[1] |
柴天佑, 丁进良, 王宏, 苏春翌.复杂工业过程运行的混合智能优化控制方法.自动化学报, 2008, 34(5):505-515 http://www.aas.net.cn/CN/abstract/abstract13476.shtml
Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34(5):505-515 http://www.aas.net.cn/CN/abstract/abstract13476.shtml |
[2] |
Audsley N C, Burns A, Richardson M F, Wellings A J. Real-time scheduling:the deadline-monotonic approach. In:Proceedings of the 1991 IEEE Workshop on Real-Time Operating Systems and Software. IEEE, 1991. 133-137 |
[3] |
王大志, 刘士新, 郭希旺.求解总拖期时间最小化流水车间调度问题的多智能体进化算法.自动化学报, 2014, 40(3):548-555 http://www.aas.net.cn/CN/abstract/abstract18320.shtml
Wang Da-Zhi, Liu Shi-Xin, Guo Xi-Wang. A multi-agent evolutionary algorithm for solving total tardiness permutation flow-shop scheduling problem. Acta Automatica Sinica, 2014, 40(3):548-555 http://www.aas.net.cn/CN/abstract/abstract18320.shtml |
[4] |
田云娜, 李冬妮, 刘兆赫, 郑丹.一种基于动态决策块的超启发式跨单元调度方法.自动化学报, 2016, 42(4):524-534 http://www.aas.net.cn/CN/abstract/abstract18840.shtml
Tian Yun-Na, Li Dong-Ni, Liu Zhao-He, Zheng Dan. A hyper-heuristic approach with dynamic decision blocks for inter-cell scheduling. Acta Automatica Sinica, 2016, 42(4):524-534 http://www.aas.net.cn/CN/abstract/abstract18840.shtml |
[5] |
戴文战.一种动态多目标决策模型及其应用.控制与决策, 2000, 15(2):197-200 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200002016.htm
Dai Wen-Zhan. A new kind of model of the dynamic multiple attribute decision making based on new effective function and its application. Control and Decision, 2000, 15(2):197-200 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200002016.htm |
[6] |
Ding J L, Wang H C, Nie R, Chai T Y. Multiobjective optimization for planning of mineral processing under varied equipment capability. In:Proceedings of the 2013 International Conference on Advanced Mechatronic Systems. Luoyang, China:IEEE, 2013. 576-581 |
[7] |
Zhou A M, Jin Y C, Zhang Q F. A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Transactions on Cybernetics, 2014, 44(1):40-53 doi: 10.1109/TCYB.2013.2245892 |
[8] |
刘淳安.动态多目标优化进化算法及其应用.北京:科学出版社, 2011.
Liu Chun-An. Dynamic Multi-Objective Optimization Evolutionary Algorithm and Its Application. Beijing:Science Press, 2011. |
[9] |
陈志旺, 白锌, 杨七, 黄兴旺, 李国强.区间多目标优化中决策空间约束、支配及同序解筛选策略.自动化学报, 2015, 41(12):2115-2124 http://www.aas.net.cn/CN/abstract/abstract18784.shtml
Chen Zhi-Wang, Bai Xin, Yang Qi, Huang Xing-Wang, Li Guo-Qiang. Strategy of constraint, dominance and screening solutions with same sequence in decision space for interval multi-objective optimization. Acta Automatica Sinica, 2015, 41(12):2115-2124 http://www.aas.net.cn/CN/abstract/abstract18784.shtml |
[10] |
Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197 doi: 10.1109/4235.996017 |
[11] |
Zitzler E, Laumanns M, Thiele L. SPEA2:Improving the Strength Pareto Evolutionary Algorithm, TIK-Report 103, 2001. |
[12] |
Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4):341-359 doi: 10.1023/A:1008202821328 |
[13] |
Deb K, Udaya Bhaskara Rao N, Karthik S. Dynamic multi-objective optimization and decision-making using modified NSGA-II:a case study on hydro-thermal power scheduling. In:Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization. Matsushima, Japan:Springer, 2007. 803-817 |
[14] |
Zhang Z H. Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control. Applied Soft Computing, 2008, 8(2):959-971 doi: 10.1016/j.asoc.2007.07.005 |
[15] |
Hatzakis I, Wallace D. Dynamic multi-objective optimization with evolutionary algorithms:a forward-looking approach. In:Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. Washington, USA:ACM, 2006. 1201-1208 |
[16] |
