[1] Tolman E C. Purposive Behavior in Animals and Men. New York, USA:University of California Press, 1932.
[2] McNaughton B L, Battaglia F P, Jensen O, Moser E I, Moser M B. Path integration and the neural basis of the "cognitive map". Nature Reviews Neuroscience, 2006, 7(8):663-678 doi: 10.1038/nrn1932
[3] Steele R J, Morris R G. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus, 1999, 9(2):118-136 doi: 10.1002/(ISSN)1098-1063
[4] Steffenach H A, Witter M, Moser M B, Moser E I. Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron, 2005, 45(2):301-313 doi: 10.1016/j.neuron.2004.12.044
[5] Taube J S, Kesslak J P, Cotman C W. Lesions of the rat postsubiculum impair performance on spatial tasks. Behavioral and Neural Biology, 1992, 57(2):131-143 doi: 10.1016/0163-1047(92)90629-I
[6] O'Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 1971, 34(1):171-175 doi: 10.1016/0006-8993(71)90358-1
[7] O'Keefe J. Place units in the hippocampus of the freely moving rat. Experimental Neurology, 1976, 51(1):78-109 doi: 10.1016/0014-4886(76)90055-8
[8] Tsao A, Moser M B, Moser E I. Traces of experience in the lateral entorhinal cortex. Current Biology, 2013, 23(5):399-405 doi: 10.1016/j.cub.2013.01.036
[9] Taube J S, Muller R U, Ranck Jr J B. Head-direction cells recorded from the postsubiculum in freely moving rats. Ⅱ. Effects of environmental manipulations. The Journal of Neuroscience, 1990, 10(2):436-447 http://www.jneurosci.org/content/jneuro/10/2/436.full.pdf
[10] Sharp P E. Multiple spatial/behavioral correlates for cells in the rat postsubiculum:multiple regression analysis and comparison to other hippocampal areas. Cerebral Cortex, 1996, 6(2):238-259 doi: 10.1093/cercor/6.2.238
[11] O'Keefe J, Burgess N. Geometric determinants of the place fields of hippocampal neurons. Nature, 1996, 381(6581):425-428 doi: 10.1038/381425a0
[12] Mittelstaedt M L, Mittelstaedt H. Homing by path integration in a mammal. Naturwissenschaften, 1980, 67(11):566-567(in German) doi: 10.1007/BF00450672
[13] Hafting T, Fyhn M, Molden S, Moser M B, Moser E I. Microstructure of a spatial map in the entorhinal cortex. Nature, 2005, 436(7052):801-806 doi: 10.1038/nature03721
[14] Solstad T, Moser E I, Einevoll G T. From grid cells to place cells:a mathematical model. Hippocampus, 2006, 16(12):1026-1031 doi: 10.1002/hipo.v16:12
[15] Moser E I, Roudi Y, Witter M P, Kentros C, Bonhoeffer T, Moser M B. Grid cells and cortical representation. Nature Reviews Neuroscience, 2014, 15(7):466-481 doi: 10.1038/nrn3766
[16] Burgess N, Barry C, O'Keefe J. An oscillatory interference model of grid cell firing. Hippocampus, 2007, 17(9):801-812 doi: 10.1002/(ISSN)1098-1063
[17] Hasselmo M E, Giocomo L M, Zilli E A. Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus, 2007, 17(12):1252-1271 doi: 10.1002/(ISSN)1098-1063
[18] Si B, Romani S, Tsodyks M. Continuous attractor network model for conjunctive position-by-velocity tuning of grid cells. PLoS Computational Biology, 2014, 10(4):e1003558 doi: 10.1371/journal.pcbi.1003558
[19] Erdem U M, Hasselmo M. A goal-directed spatial navigation model using forward trajectory planning based on grid cells. European Journal of Neuroscience, 2012, 35(6):916-931 doi: 10.1111/ejn.2012.35.issue-6
[20] Fuhs M C, Touretzky D S. A spin glass model of path integration in rat medial entorhinal cortex. The Journal of Neuroscience, 2006, 26(16):4266-4276 doi: 10.1523/JNEUROSCI.4353-05.2006
[21] Burak Y, Fiete I R. Accurate path integration in continuous attractor network models of grid cells. PLoS Computational Biology, 2009, 5(2):e1000291 doi: 10.1371/journal.pcbi.1000291
[22] Krupic J, Burgess N, O'Keefe J. Neural representations of location composed of spatially periodic bands. Science, 2012, 337(6096):853-857 doi: 10.1126/science.1222403
[23] Raudies F, Hasselmo M E. Differences in visual-spatial input may underlie different compression properties of firing fields for grid cell modules in medial entorhinal cortex. PLoS Computational Biology, 2015, 11(11):e1004596 doi: 10.1371/journal.pcbi.1004596
[24] Yuan M L, Tian B, Shim V A, Tang H, Li H. An entorhinal-hippocampal model for simultaneous cognitive map building. In:Proceedings of the 29th AAAI Conference on Artificial Intelligence. Austin, TX:AAAI, 2015.
[25] Grossberg S, Pilly P K. How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map. PLoS Computational Biology, 2012, 8(10):e1002648 doi: 10.1371/journal.pcbi.1002648
[26] Pilly P K, Grossberg S. Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells. PLoS One, 2013, 8(4):e60599 doi: 10.1371/journal.pone.0060599
[27] Cuperlier N, Quoy M, Gaussier P. Neurobiologically inspired mobile robot navigation and planning. Frontiers in Neurorobotics, 2007, 1:Article No. 3
[28] Jauffret A, Cuperlier N, Gaussier P. Multimodal integration of visual place cells and grid cells for robots navigation. In:Proceedings of the 2nd Symposium on Biology of Decision Making. Paris, France:BDM, 2012. 136-145
[29] Milford M J, Wyeth G F, Prasser D. RatSLAM:a hippocampal model for simultaneous localization and mapping. In:Proceedings of the 2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, USA:IEEE, 2004. 403-408
[30] Milford M, Wyeth G, Prasser D. RatSLAM on the edge:revealing a coherent representation from an overloaded rat brain. In:Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:IEEE, 2006. 4060-4065
[31] Milford M J, Wyeth G F. Mapping a suburb with a single camera using a biologically inspired SLAM system. IEEE Transactions on Robotics, 2008, 24(5):1038-1053 doi: 10.1109/TRO.2008.2004520
[32] Milford M J, Wyeth G F. Single camera vision-only SLAM on a suburban road network. In:Proceedings of the 2008 IEEE International Conference on Robotics and Automation. Pasadena, CA, USA:IEEE, 2008. 3684-3689
[33] Erdem U M, Hasselmo M E. A biologically inspired hierarchical goal directed navigation model. Journal of Physiology, Paris, 2014, 108(1):28-37 doi: 10.1016/j.jphysparis.2013.07.002
[34] 王楠, 马书根, 李斌, 王明辉, 赵明扬.震后建筑内部层次化SLAM的地图模型转换方法.自动化学报, 2015, 41(10):1723-1733 http://www.aas.net.cn/CN/Y2015/V41/I10/1723

