[1] Keennon M, Klingebiel K, Won H, Andriukov A. Development of the Nano hummingbird: a tailless flapping wing micro air vehicle. In: Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA, USA: AIAA, 2012. 1-24
[2] Jackowski Z J. Design and Construction of an Autonomous Ornithopter [Ph.D. dissertation], Massachusetts Institute of Technology, USA, 2009.
[3] Ma K Y, Chirarattananon P, Fuller S B, Wood R J. Controlled flight of a biologically inspired, insect-scale robot. Science, 2013, 340(6132): 603-607 doi: 10.1126/science.1231806
[4] Mackenzie D. A flapping of wings. Science, 2012, 335(6075): 1430-1433 doi: 10.1126/science.335.6075.1430
[5] Paranjape A A, Chung S J, Kim J. Novel dihedral-based control of flapping-wing aircraft with application to perching. IEEE Transactions on Robotics, 2013, 29(5): 1071-1084 doi: 10.1109/TRO.2013.2268947
[6] Krashanitsa R Y, Silin D, Shkarayev S V, Abate G. Flight dynamics of a flapping-wing air vehicle. International Journal of Micro Air Vehicles, 2009, 1(1): 35-49 doi: 10.1260/1756-8293.1.1.35
[7] Park J H, Yoon K J, Park H C. Development of bio-mimetic composite wing structures and experimental study on flapping characteristics. In: Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics. Sanya, China: IEEE, 2007. 25-30
[8] Pornsin-sirirak T N, Tai Y C, Nassef H, Ho C M. Titanium-alloy MEMS wing technology for a micro aerial vehicle application. Sensors and Actuators A: Physical, 2001, 89(1-2): 95-103 doi: 10.1016/S0924-4247(00)00527-6
[9] De Croon G C H E, Persin M, Remes B D W, Ruijsink R, De Wagter C. The DelFly. Netherlands: Springer, 2016.
[10] Phan H V, Truong Q T, Park H C. Implementation of initial passive stability in insect-mimicking flapping-wing micro air vehicle. International Journal of Intelligent Unmanned Systems, 2015, 3(1): 18-38 doi: 10.1108/IJIUS-12-2014-0010
[11] Rose C, Fearing R S. Comparison of ornithopter wind tunnel force measurements with free flight. In: Proceeding of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014. 1816-1821
[12] Zufferey J C, Klaptocz A, Beyeler A, Nicoud J D, Floreano D. A 10-gram vision-based flying robot. Advanced Robotics, 2007, 21(14): 1671-1684 doi: 10.1163/156855307782227417
[13] Harmon R, Grauer J, Hubbard J E Jr, Conroy J, Humbert S J, Siaraman J, Roget B. Experimental determination of ornithopter membrane wing shapes used for simple aerodynamic modeling. In: Proceedings of the 26th AIAA Applied Aerodynamics Conference. Hawaii, USA: AIAA, 2008. DOI: 10.2514/6.2008-6237
[14] 昂海松, 曾锐, 段文博, 史志伟.柔性扑翼微型飞行器升力和推力机理的风洞试验和飞行试验.航空动力学报, 2007, 22(11): 1838-1845 doi: 10.3969/j.issn.1000-8055.2007.11.010

Ang Hai-Song, Zeng Rui, Duan Wen-Bo, Shi Zhi-Wei. Aerodynamic experimental investigation for mechanism of lift and thrust of flexible flapping-wing MAV. Journal of Aerospace Power, 2007, 22(11): 1838-1845 doi: 10.3969/j.issn.1000-8055.2007.11.010
[15] 侯宇, 方宗德, 刘岚, 傅卫平.仿生微扑翼飞行器机构动态分析与工程设计方法.航空学报, 2005, 26(2): 173-178 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200502009.htm

