[1] Hildebrandt T H, Liu W T. Optical recognition of handwritten Chinese characters:advances since 1980. Pattern Recognition, 1993, 26(2):205-225 doi: 10.1016/0031-3203(93)90030-Z
[2] Suen C Y, Berthod M, Mori S. Automatic recognition of handprinted characters——the state of the art. Proceedings of the IEEE, 1980, 68(4):469-487 doi: 10.1109/PROC.1980.11675
[3] Tai J W. Some research achievements on Chinese character recognition in China. International Journal of Pattern Recognition and Artificial Intelligence, 1991, 5(01n02):199-206 doi: 10.1142/S0218001491000132
[4] Liu C L, Jaeger S, Nakagawa M. Online recognition of Chinese characters:the state-of-the-art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2):198-213 doi: 10.1109/TPAMI.2004.1262182
[5] Cheriet M, Kharma N, Liu C L, Suen C Y. Character Recognition Systems:a Guide for Students and Practitioners. USA:John Wiley & Sons, 2007.
[6] Plamondon R, Srihari S N. Online and off-line handwriting recognition:a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1):63-84 doi: 10.1109/34.824821
[7] Dai R W, Liu C L, Xiao B H. Chinese character recognition:history, status and prospects. Frontiers of Computer Science in China, 2007, 1(2):126-136 doi: 10.1007/s11704-007-0012-5
[8] Liu C L. High accuracy handwritten Chinese character recognition using quadratic classifiers with discriminative feature extraction. In:Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China:IEEE, 2006.942-945
[9] Long T, Jin L W. Building compact MQDF classifier for large character set recognition by subspace distribution sharing. Pattern Recognition, 2008, 41(9):2916-2925 doi: 10.1016/j.patcog.2008.02.009
[10] Liu C L, Yin F, Wang D H, Wang Q F. Online and offline handwritten Chinese character recognition:benchmarking on new databases. Pattern Recognition, 2013, 46(1):155-162 doi: 10.1016/j.patcog.2012.06.021
[11] Zhang H G, Guo J, Chen G, Li C G. HCL2000——a large-scale handwritten Chinese character database for handwritten character recognition. In:Proceedings of the 10th International Conference on Document Analysis and Recognition. Barcelona, Spain:IEEE, 2009.286-290 http://cn.bing.com/academic/profile?id=2137472923&encoded=0&v=paper_preview&mkt=zh-cn
[12] 钱跃良, 林守勋, 刘群, 刘洋, 刘宏, 谢萦. 863计划中文信息处理与智能人机接口基础数据库的设计和实现. 高技术通讯, 2005, 15(1):107-110

Qian Yue-Liang, Lin Shou-Xun, Liu Qun, Liu Yang, Liu Hong, Xie Ying. Design and construction of HTRDP corpora resources for Chinese language processing and intelligent human-machine interaction. Chinese High Technology Letters, 2005, 15(1):107-110
[13] Jin L W, Gao Y, Liu G, Liu G Y, Li Y Y, Ding K. SCUT-COUCH2009——a comprehensive online unconstrained Chinese handwriting database and benchmark evaluation. International Journal on Document Analysis and Recognition, 2011, 14(1):53-64 doi: 10.1007/s10032-010-0116-6
[14] Liu C L, Sako H, Fujisawa H. Handwritten Chinese character recognition:alternatives to nonlinear normalization. In:Proceedings of the 7th International Conference on Document Analysis and Recognition. Edinburgh, UK:IEEE, 2003.524-528
[15] Liu C L, Marukawa K. Pseudo two-dimensional shape normalization methods for handwritten Chinese character recognition. Pattern Recognition, 2005, 38(12):2242-2255 doi: 10.1016/j.patcog.2005.04.019
[16] Jin L W, Huang J C, Yin J X, He Q H. Deformation transformation for handwritten Chinese character shape correction. In:Proceedings of the 3rd International Conference on Advances in Multimodal Interfaces. Beijing, China:Springer, 2000.450-457
[17] Miyao H, Maruyama M. Virtual example synthesis based on PCA for off-line handwritten character recognition. In:Proceedings of the 7th International Workshop on Document Analysis Systems VⅡ. Nelson, New Zealand:Springer, 2006.96-105
[18] Chen G, Zhang H G, Guo J. Learning pattern generation for handwritten Chinese character using pattern transform method with cosine function. In:Proceedings of the 2006 International Conference on Machine Learning and Cybernetics. Dalian, China:IEEE, 2006.3329-3333