Ishibuchi H, Masuda H, Tanigaki Y, Nojima Y. Difficulties in specifying reference points to calculate the inverted generational distance for many-objective optimization problems. In:Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making. Orlando, USA:IEEE, 2014. 170-177 |
[17] |
Branke J. Memory enhanced evolutionary algorithms for changing optimization problems. In:Proceedings of the 1999 Congress on Evolutionary Computation. Washington, D.C., USA:IEEE, 1999. |
[18] |
Zhou A M, Jin Y C, Zhang Q F, Sendhoff B, Tsang E. Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization. In:Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization. Matsushima, Japan:Springer, 2007. 832-846 |
[19] |
Helbig M, Engelbrecht A P. Archive management for dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation. In:Proceedings of the 2011 Congress on Evolutionary Computation. New Orleans, USA:IEEE, 2011. 2047-2054 |
[20] |
Farina M, Deb K, Amato P. Dynamic multiobjective optimization problems:test cases, approximation, and applications. In:Proceedings of the 2nd International Conference on Evolutionary Multi-Criterion Optimization. Faro, Portugal:Springer, 2003. 311-326 |
[21] |
郭观七, 尹呈, 曾文静, 李武, 严太山.基于等价分量交叉相似性的Pareto支配性预测.自动化学报, 2014, 40(1):33-40 http://www.aas.net.cn/CN/abstract/abstract18264.shtml
Guo Guan-Qi, Yin Cheng, Zeng Wen-Jing, Li Wu, Yan Tai-Shan. Prediction of Pareto dominance by cross similarity of equivalent components. Acta Automatica Sinica, 2014, 40(1):33-40 http://www.aas.net.cn/CN/abstract/abstract18264.shtml |
[22] |
Das I, Dennis J E. Normal-boundary intersection:a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 1998, 8(3):631-657 doi: 10.1137/S1052623496307510 |
[23] |
Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I:Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 2014, 18(4):577-601 doi: 10.1109/TEVC.2013.2281535 |
[24] |
Asafuddoula M, Ray T, Sarker R. A decomposition based evolutionary algorithm for many objective optimization with systematic sampling and adaptive epsilon control. In:Proceedings of the 7th International Conference on Evolutionary Multi-Criterion Optimization. Sheffield, UK:Springer, 2013. 413-427 |
[25] |
Jain H, Deb K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II:handling constraints and extending to an adaptive approach. IEEE Transactions on Evolutionary Computation, 2014, 18(4):602-622 doi: 10.1109/TEVC.2013.2281534 |
[26] |
Azzouz R, Bechikh S, Ben Said L. A multiple reference point-based evolutionary algorithm for dynamic multi-objective optimization with undetectable changes. In:Proceedings of the 2014 IEEE Congress on Evolutionary Computation. Beijing, China:IEEE, 2014. 3168-3175 |
[27] |
Cheng R, Jin Y C, Narukawa K, Sendhoff B. A multiobjective evolutionary algorithm using Gaussian process-based inverse modeling. IEEE Transactions on Evolutionary Computation, 2015, 19(6):838-856 doi: 10.1109/TEVC.2015.2395073 |
[28] |
Farina M, Deb K, Amato P. Dynamic multiobjective optimization problems:test cases, approximations, and applications. IEEE Transactions on Evolutionary Computation, 2004, 8(5):425-442 doi: 10.1109/TEVC.2004.831456 |
[29] |
Li X D, Branke J, Kirley M. On performance metrics and particle swarm methods for dynamic multiobjective optimization problems. In:Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Singapore:IEEE, 2007. 576-583 |
[30] |
Zhang Q F, Zhou A M, Jin Y C. RM-MEDA:a regularity model-based multiobjective estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation, 2008, 12(1):41-63 doi: 10.1109/TEVC.2007.894202 |
[31] |
Van Veldhuizen D A. Multiobjective Evolutionary Algorithms:Classifications, Analyses, and New Innovations[Ph.D. dissertation], Air Force Institute of Technology Wright Patterson AFB, OH, USA, 1999. |