Hou Yu, Fang Zong-De, Liu Lan, Fu Wei-Ping. Dynamic analysis and engineering design of biomimetic flapping-wing micro air vehicles. Acta Aeronautica et Astronautica Sinica, 2005, 26(2): 173-178 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200502009.htm
[16] Mao S, Gang D. Lift and power requirements of hovering insect flight. Acta Mechanica Sinica, 2003, 19(5): 458-469 doi: 10.1007/BF02484580
[17] Shen C, Sun M. Power requirements of vertical flight in the dronefly. Journal of Bionic Engineering, 2015, 12(2): 227-237 doi: 10.1016/S1672-6529(14)60115-3
[18] Karásek M, Preumont A. Simulation of flight control of a hummingbird like robot near hover. In: Proceedings of the 18th International Conference on Engineering Mechanics. Svratka, Czech Republic, 2012. 607-619
[19] 唐志共, 许晓斌, 杨彦广, 李绪国, 戴金雯, 吕治国, 贺伟.高超声速风洞气动力试验技术进展.航空学报, 2015, 36(1): 86-97 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501007.htm

Tang Zhi-Gong, Xu Xiao-Bin, Yang Yan-Guang, Li Xu-Guo, Dai Jin-Wen, Lv Zhi-Guo, He Wei. Research progress on hypersonic wind tunnel aerodynamic testing techniques. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 86-97 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501007.htm
[20] Weis-Fogh T. Flapping flight and power in birds and insects, conventional and novel mechanisms. Swimming and Flying in Nature. New York, US: Springer, 1975. 729-762 http://www.tobst.cn/yckj/CN/abstract/abstract12018.shtml
[21] Sohn M H, Chang J W. Flow visualization and aerodynamic load calculation of three types of clap-fling motions in a Weis-Fogh mechanism. Aerospace Science and Technology, 2007, 11(2-3): 119-129 doi: 10.1016/j.ast.2006.10.003
[22] 于冰, 于雷, 刘廷波, 赵永美, 颜景平.关于仿生飞行器仿昆飞行机理的研究状况.中国制造业信息化, 2006, 35(7): 70-75 http://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ200607019.htm

Yu Bing, Yu Lei, Liu Ting-Bo, Zhao Yong-Mei, Yan Jing-Ping. The study status in flying mechanism of the bionic insect equipment. Manufacturing Information Engineering of China, 2006, 35(7): 70-75 http://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ200607019.htm
[23] Van Den Berg C, Ellington C P. The vortex wake of a 'hovering' model hawkmoth. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352(1351): 317-328 doi: 10.1098/rstb.1997.0023
[24] Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight. Science, 1999, 284(5422): 1954-1960 doi: 10.1126/science.284.5422.1954
[25] Dickinson M. Solving the mystery of insect flight. Scientific American, 2001, 284(6): 48-57 doi: 10.1038/scientificamerican0601-48
[26] Von Karman T. Aerodynamics: Selected Topics in the Light of Their Historical Development. Courier Corporation, 2004. http://www.worldcat.org/isbn/0486434850%20
[27] Jones K D, Dohring C M, Platzer M F. Wake structures behind plunging airfoils: a comparison of numerical and experimental results. In: Proceedings of the 34th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 1996. DOI: 10.2514/6.1996-78
[28] Xiao T, Li Z, Deng S, Ang H, Zhou X. Numerical study on the flow characteristics of micro air vehicle wings at low Reynolds numbers. International Journal of Micro Air Vehicles, 2016, 8(1): 29-40 doi: 10.1177/1756829316638204
[29] 曾锐, 昂海松.仿鸟复合振动的扑翼气动分析.南京航空航天大学学报, 2003, 35(1): 6-12 http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK200301001.htm

Zeng Rui, Ang Hai-Song. Aerodynamic computation of flapping-wing simulating birds wings. Journal of Nanjing Universinty of Aeronautics and Astronautics, 2003, 35(1): 6-12 http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK200301001.htm
[30] 曾锐, 昂海松, 梅源, 季健.扑翼柔性及其对气动特性的影响.计算力学学报, 2005, 22(6): 750-754 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200506020.htm

Zeng Rui, Ang Hai-Song, Mei Yuan, Ji Jian. Flexibility of flapping wing and its effect on aerodynamic characteristic. Chinese Journal of Computational Mechanics, 2005, 22(6): 750-754 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200506020.htm
[31] 陈茂伟, 孙茂.蜂蝇快速起飞过程的实验观测及力学分析.航空学报, 2014, 35(12): 3222-3231 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201412005.htm