[19] Leung K C, Leung C H. Recognition of handwritten Chinese characters by combining regularization, Fisher's discriminant and distorted sample generation. In:Proceedings of the 10th International Conference on Document Analysis and Recognition. Barcelona, Spain:IEEE, 2009.1026-1030 https://www.computer.org/web/csdl/index/-/csdl/proceedings/icdar/2009/3725/00/index.html
[20] Okamoto M, Nakamura A, Yamamoto K. Direction-change features of imaginary strokes for on-line handwriting character recognition. In:Proceedings of the 14th International Conference on Pattern Recognition. Brisbane, QLD:IEEE, 1998.1747-1751
[21] Okamoto M, Yamamoto K. On-line handwriting character recognition using direction-change features that consider imaginary strokes. Pattern Recognition, 1999, 32(7):1115-1128 doi: 10.1016/S0031-3203(98)00153-8
[22] Ding K, Deng G Q, Jin L W. An investigation of imaginary stroke techinique for cursive online handwriting Chinese character recognition. In:Proceedings of the 10th International Conference on Document Analysis and Recognition. Barcelona, Spain:IEEE, 2009.531-535
[23] Jin L W, Wei G. Handwritten Chinese character recognition with directional decomposition cellular features. Journal of Circuits, Systems, and Computers, 1998, 8(4):517-524 doi: 10.1142/S0218126698000316
[24] Bai Z L, Huo Q. A study on the use of 8-directional features for online handwritten Chinese character recognition. In:Proceedings of the 8th International Conference on Document Analysis and Recognition. Seoul, Korea:IEEE, 2005.262-266
[25] Liu C L, Zhou X D. Online Japanese character recognition using trajectory-based normalization and direction feature extraction. In:Proceedings of 10th International Workshop on Frontiers in Handwriting Recognition. La Baule, France:IEEE, 2006. http://or.nsfc.gov.cn/bitstream/00001903-5/96633/1/1000007198379.pdf
[26] Ge Y, Huo Q, Feng Z D. Offline recognition of handwritten Chinese characters using Gabor features, CDHMM modeling and MCE training. In:Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando, FL, USA:IEEE, 2002. I-1053-I-1056
[27] Liu C L. Normalization-cooperated gradient feature extraction for handwritten character recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8):1465-1469 doi: 10.1109/TPAMI.2007.1090
[28] Kimura F, Takashina K, Tsuruoka S, Miyake Y. Modified quadratic discriminant functions and the application to Chinese character recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, PAMI-9(1):149-153 http://cn.bing.com/academic/profile?id=2041570030&encoded=0&v=paper_preview&mkt=zh-cn
[29] Mangasarian O L, Musicant D R. Data discrimination via nonlinear generalized support vector machines. Complementarity:Applications, Algorithms and Extensions. US:Springer, 2001.233-251 http://cn.bing.com/academic/profile?id=1518494348&encoded=0&v=paper_preview&mkt=zh-cn
[30] Kim H J, Kim K H, Kim S K, Lee J K. On-line recognition of handwritten Chinese characters based on hidden Markov models. Pattern Recognition, 1997, 30(9):1489-1500 doi: 10.1016/S0031-3203(96)00161-6
[31] Liu C L, Sako H, Fujisawa H. Discriminative learning quadratic discriminant function for handwriting recognition. IEEE Transactions on Neural Networks, 2004, 15(2):430-444 doi: 10.1109/TNN.2004.824263
[32] Jin X B, Liu C L, Hou X W. Regularized margin-based conditional log-likelihood loss for prototype learning. Pattern Recognition, 2010, 43(7):2428-2438 doi: 10.1016/j.patcog.2010.01.013
[33] Srihari S N, Yang X S, Ball G R. Offline Chinese handwriting recognition:an assessment of current technology. Frontiers of Computer Science in China, 2007, 1(2):137-155 doi: 10.1007/s11704-007-0015-2
[34] Su T H, Zhang T W, Guan D J, Huang H J. Off-line recognition of realistic Chinese handwriting using segmentation-free strategy. Pattern Recognition, 2009, 42(1):167-182 doi: 10.1016/j.patcog.2008.05.012
