liu C, Rosenholtz R, Adelson E H. Recognizing materials using perceptually inspired features. International Journal of Computer Vision, 2013, 103(3):348-371 doi: 10.1007/s11263-013-0609-0 |
[38] |
Sharan L, Rosenholtz R, Adelson E H. Accuracy and speed of material categorization in real-world images. Journal of Vision, 2014, 14(9):Article No. 12 doi: 10.1167/14.9.12 |
[39] |
Cimpoi M, Maji S, Vedaldi A. Deep fllter banks for texture recognition and segmentation. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, Massachusetts, USA: IEEE, 2015. 3828-3836 |
[40] |
Cimpoi M, Maji S, Kokkinos I, Vedaldi A. Deep fllter banks for texture recognition, description, and segmentation. International Journal of Computer Vision, 2016, 118(1):65-94 doi: 10.1007/s11263-015-0872-3 |
[41] |
Farhadi A, Endres I, Hoiem D, Forsyth D. Describing objects by their attributes. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, Florida, USA: IEEE, 2009. 1778-1785 |
[42] |
Patterson G, Xu C, Su H, Hays J. The SUN attribute database:beyond categories for deeper scene understanding. International Journal of Computer Vision, 2014, 108(1-2):59-81 doi: 10.1007/s11263-013-0695-z |
[43] |
Parikh D, Grauman K. Relative attributes. In: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011. 503-510 |
[44] |
Kumar N, Berg A, Belhumeur P N, Nayar S. Describable visual attributes for face veriflcation and image search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(10):1962-1977 doi: 10.1109/TPAMI.2011.48 |
[45] |
Cimpoi M, Maji S, Kokkinos I, Mohamed S, Vedaldi A. Describing textures in the wild. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA: IEEE, 2014. 3606-3613 |
[46] |
Bell S, Upchurch P, Snavely N, Bala K. Material recognition in the wild with the materials in context database. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, Massachusetts, USA: IEEE, 2015. 3479-3487 |
[47] |
Bell S, Upchurch P, Snavely N, Bala K. OpenSurfaces:a richly annotated catalog of surface appearance. ACM Transactions on Graphics, 2013, 32(4):Article No. 111 http://opensurfaces.cs.cornell.edu |
[48] |
Hossain S, Serikawa S. Texture databases——a comprehensive survey. Pattern Recognition Letters, 2013, 34(15):2007-2022 doi: 10.1016/j.patrec.2013.02.009 |
[49] |
Julesz B. Textons, the elements of texture perception, and their interactions. Nature, 1981, 290(5802):91-97 doi: 10.1038/290091a0 |
[50] |
Csurka G, Dance C, Fan L, Willamowski J, Bray C. Visual categorization with bags of keypoints. In: Proceedings of the 2004 Workshop on Statistical Learning in Computer Vision. Prague, Czech: ECCV, 2004. 1-22 |
[51] |
Leung T, Malik J. Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision, 2001, 43(1):29-44 doi: 10.1023/A:1011126920638 |
[52] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507 doi: 10.1126/science.1127647 |
[53] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classiflcation with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS). Lake Tahoe, Nevada, USA: ACM, 2012. 1097-1105 |
[54] |
LeCun Y, Bottou L, Bengio Y, Hafiner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324 doi: 10.1109/5.726791 |
[55] |
黄凯奇, 任伟强, 谭铁牛.图像物体分类与检测算法综述.计算机学报, 2014, 36(6):1225-1240 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsjx201406001&dbname=CJFD&dbcode=CJFQ
Huang Kai-Qi, Ren Wei-Qiang, Tan Tie-Niu. A review on image object classiflcation and detection. Chinese Journal of Computers, 2014, 36(6):1225-1240 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsjx201406001&dbname=CJFD&dbcode=CJFQ |
[56] |
Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schafialitzky F, et al. A comparison of affine region detectors. International Journal of Computer Vision, 2005, 65(1-2):43-72 doi: 10.1007/s11263-005-3848-x |
[57] |
Tuytelaars T, Mikolajczyk K. Local invariant feature detectors:a survey. Foundations and Trendsr in Computer Graphics and Vision, 2008, 3(3):177-280 http://dl.acm.org/citation.cfm?id=1481563&preflayout=flat |
[58] |
Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10):1615-1630 doi: 10.1109/TPAMI.2005.188 |
[59] |
Huang Y Z, Wu Z F, Wang L, Tan T N. Feature coding in image classiflcation:a comprehensive study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3):493-506 doi: 10.1109/TPAMI.2013.113 |
[60] |
Perronnin F, Larlus D. Fisher vectors meet neural networks: a hybrid classiflcation architecture. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, 2015. 3743-3752 |
[61] |
Sánchez J, Perronnin F, Mensink T, Verbeek J. Image classiflcation with the flsher vector:theory and practice. International Journal of Computer Vision, 2013, 105(3):222-245 doi: 10.1007/s11263-013-0636-x |