Chen Mao-Wei, Sun Mao. Experimental measurement and force analysis of a fast takeoff in dronefly. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3222-3231 http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201412005.htm
[32] He W, Zhang S. Control design for nonlinear flexible wings of a robotic aircraft. IEEE Transactions on Control Systems Technology, 2017, 25(1): 351-357 doi: 10.1109/TCST.2016.2536708
[33] Jones K D, Duggan S J, Platzer M F. Flapping-wing propulsion for a micro air vehicle. In: Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 2001. DOI: 10.2514/6.2001-126
[34] Verma N, Shoeb A, Bohorquez J, Dawson J. A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE Journal of Solid-State Circuits, 2010, 45(4): 804-816 doi: 10.1109/JSSC.2010.2042245
[35] Bruno J C, Ortega-López V, Coronas A. Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: case study of a sewage treatment plant. Applied Energy, 2009, 86(6): 837-847 doi: 10.1016/j.apenergy.2008.08.007
[36] Mehra A, Zhang X, Ayon A A, Waitz I A, Schmidt M A, Spadaccini C M. A six-wafer combustion system for a silicon micro gas turbine engine. Journal of Microelectromechanical Systems, 2000, 9(4): 517-527 doi: 10.1109/84.896774
[37] Violi A, Yan S, Eddings E G, Sarofim A F, Granata S, Faravelli T, Ranzi E. Experimental formulation and kinetic model for JP-8 surrogate mixtures. Combustion Science and Technology, 2002, 174(11-12): 399-417 doi: 10.1080/00102200215080
[38] London A P, Ayón A A, Epstein A H, Spearing S M, Harrison T, Peles Y, Kerrebrock J L. Microfabrication of a high pressure bipropellant rocket engine. Sensors and Actuators A: Physical, 2001, 92(1-3): 351-357 doi: 10.1016/S0924-4247(01)00571-4
[39] Fu K, Knobloch A J, Martinez F C, Walther D C, Fernandez-Pello C, Pisano A P, Liepmann D. Design and experimental results of smal-scale rotary engines. In: Proceedings of the 2001 ASME International Mechanical Engineering Congress and Exposition. New York, USA: ASME, 2001. 3439-3445
[40] 张仕民, 郭志平, 夏必忠, 段广洪.微型/便携式发电系统原动机-微型/小型内燃机的研究.小型内燃机与摩托车, 2004, 33(4): 4-8 http://www.cnki.com.cn/Article/CJFDTOTAL-XXNR200404001.htm

Zhang Shi-Min, Guo Zhi-Ping, Xia Bi-Zhong, Duan Guang-Hong. Study on the primary movers of micro/man-portable power generation system-micro/mini internal combustion engines. Small Internal Combustion Engine and Motorcycle, 2004, 33(4): 4-8 http://www.cnki.com.cn/Article/CJFDTOTAL-XXNR200404001.htm
[41] Grasmeyer J M, Keennon M T. Development of the black widow micro air vehicle. In: Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA, USA: AIAA, 2001. DOI: 10.2514/6.2001-127
[42] Keennon M T, Grasmeyer J M. Development of the black widow and microbat MAVs and a vision of the future of MAV design. In: Proceedings of AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years. Reston, VA, USA: AIAA, 2003. DOI: 10.2514/6.2003-2901
[43] Prior S D, Shen S T, White A S, Odedra S, Karamanoglu M, Erbil M A, Foran T. Development of a novel platform for greater situational awareness in the urban military terrain. Engineering Psychology and Cognitive Ergonomics. Berlin Heidelberg, Germany: Springer, 2009. 120-125
[44] Baughman R H. Conducting polymer artificial muscles. Synthetic Metals, 1996, 78(3): 339-353 doi: 10.1016/0379-6779(96)80158-5
[45] 陶宝祺.智能材料结构.北京:国防工业出版社, 1997.

