[1] |
Brain-computer interface from Wikipedia, the free encyclopedia [Online], available: http://en.wikipedia.org/wiki/ Brain-computer_interface, April 29, 2016. |
[2] |
Hochberg L R, Bacher D, Jarosiewicz B, Masse N Y, Simeral J D, Vogel J, Haddadin S, Liu J, Cash S S, van der Smagt P, Donoghue J P. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 2012, 485(7398): 372-375 doi: 10.1038/nature11076 |
[3] |
伏云发, 王越超, 李洪谊, 徐保磊, 李永程. 直接脑控机器人接口技术. 自动化学报, 2012, 38(8): 1229-1246 doi: 10.3724/SP.J.1004.2012.01229
Fu Yun-Fa, Wang Yue-Chao, Li Hong-Yi, Xu Bao-Lei, Li Yong-Cheng. Direct brain-controlled robot interface technology. Acta Automatica Sinica, 2012, 38(8): 1229-1246 doi: 10.3724/SP.J.1004.2012.01229 |
[4] |
McFarland D J, Wolpaw J R. Brain-computer interface operation of robotic and prosthetic devices. Computer, 2008, 41(10): 52-56 doi: 10.1109/MC.2008.409 |
[5] |
Bell C J, Shenoy P, Chalodhorn R, Rao R P N. Control of a humanoid robot by a noninvasive brain-computer interface in humans. Journal of Neural Engineering, 2008, 5(2): 214-220 doi: 10.1088/1741-2560/5/2/012 |
[6] |
Millan J R, Renkens F, Mourino J, Gerstner W. Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1026-1033 doi: 10.1109/TBME.2004.827086 |
[7] |
Comparison of consumer brain-computer interfaces from Wikipedia, the free encyclopedia [Online], available: http://en.wikipedia.org/wiki/Comparison_of_consumer_ brain-computer_interface_devices, December 20, 2015. |
[8] |
伏云发, 徐保磊, 李永程, 李洪谊, 王越超, 余正涛. 基于运动相关皮层电位握力运动模式识别研究. 自动化学报, 2014, 40(6): 1045-1057 http://www.aas.net.cn/CN/abstract/abstract18374.shtml
Fu Yun-Fa, Xu Bao-Lei, Li Yong-Cheng, Li Hong-Yi, Wang Yue-Chao, Yu Zheng-Tao. Recognition of actual grip force movement modes based on movement-related cortical potentials. Acta Automatica Sinica, 2014, 40(6): 1045-1057 http://www.aas.net.cn/CN/abstract/abstract18374.shtml |
[9] |
SchlÖgl A, Lee F, Bischof H, Pfurtscheller G. Characterization of four-class motor imagery EEG data for the BCI-competition 2005. Journal of Neural Engineering, 2005, 2(4): L14-L22 http://cn.bing.com/academic/profile?id=2057219090&encoded=0&v=paper_preview&mkt=zh-cn |
[10] |
孙会文, 伏云发, 熊馨, 杨俊, 刘传伟, 余正涛. 基于HHT运动想象脑电模式识别研究. 自动化学报, 2015, 41(9): 1686-1692 http://www.aas.net.cn/CN/abstract/abstract18742.shtml
Sun Hui-Wen, Fu Yun-Fa, Xiong Xin, Yang Jun, Liu Chuan-Wei, Yu Zheng-Tao. Identification of EEG induced by motor imagery based on Hilbert-Huang transform. Acta Automatica Sinica, 2015, 41(9): 1686-1692 http://www.aas.net.cn/CN/abstract/abstract18742.shtml |
[11] |
Fu Y F, Xu B L, Li Y C, Wang Y C, Yu Z T, Li H Y. Single-trial decoding of imagined grip force parameters involving the right or left hand based on movement-related cortical potentials. Chinese Science Bulletin, 2014, 59(16): 1907-1916 doi: 10.1007/s11434-014-0234-5 |
[12] |
Lv J, Li Y Q, Gu Z H. Decoding hand movement velocity from electroencephalogram signals during a drawing task. Biomedical Engineering Online, 2010, 9: 64 doi: 10.1186/1475-925X-9-64 |
[13] |
Yin X X, Xu B L, Jiang C H, Fu Y F, Wang Z D, Li H Y, Shi G. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Journal of Neural Engineering, 2015, 12(3): 036004, DOI: 10.1088/1741-2560/12/3/036004 |
[14] |
尧德中, 刘铁军, 雷旭, 杨平, 徐鹏, 张杨松. 基于脑电的脑—机接口: 关键技术和应用前景. 电子科技大学学报, 2009, 38(5): 550-554 http://www.cnki.com.cn/Article/CJFDTOTAL-DKDX200905010.htm