[62] |
Aharon M, Elad M, Bruckstein A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322 doi: 10.1109/TSP.2006.881199 |
[63] |
Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A. Discriminative learned dictionaries for local image analysis. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, Alaska, USA: IEEE, 2008. 1-8 |
[64] |
Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2006. 2169-2178 |
[65] |
Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2):91-110 doi: 10.1023/B:VISI.0000029664.99615.94 |
[66] |
Cula O G, Dana K J. 3D texture recognition using bidirectional feature histograms. International Journal of Computer Vision, 2004, 59(1):33-60 doi: 10.1023/B:VISI.0000020670.05764.55 |
[67] |
Varma M, Zisserman A. A statistical approach to material classiflcation using image patch exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(11):2032-2047 doi: 10.1109/TPAMI.2008.182 |
[68] |
Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classiflcation based on featured distributions. Pattern Recognition, 1996, 29(1):51-59 doi: 10.1016/0031-3203(95)00067-4 |
[69] |
Liu L, Lao S Y, Fieguth P W, Guo Y L, Wang X G, Pietikainen M. Median robust extended local binary pattern for texture classiflcation. IEEE Transactions on Image Processing, 2016, 25(3):1368-1381 doi: 10.1109/TIP.2016.2522378 |
[70] |
Guo Z H, Wang X Z, Zhou J, You J N. Robust texture image representation by scale selective local binary patterns. IEEE Transactions on Image Processing, 2016, 25(2):687-699 doi: 10.1109/TIP.2015.2507408 |
[71] |
Sulc M, Matas J. Fast features invariant to rotation and scale of texture. In: Proceedings of the 2014 European Conference on Computer Vision (ECCV). Zurich, Switzerland: Springer, 2014. 47-62 |
[72] |
Ryu J, Hong S, Yang H S. Sorted consecutive local binary pattern for texture classiflcation. IEEE Transactions on Image Processing, 2015, 24(7):2254-2265 doi: 10.1109/TIP.2015.2419081 |
[73] |
Sharma G, Juriea F. Local higher-order statistics (LHS) describing images with statistics of local non-binarized pixel patterns. Computer Vision and Image Understanding, 2016, 142:13-22 doi: 10.1016/j.cviu.2015.09.007 |
[74] |
Liu L, Fieguth P. Texture classiflcation from random features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3):574-586 doi: 10.1109/TPAMI.2011.145 |
[75] |
Candes E J, Tao T. Near-optimal signal recovery from random projections:universal encoding strategies? IEEE Transactions on Information Theory, 2006, 52(12):5406-5425 doi: 10.1109/TIT.2006.885507 |
[76] |
Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306 doi: 10.1109/TIT.2006.871582 |
[77] |
Liu L, Fieguth P, Clausi D, Kuang G Y. Sorted random projections for robust rotation-invariant texture classiflcation. Pattern Recognition, 2012, 45(6):2405-2418 doi: 10.1016/j.patcog.2011.10.027 |
[78] |
Liu L, Fieguth P, Kuang G Y, Zha H B. Sorted random projections for robust texture classiflcation. In: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011. 391-398 |
[79] |
Liu L, Fieguth P W, Hu D W, Wei Y M, Kuang G Y. Fusing sorted random projections for robust texture and material classiflcation. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(3):482-496 doi: 10.1109/TCSVT.2014.2359098 |
[80] |
Crosier M, Griffin L D. Using basic image features for texture classiflcation. International Journal of Computer Vision, 2010, 88(3):447-460 doi: 10.1007/s11263-009-0315-0 |
[81] |
Griffin L D, Lillholm M. Symmetry sensitivities of derivative-of-Gaussian fllters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(6):1072-1083 doi: 10.1109/TPAMI.2009.91 |
[82] |
Griffin L D, Lillholm M, Crosier M, Van Sande J. Basic image features (BIFs) arising from approximate symmetry type. In: Proceedings of the 2nd International Conference on Scale Space and Variational Methods in Computer Vision (SSVM). Voss, Norway: Springer, 2009. 343-355 |
[83] |
Timofte R, Van Gool L. A training-free classiflcation framework for textures, writers, and materials. In: Proceedings of the 23rd British Machine Vision Conference (BMVC). Surrey, Guildford, UK: BMVA, 2012. |
[84] |
Chen J, Shan S G, He C, Zhao G Y, Pietikainen M, Chen X L, et al. WLD:a robust local image descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1705-1720 doi: 10.1109/TPAMI.2009.155 |
[85] |
Xu Y, Huang S B, Ji H, Fermüller C. Combining powerful local and global statistics for texture description. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA: IEEE, 2009. 573-580 |
[86] |
Xu Y, Yang X, Ling H B, Ji H. A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, California, USA: IEEE, 2010. 161-168 |