Tao Bao-Qi. Intelligent Material Structures. Beijing: National Defence Industry Press, 1997.
[46] Michelson R C. Entomopter and Method for Using Same, U.S. Patent 6082671, July 2000.
[47] 王永寿.激光推进微型无人机及其系统最优化.飞航导弹, 2005, (7): 24-29 http://www.cnki.com.cn/Article/CJFDTOTAL-FHDD200507005.htm

Wang Yong-Shou. Laser propulsion micro UAV and system optimization. Winged Missiles Journal, 2005, (7): 24-29 http://www.cnki.com.cn/Article/CJFDTOTAL-FHDD200507005.htm
[48] 王广宇, 洪延姬, 叶继飞. 激光微推进研究进展. 中国宇航学会固体火箭推进24届年会论文集. 烟台, 中国: 中国宇航学会, 2007. 367-372

Wang Guang-Yu, Hong Yan-Ji, Ye Ji-Fei. The investigation process of laser propolsion. In: Proceeedings of the 24th Annual Meeting of Chinese Academy of aerospace solid rocket propulsion. Yantai, China: Chinese Society of Astronautics, 2007. 367-372
[49] Kantrowitz A. Propulsion to orbit by ground based lasers. Astronaut, 1972, 10: 74-76 doi: 10.1007/978-0-387-30453-3_17
[50] Phipps C R, Luke J R. Micro laser plasma thrusters for small satellites. In: Proceedings of the SPIE 4065, High-Power Laser Ablation Ⅲ. Santa Fe, NM, USA: SPIE, 2000. 801-809
[51] Phipps C R, Luke J, Helgeson W. Laser space propulsion overview. In: Proceedings of the SPIE 6346, XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers. Santa Fe, NM, USA: SPIE, 2007. 660602
[52] 段洪君, 史小平.微型飞行器建模与控制.北京:科学出版社, 2012.

Duan Hong-Jun, Shi Xiao-Ping. Modeling and Control of Micro Air Vehicle. Beijing: Science Press, 2012.
[53] Chirarattananon P, Ma K Y, Wood R J. Adaptive control of a millimeter-scale flapping-wing robot. Bioinspiration & Biomimetics, 2014, 9(2): Article No. 025004 https://www.researchgate.net/publication/262527690_Adaptive_control_of_a_millimeter-scale_flapping-wing_robot
[54] Soleymani T, Saghafi F. Fuzzy trajectory tracking control of an autonomous air vehicle. In: Proceedings of the 2nd International Conference on Mechanical and Electronics Engineering. Kyoto, Japan: IEEE, 2010. 347-352
[55] Cheng B, Deng X Y. A neural adaptive controller in flapping flight. Journal of Robotics and Mechatronics, 2012, 24(4): 602-611 doi: 10.20965/jrm.issn.1883-8049
[56] 段洪君. 微型飞行器飞行姿态控制方法研究[博士学位论文], 哈尔滨工业大学, 中国, 2007

Duan Hong-Jun. Flight Attitude Control of MAV [Ph.D. dissertation], Harbin Institute of Technology, China, 2007
[57] Lin C M, Chen T Y. Self-organizing CMAC control for a class of MIMO uncertain nonlinear systems. IEEE Transactions on Neural Networks, 2009, 20(9): 1377-1384 doi: 10.1109/TNN.2009.2013852
[58] Ahmed B, Pota H R. Dynamic compensation for control of a rotary wing UAV using positive position feedback. Journal of Intelligent & Robotic Systems, 2011, 61(1-4): 43-56 doi: 10.1007%2Fs10846-010-9487-7.pdf
[59] Shen S J, Michael N, Kumar V. Autonomous multi-floor indoor navigation with a computationally constrained MAV. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 20-25
[60] Groen M, Bruggeman B, Remes B, Ruijsink B, van Oudheusden B, Bijl H. Improving flight performance of the flapping wing MAV DelFly Ⅱ. In: Proceedings of the 2010 International Micro Air Vehicle Conference and Competition. Braunschweig, Germany, 2010. 3439-3445
[61] Torvik P J, Bagley R L. On the appearance of the fractional derivative in the behavior of real materials. Journal of Applied Mechanics, 1984, 51(2): 294-298 doi: 10.1115/1.3167615
[62] James E C. Lifting-line theory for an unsteady wing as a singular perturbation problem. Journal of Fluid Mechanics, 1975, 70(4): 753-771 doi: 10.1017/S0022112075002339
[63] Liu L Y, Yuan K. Noncollocated passivity-based PD control of a single-link flexible manipulator. Robotica, 2003, 21(2): 117-135 https://www.researchgate.net/publication/220103965_Noncollocated_passivity-based_PD_control_of_a_single-link_flexible_manipulator
[64] 盖文东, 王宏伦, 李大伟.鸭式旋翼/机翼无人机飞行动力学建模与分析.空气动力学学报, 2012, 30(2): 244-249 http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201202019.htm