Yao De-Zhong, Liu Tie-Jun, Lei Xu, Yang Ping, Xu Peng, Zhang Yang-Song. Electroencephalogram based brain-computer interface: key techniques and application prospect. Journal of University of Electronic Science and Technology of China, 2009, 38(5): 550-554 http://www.cnki.com.cn/Article/CJFDTOTAL-DKDX200905010.htm |
[15] |
王行愚, 金晶, 张宇, 王蓓. 脑控: 基于脑—机接口的人机融合控制. 自动化学报, 2013, 39(3): 208-221 doi: 10.1016/S1874-1029(13)60023-3
Wang Xing-Yu, Jin Jing, Zhang Yu, Wang Bei. Brain control: human-computer integration control based on brain-computer interface. Acta Automatica Sinica, 2013, 39(3): 208-221 doi: 10.1016/S1874-1029(13)60023-3 |
[16] |
Zhang R, Yao D, Valdés-Sosa P A, Li F L, Li P Y, Zhang T, Ma T, Li Y J, Xu P. Efficient resting-state EEG network facilitates motor imagery performance. Journal of Neural Engineering, 2015, 12(6): 066024, DOI: 10.1088/1741-2560/12/6/066024 |
[17] |
Fazel-Rezai R, Allison B Z, Guger C, Sellers E W, Kleih S C, Kübler A. P300 brain computer interface: current challenges and emerging trends. Frontiers in Neuroengineering, 2012, 5: 14 http://cn.bing.com/academic/profile?id=2105438329&encoded=0&v=paper_preview&mkt=zh-cn |
[18] |
Gao S K, Wang Y J, Gao X R, Hong B. Visual and auditory brain-computer interfaces. IEEE Transactions on Biomedical Engineering, 2014, 61(5): 1436-1447 doi: 10.1109/TBME.2014.2300164 |
[19] |
Chen X G, Wang Y J, Nakanishi M, Gao X R, Jung T P, Gao S K. High-speed spelling with a noninvasive brain-computer interface. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44): E6058-E6067 http://cn.bing.com/academic/profile?id=2132876794&encoded=0&v=paper_preview&mkt=zh-cn |
[20] |
Bin G Y, Gao X R, Yan Z, Hong B, Gao S K. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. Journal of Neural Engineering, 2009, 6(4): 1771-1779 http://cn.bing.com/academic/profile?id=2105478324&encoded=0&v=paper_preview&mkt=zh-cn |
[21] |
The 2th competition of China brain-computer interface [Online], available: http://www.bcicompetition.cn, December 22, 2015. |
[22] |
Lin Z L, Zhang C S, Wu W, Gao X R. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2610-2614 doi: 10.1109/TBME.2006.886577 |
[23] |
Long J Y, Li Y Q, Wang H T, Yu T Y, Pan J H, Li F. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2012, 20(5): 720-729 http://cn.bing.com/academic/profile?id=2001471870&encoded=0&v=paper_preview&mkt=zh-cn |
[24] |
Middendorf M, McMillan G, Calhoun G, Jones K S. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 211-214 doi: 10.1109/86.847819 |
[25] |
Mak J N, Arbel Y, Minett J W, McCane L M, Yuksel B, Ryan D, Thompson D, Bianchi L, Erdogmus D. Optimizing the P300-based brain-computer interface: current status, limitations and future directions. Journal of Neural Engineering, 2011, 8(2): 025003, DOI: 10.1088/1741-2560/8/2/025003 |
[26] |
Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G. How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 145-147 doi: 10.1109/TNSRE.2003.814481 |
[27] |
Guger C, Allison B Z, GroÜwindhager B, PrÜckl R, HintermÜller C, Kapeller C, Bruckner M, Krausz G, Edlinger G. How many people could use an SSVEP BCI? Frontiers in Neuroscience, 2012, 6: 169 http://cn.bing.com/academic/profile?id=2023666981&encoded=0&v=paper_preview&mkt=zh-cn |
[28] |
Jin J, Daly I, Zhang Y, Wang X Y, Cichocki A. An optimized ERP brain-computer interface based on facial expression changes. Journal of Neural Engineering, 2014, 11(3): 1082-1088 http://cn.bing.com/academic/profile?id=2089448644&encoded=0&v=paper_preview&mkt=zh-cn |