[35] Wang Q F, Yin F, Liu C L. Handwritten Chinese text recognition by integrating multiple contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(8):1469-1481 doi: 10.1109/TPAMI.2011.264
[36] Zhou X D, Wang D H, Tian F, Liu C L, Nakagawa M. Handwritten Chinese/Japanese text recognition using semi-Markov conditional random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(10):2413-2426 doi: 10.1109/TPAMI.2013.49
[37] Qiu L Q, Jin L W, Dai R F, Zhang Y X, Li L. An open source testing tool for evaluating handwriting input methods. In:Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis:IEEE, 2015.136-140
[38] Lin C L, Yin F, Wng Q F, Wang D H. ICDAR 2011 Chinese handwriting recognition competition. In:Proceedings of the 11th International Conference on Document Analysis and Recognition. Beijing, China:IEEE, 2011.1464-1469
[39] Yin F, Wang Q F, Zhang X Y, Liu C L. ICDAR 2013 Chinese handwriting recognition competition. In:Proceedings of the 12th International Conference on Document Analysis and Recognition. Washington, DC, USA:IEEE, 2013.1464-1470
[40] Graham B. Spatially-sparse convolutional neural networks. arXiv:1409.6070, 2014. http://cn.bing.com/academic/profile?id=2270144854&encoded=0&v=paper_preview&mkt=zh-cn
[41] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786):504-507 doi: 10.1126/science.1127647
[42] Bengio Y, Courville A, Vincent P. Representation learning:a review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828 doi: 10.1109/TPAMI.2013.50
[43] Schmidhuber J. Deep learning in neural networks:an overview. Neural Networks, 2015, 61:85-117 doi: 10.1016/j.neunet.2014.09.003
[44] LeCun Y, Boser B, Denker J S, Howard R E, Habbard W, Jackel L D, Henderson D. Handwritten digit recognition with a back-propagation network. In:Proceedings of Advances in Neural Information Processing Systems 2. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc., 1990.396-404 http://cn.bing.com/academic/profile?id=2109779438&encoded=0&v=paper_preview&mkt=zh-cn
[45] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324 doi: 10.1109/5.726791
[46] Ranzato M A, Poultney C, Chopra S, LeCun Y. Efficient learning of sparse representations with an energy-based model. In:Proceedings of the 2007 Advances in Neural Information Processing Systems. USA:MIT Press, 2007.1137-1144
[47] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8):1735-1780 doi: 10.1162/neco.1997.9.8.1735
[48] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In:Proceedings of the 2012 Advances in Neural Information Processing Systems 25. Lake Tahoe, Nevada, USA:Curran Associates, Inc., 2012.1097-1105
[49] Ouyang W L, Wang X G, Zeng X Y, Qiu S, Luo P, Tian Y L, Li H S, Yang S, Wang Z, Loy C C, Tang X O. Deepid-net:Deformable deep convolutional neural networks for object detection. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015.2403-2412
[50] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. http://cn.bing.com/academic/profile?id=1445015017&encoded=0&v=paper_preview&mkt=zh-cn
[51] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473, 2014. http://arxiv.org/abs/1409.0473v6
[52] Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural networks. In:Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada:IEEE, 2013.6645-6649 http://cn.bing.com/academic/profile?id=2276532228&encoded=0&v=paper_preview&mkt=zh-cn
[53] Xu K, Ba J, Kiros R, Cho, Courville A, Salakhutdinov R, Zemel R, Bengio Y. Show, attend and tell:neural image caption generation with visual attention. arXiv:1502.03044, 2015. https://arxiv.org/pdf/1505.00393.pdf
[54] Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell:a neural image caption generator. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA:IEEE, 2015.3156-3164 http://arxiv.org/pdf/1602.05875.pdf
[55] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436-444 doi: 10.1038/nature14539
[56] Tang Y C, Mohamed A R. Multiresolution deep belief networks. In:Proceedings of the 15th International Conference on Artificial Intelligence and Statistics. La Palma, Canary Islands, Spain:Microtome Publishing, 2012.1203-1211