Gai Wen-Dong, Wang Hong-Lun, Li Da-Wei. Flight dynamic modeling and analysis for the canard rotor/wing UAV. Acta Aerodynamica Sinica, 2012, 30(2): 244-249 http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201202019.htm
[65] 蒲明, 吴庆宪, 姜长生, 佃松宜, 王宇飞.非匹配不确定高阶非线性系统递阶Terminal滑模控制.自动化学报, 2012, 38(11): 1777-1793 http://www.aas.net.cn/CN/abstract/abstract17784.shtml

Pu Ming, Wu Qing-Xian, Jiang Chang-Sheng, Dian Song-Yi, Wang Yu-Fei. Recursive Terminal sliding mode control for higher-order nonlinear system with mismatched uncertainties. Acta Automatica Sinica, 2012, 38(11): 1777-1793 http://www.aas.net.cn/CN/abstract/abstract17784.shtml
[66] 张维存, 刘冀伟, 胡广大.鲁棒多模型自适应控制系统的稳定性.自动化学报, 2015, 41(1): 113-121 http://www.aas.net.cn/CN/abstract/abstract18589.shtml

Zhang Wei-Cun, Liu Ji-Wei, Hu Guang-Da. Stability analysis of robust multiple model adaptive control systems. Acta Automatica Sinica, 2015, 41(1): 113-121 http://www.aas.net.cn/CN/abstract/abstract18589.shtml
[67] Chao H Y, Cao Y C, Chen Y Q. Autopilots for small fixed-wing unmanned air vehicles: a survey. In: Proceeding of the 2007 IEEE International Conference on Mechatronics and Automation. Harbin, China: IEEE, 2007. 3144-3149
[68] Brotherton T, Grabill P, Wroblewski D, Friend R, Sotomayer B, Berry J. A testbed for data fusion for engine diagnostics and prognostics. In: Proceeding of the 2002 IEEE Aerospace Conference Proceedings. Big Sky, MT, USA: IEEE, 2002, 6: 3029-3042
[69] Ucun L, Salášek J. HOSIDF-based feedforward friction compensation in low-velocity motion control systems. Mechatronics, 2014, 24(2): 118-127 doi: 10.1016/j.mechatronics.2013.12.005
[70] Ariyur K B, Krstic M. Real-time Optimization by Extremum-Seeking Control. Hoboken, NJ: John Wiley and Sons, 2003.
[71] He W, Lv T, Chen Y N, He X Y, Sun C Y. Modeling and vibration control of flexible wings with output constraint. In: Proceeding of the 12th World Congress on Intelligent Control and Automation. Guilin, China: IEEE, 2016. 292-297
[72] Saska M, Vonásek V, Krajník T, Přeučil L. Coordination and navigation of heterogeneous MAV-UGV formations localized by a 'hawk-eye'-like approach under a model predictive control scheme. International Journal of Robotics Research, 2014, 33(10): 1393-1412 doi: 10.1177/0278364914530482
[73] Liu Z L. Reinforcement adaptive fuzzy control of wing rock phenomena. IEE Proceedings -Control Theory and Applications, 2005, 152(6): 615-620 doi: 10.1049/ip-cta:20045072
[74] 刘暾, 常亚武, 杨大明.柔性空间飞行器的振动抑止控制.航天控制, 1992, (2): 25-33 http://www.cnki.com.cn/Article/CJFDTOTAL-HTKZ199202003.htm