[87] |
Quan Y H, Xu Y, Sun Y P, Luo Y. Lacunarity analysis on image patterns for texture classiflcation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, Ohio, USA: IEEE, 2014. 160-167 |
[88] |
Jain A K, Duin R P W, Mao J C. Statistical pattern recognition:a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1):4-37 doi: 10.1109/34.824819 |
[89] |
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S A, et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3):211-252 doi: 10.1007/s11263-015-0816-y |
[90] |
Bengio Y, Courville A, Vincent P. Representation learning:a review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828 doi: 10.1109/TPAMI.2013.50 |
[91] |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436-444 doi: 10.1038/nature14539 |
[92] |
Bruna J, Mallat S. Invariant scattering convolution networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1872-1886 doi: 10.1109/TPAMI.2012.230 |
[93] |
Sifre L, Mallat S. Rotation, scaling and deformation invariant scattering for texture discrimination. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, Oregon, USA: IEEE, 2013. 1233-1240 |
[94] |
Sifre L, Mallat S. Rigid-motion scattering for texture classiflcation. International Journal of Computer Vision, 2014. http://arxiv.org/abs/1403.1687 |
[95] |
Chan T H, Jia K, Gao S H, Lu J W, Zeng Z N, Ma Y. PCANet:a simple deep learning baseline for image classiflcation? IEEE Transactions on Image Processing, 2015, 24(12):5017-5032 doi: 10.1109/TIP.2015.2475625 |
[96] |
Gatys L A, Ecker A S, Bethge M. Texture synthesis using convolutional neural networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS). Montreal, Canada: MIT Press, 2015. 262-270 |
[97] |
Lin T Y, RoyChowdhury A, Maji S. Bilinear CNN models for flne-grained visual recognition. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 1449-1457 |
[98] |
Lin T Y, Maji S. Visualizing and understanding deep texture representations. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 2791-2799 |
[99] |
Zhou B L, Lapedriza A, Xiao J X, Torralba A, Oliva A. Learning deep features for scene recognition using places database. In: Proceedings of the 2014 Advances in Neural Information Processing Systems (NIPS). Montreal, Canada: Neural Information Processing Systems, 2014. |
[100] |
Razavian A S, Azizpour H, Sullivan J, Carlsson S. CNN features ofi-the-shelf: an astounding baseline for recognition. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR). Columbus, Ohio, USA: IEEE, 2014. 512-519 |
[101] |
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, Ohio, USA: IEEE, 2014. 580-587 |
[102] |
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of the 2014 International Conference on Learning Representation (ICLR). Banfi, Canada: ICLR, 2014. |
[103] |
Chatfleld K, Simonyan K, Vedaldi A, Zisserman A. Return of the devil in the details: delving deep into convolutional nets. In: Proceedings of the 2014 British Machine Vision Conference (BMVC). Nottingham, UK: BMVA, 2014. |
[104] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 2015 International Conference on Learning Representations (ICLR). San Diego, CA, USA: ICLR, 2015. |
[105] |
Portilla J, Simoncelli E P. A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision, 2000, 40(1):49-70 doi: 10.1023/A:1026553619983 |
[106] |
Krishna R, Zhu Y K, Groth O, Johnson J, Hata K, Kravitz J, et al. Visual genome:connecting language and vision using crowdsourced dense image annotations. International Journal of Computer Vision, 2017, 123(1):32-73 doi: 10.1007/s11263-016-0981-7 |
[107] |
Tamura H, Mori S, Yamawaki T. Textural features corresponding to visual perception. IEEE Transactions on Systems, Man, and Cybernetics, 1978, 8(6):460-473 doi: 10.1109/TSMC.1978.4309999 |
[108] |
Bhushan N, Rao A R, Lohse G L. The texture lexicon:understanding the categorization of visual texture terms and their relationship to texture images. Cognitive Science, 1997, 21(2):219-246 doi: 10.1207/s15516709cog2102_4 |
[109] |
Liu L, Fieguth P, Wang X G, Pietikäinen M, Hu D W. Evaluation of LBP and deep texture descriptors with a new robustness benchmark. In: Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam, The Netherlands: Springer, 2016. 69-86 |
[110] |
Mellor M, Hong B W, Brady M. Locally rotation, contrast, and scale invariant descriptors for texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(1):52-61 doi: 10.1109/TPAMI.2007.1161 |
[111] |
Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y. Binarized neural networks, Advances in neural information processing systems, 2016. 4107-4115 |