Wang Nan, Ma Shu-Gen, Li Bin, Wang Ming-Hui, Zhao Ming-Yang. A model transformation of map representation for hierarchical SLAM that can be used for after-earthquake buildings. Acta Automatica Sinica, 2015, 41(10):1723-1733 http://www.aas.net.cn/CN/Y2015/V41/I10/1723
[35] 肖云涛, 欧林林, 俞立.基于线性时序逻辑的最优巡回路径规划.自动化学报, 2014, 40(10):2126-2133 http://www.aas.net.cn/CN/Y2014/V40/I10/2126

Xiao Yun-Tao, Ou Lin-Lin, Yu Li. Optimal patrolling path planning via linear temporal logic. Acta Automatica Sinica, 2014, 40(10):2126-2133 http://www.aas.net.cn/CN/Y2014/V40/I10/2126
[36] 徐博, 白金磊, 郝燕玲, 高伟, 刘亚龙.多AUV协同导航问题的研究现状与进展.自动化学报, 2015, 41(3):445-461 http://www.aas.net.cn/CN/Y2015/V41/I3/445

Xu Bo, Bai Jin-Lei, Hao Yan-Ling, Gao Wei, Liu Ya-Long. The research status and progress of cooperative navigation for multiple AUVs. Acta Automatica Sinica, 2015, 41(3):445-461 http://www.aas.net.cn/CN/Y2015/V41/I3/445
[37] 陈成, 何玉庆, 卜春光, 韩建达.基于四阶贝塞尔曲线的无人车可行轨迹规划.自动化学报, 2015, 41(3):486-496 doi: 10.16383/j.aas.2015.c140295