Liu Tun, Chang Ya-Wu, Yang Da-Ming. The vibration suppression control of flexible spacecraft. Aerospace Control, 1992, (2): 25-33 http://www.cnki.com.cn/Article/CJFDTOTAL-HTKZ199202003.htm
[75] 段丽玮, 汤忠梁, 吴志华.飞行器垂直尾翼H鲁棒振动主动控制.振动、测试与诊断, 2011, 31(1): 119-123 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zdcs201101030&dbname=CJFD&dbcode=CJFQ

Duan Li-Wei, Tang Zhong-Liang, Wu Zhi-Hua. Active vibration suppression of vertical tail using H robust control theory. Journal of Vibration, Measurement & Diagnosis, 2011, 31(1): 119-123 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zdcs201101030&dbname=CJFD&dbcode=CJFQ
[76] Bialy B J, Chakraborty I, Cekic S C, Dixon W E. Adaptive boundary control of store induced oscillations in a flexible aircraft wing. Automatica, 2016, 70: 230-238 doi: 10.1016/j.automatica.2016.04.004
[77] Paranjape A A, Guan J Y, Chung S J, Krstic M. PDE boundary control for flexible articulated wings on a robotic aircraft. IEEE Transactions on Robotics, 2013, 29(3): 625-640 doi: 10.1109/TRO.2013.2240711
[78] Mozaffari-Jovin S, Firouz-Abadi R D, Roshanian J. Flutter of wings involving a locally distributed flexible control surface. Journal of Sound and Vibration, 2015, 357: 377-408 doi: 10.1016/j.jsv.2015.03.044
[79] 樊琼剑, 杨忠, 方挺, 沈春林.多无人机协同编队飞行控制的研究现状.航空学报, 2009, 30(4): 683-691 http://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201703001.htm

Fan Qiong-Jian, Yang Zhong, Fang Ting, Shen Chun-Lin. Research status of coordinated formation flight control for multi-UAVs. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 683-691 http://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201703001.htm
[80] 刘小雄, 章卫国, 李广文, 李爱军.无人机自主编队飞行控制的技术问题.电光与控制, 2006, 13(6): 28-31 http://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ200606006.htm

Liu Xiao-Xiong, Zhang Wei-Guo, Li Guang-Wen, Li Ai-Jun. Discussion on autonomous formation flight control technique of UAV. Electronics Optics & Control, 2006, 13(6): 28-31 http://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ200606006.htm
[81] 董晓光, 曹喜滨, 张锦绣, 施梨.卫星编队飞行的鲁棒自适应控制方法.自动化学报, 2013, 39(2): 132-141 http://www.aas.net.cn/CN/abstract/abstract17823.shtml

Dong Xiao-Guang, Cao Xi-Bin, Zhang Jin-Xiu, Shi Li. A robust adaptive control law for satellite formation flying. Acta Automatica Sinica, 2013, 39(2): 132-141 http://www.aas.net.cn/CN/abstract/abstract17823.shtml
[82] Gu Y, Seanor B, Campa G, Napolitano M R, Rowe L, Gururajan S, Wan S. Design and flight testing evaluation of formation control laws. IEEE Transactions on Control Systems Technology, 2006, 14(6): 1105-1112 doi: 10.1109/TCST.2006.880203
[83] 李磊, 李小民, 杨森.基于单位四元数的四旋翼编队反演控制方法.计算机测量与控制, 2016, 24(2): 64-67 http://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201602019.htm

Li Lei, Li Xiao-Min, Yang Sen. Formation control of quadrotors with unit quaternions based via backstepping method. Computer Measurement & Control, 2016, 24(2): 64-67 http://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201602019.htm
[84] Dong X W, Yu B C, Shi Z Y, Zhong Y S. Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Transactions on Control Systems Technology, 2015, 23(1): 340-348 doi: 10.1109/TCST.2014.2314460