[57] Srivastava N, Salakhutdinov R. Multimodal learning with deep Boltzmann machines. In:Proceedings of the 2012 Advances in Neural Information Processing Systems. Tahoe, Nevada, USA:Curran Associates, Inc., 2012.2222-2230
[58] Shao J, Kang K, Loy C C, Wang X G. Deeply learned attributes for crowded scene understanding. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015.4657-4666
[59] Oquab M, Bottou L, Laptev I, Sivic J. Learning and transferring mid-level image representations using convolutional neural networks. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA:IEEE, 2014.1717-1724 http://cn.bing.com/academic/profile?id=2396013981&encoded=0&v=paper_preview&mkt=zh-cn
[60] Yang W X, Jin L W, Xie Z C, Feng Z Y. Improved deep convolutional neural network for online handwritten Chinese character recognition using domain-specific knowledge. In:Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis:IEEE, 2015.551-555 http://dl.acm.org/citation.cfm?id=2880878
[61] Yang W X, Jin L W, Tao D C, Xie Z C, Feng Z Y. DropSample:a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition. arXiv:1505.05354, 2015. http://arxiv.org/pdf/1606.05763v1.pdf
[62] Yang W X, Jin L W, Liu M F. Character-level Chinese writer identification using path signature feature, dropstroke and deep CNN. arXiv:1505.04922, 2015.
[63] Yang W X, Jin L W, Liu M F. DeepWriterID:an end-to-end online text-independent writer identification system. arXiv:1508.04945, 2015.
[64] Su T H, Liu C L, Zhang X Y. Perceptron learning of modified quadratic discriminant function. In:Proceedings of the 2011 International Conference on Document Analysis and Recognition. Beijing, China:IEEE, 2011.1007-1011
[65] Du J, Hu J S, Zhu B, Wei S, Dai L R. A study of designing compact classifiers using deep neural networks for online handwritten Chinese character recognition. In:Proceedings of the 22nd International Conference on Pattern Recognition. Stockholm, Sweden:IEEE, 2014.2950-2955
[66] Du J. Irrelevant variability normalization via hierarchical deep neural networks for online handwritten Chinese character recognition. In:Proceedings of the 14th International Conference on Frontiers in Handwriting Recognition. Heraklion, Greece:IEEE, 2014.303-308
[67] Du J, Huo Q, Chen K. Designing compact classifiers for rotation-free recognition of large vocabulary online handwritten Chinese characters. In:Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Kyoto, Japan:IEEE, 2012.1721-1724
[68] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7):1527-1554 doi: 10.1162/neco.2006.18.7.1527
[69] Du J, Hu J S, Zhu B, Wei S, Dai L R. Writer adaptation using bottleneck features and discriminative linear regression for online handwritten Chinese character recognition. In:Proceedings of the 14th International Conference on Frontiers in Handwriting Recognition. Heraklion, Greece:IEEE, 2014.311-316
[70] Liwicki M, Graves A, Bunke H. A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks. In:Proceedings of the 9th International Conference on Document Analysis and Recognition. Curitiba, Paraná, Brazil, 2007.367-371
[71] Frinken V, Bhattacharya N, Uchida S, Pal U. Improved BLSTM neural networks for recognition of on-line Bangla complex words. Structural, Syntactic, and Statistical Pattern Recognition. Berlin Heidelberg, German:Springer, 2014.404-413
[72] Wu W, Gao G L. Online cursive handwriting Mongolia words recognition with recurrent neural networks. International Journal of Information Processing and Management, 2011, 2(3):20-26 doi: 10.4156/ijipm
[73] Graves A. Generating sequences with recurrent neural networks. arXiv:1308.0850, 2013. http://arxiv.org/pdf/1605.00064.pdf
[74] Cireçsan D, Meier U. Multi-column deep neural networks for offline handwritten Chinese character classification. In:Proceedings of the 2015 International Joint Conference on Neural Networks. Killarney, Ireland:IEEE, 2015.1-6