Chen Cheng, He Yu-Qing, Bu Chun-Guang, Han Jian-Da. Feasible trajectory generation for autonomous vehicles based on quartic bézier curve. Acta Automatica Sinica, 2015, 41(3):486-496 doi: 10.16383/j.aas.2015.c140295
[38] Ranck J B. Head direction cells in the deep cell layer of dorsolateral presubiculum in freely moving rats. Electrical Activity of the Archicortex, Budapest:Akadémiai Kiadó, 1984.
[39] Raudies F, Chapman W, Brandon P, Hasselmo M E. Head direction is coded more strongly than movement direction in a population of entorhinal neurons. Brain Research, 2015, 1621:355-367 doi: 10.1016/j.brainres.2014.10.053
[40] Mizumori S J, Williams J D. Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats. The Journal of Neuroscience, 1993, 13(9):4015-4028 http://citeseerx.ist.psu.edu/showciting?cid=3849877
[41] Taube J S, Muller R U, Ranck Jr J B. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. The Journal of Neuroscience, 1990, 10(2):420-435 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.328.9864
[42] Knierim J J, Kudrimoti H S, McNaughton B L. Place cells, head direction cells, and the learning of landmark stability. The Journal of Neuroscience, 1995, 15(3 Pt 1):1648-1659 https://jhu.pure.elsevier.com/en/publications/place-cells-head-direction-cells-and-the-learning-of-landmark-sta-4
[43] Kropff E, Carmichael J E, Moser M B, Moser E I. Speed cells in the medial entorhinal cortex. Nature, 2015, 523(7561):419-424 doi: 10.1038/nature14622
[44] Juavinett A L, Callaway E M. Pattern and component motion responses in mouse visual cortical areas. Current Biology, 2015, 25(13):1759-1764 doi: 10.1016/j.cub.2015.05.028
[45] Couey J J, Witoelar A, Zhang S J, Zheng K, Ye J, Dunn B, Czajkowski R, Moser M B, Moser E, Roudi Y, Witter M P. Recurrent inhibitory circuitry as a mechanism for grid formation. Nature Neuroscience, 2013, 16:318-324 doi: 10.1038/nn.3310
[46] Si B L, Treves A. The role of competitive learning in the generation of dg fields from ec inputs. Cognitive Neurodynamics, 2009, 3(2):177-187 doi: 10.1007/s11571-009-9079-z
[47] 于乃功, 王琳, 李倜, 陈焕朝.网格细胞到位置细胞的竞争型神经网络模型.控制与决策, 2015, 30(8):1372-1378 http://www.intsci.ac.cn/ai/nn.html

Yu Nai-Gong, Wang Lin, Li Ti, Chen Huan-Zhao. Competitive neural network model from grid cells to place cells. Control and Decision, 2015, 30(8):1372-1378 http://www.intsci.ac.cn/ai/nn.html
[48] Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, Kubie J L, Roudi Y, Moser E I, Moser M B. Grid cells require excitatory drive from the hippocampus. Nature Neuroscience, 2013, 16(3):309-317 doi: 10.1038/nn.3311
[49] Winter S S, Mehlman M L, Clark B J, Taube J S. Passive transport disrupts grid signals in the parahippocampal cortex. Current Biology, 2015, 25(19):2493-2502 doi: 10.1016/j.cub.2015.08.034
[50] Tian B, Shim V A, Yuan M L, Srinivasan C, Tang H J, Li H Z. RGB-D based cognitive map building and navigation. In:Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Tokyo, Japan:IEEE, 2013. 1562-1567
[51] 潘超, 刘建国, 李峻林.昆虫视觉启发的光流复合导航方法.自动化学报, 2015, 41(6):1102-1112 http://www.aas.net.cn/CN/Y2015/V41/I6/1102

Pan Chao, Liu Jian-Guo, Li Jun-Lin. An optical flow-based composite navigation method inspired by insect vision. Acta Automatica Sinica, 2015, 41(6):1102-1112 http://www.aas.net.cn/CN/Y2015/V41/I6/1102