[75] Cireçsan D C, Meier U, Gambardella L M, Schmidhuber J. Convolutional neural network committees for handwritten character classification. In:Proceedings of the 2011 International Conference on Document Analysis and Recognition. Beijing, China:IEEE, 2011.1135-1139
[76] Wu C P, Fan W, He Y, Sun J, Naoi S. Handwritten character recognition by alternately trained relaxation convolutional neural network. In:Proceedings of the 14th International Conference on Frontiers in Handwriting Recognition. Crete, Greece:IEEE, 2014.291-296
[77] Zhong Z Y, Jin L W, Xie Z C. High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps. In:Proceedings of the 13th International Conference on Document Analysis and Recognition (ICDAR). Tunis:IEEE, 2015.846-850 http://dl.acm.org/citation.cfm?id=2880878
[78] Wang Y W, Li X, Liu C S, Ding X Q, Chen Y X. An MQDF-CNN hybrid model for offline handwritten Chinese character recognition. In:Proceedings of the 14th International Conference on Frontiers in Handwriting Recognition. Heraklion, Greece:IEEE, 2014.246-249
[79] 高学, 王有旺. 基于CNN和随机弹性形变的相似手写汉字识别. 华南理工大学学报:自然科学版, 2014, 42(1):72-76 http://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201401016.htm

Gao Xue, Wang You-Wang. Recognition of similar handwritten Chinese characters based on CNN and random elastic deformation. Journal of South China University of Technology:Natural Science Edition, 2014, 42(1):72-76 http://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201401016.htm
[80] 杨钊, 陶大鹏, 张树业, 金连文. 大数据下的基于深度神经网的相似汉字识别. 通信学报, 2014, 35(9):184-189 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201409019.htm

Yang Zhao, Tao Da-Peng, Zhang Shu-Ye, Jin Lian-Wen. Similar handwritten Chinese character recognition based on deep neural networks with big data. Journal on Communications, 2014, 35(9):184-189 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201409019.htm
[81] Feng B Y, Ren M W, Zhang X Y, Suen C Y. Automatic recognition of serial numbers in bank notes. Pattern Recognition, 2014, 47(8):2621-2634 doi: 10.1016/j.patcog.2014.02.011
[82] He M J, Zhang S Y, Mao H Y, Jin L W. Recognition confidence analysis of handwritten Chinese character with CNN. In:Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis:IEEE, 2015.61-65 http://dl.acm.org/citation.cfm?id=2880731
[83] Bengio Y, Goodfellow I J, Courville A. Deep learning[Online], available:http://www.deeplearningbook.org,May11,2016
[84] LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W, Jackel L D. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4):541-551 doi: 10.1162/neco.1989.1.4.541
[85] Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA:IEEE, 2015.1-9 http://www.mdpi.com/2072-4292/8/6/483/htm
[86] Lin M, Chen Q, Yan S C. Network in network. arXiv:1312.4400, 2013. http://cn.bing.com/academic/profile?id=2293132816&encoded=0&v=paper_preview&mkt=zh-cn
[87] Orr G B, Müller K R. Neural Networks:Tricks of the Trade. German:Springer, 1998.
[88] Hinton G E, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012. http://cn.bing.com/academic/profile?id=2195273494&encoded=0&v=paper_preview&mkt=zh-cn
[89] Wan L, Zeiler M, Zhang S X, LeCun Y, Fergus R. Regularization of neural networks using dropConnect. In:Proceedings of the 30th International Conference on Machine Learning. Atlanta, USA, 2013.1058-1066 https://arxiv.org/pdf/1505.00393.pdf
[90] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S A, Huang Z H, Karpathy A, Khosla A, Bernstein M, Berg A C, Li F F. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3):211-252 doi: 10.1007/s11263-015-0816-y
[91] Sun Y, Chen Y H, Wang X G, Tang X O. Deep learning face representation by joint identification-verification. In:Proceedings of Advances in Neural Information Processing Systems 27. Montréal, Canada:MIT, 2014.1988-1996
[92] Taigman Y, Yang M, Ranzato M A, Wolf L. DeepFace:closing the gap to human-level performance in face verification. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA:IEEE, 2014.1701-1708 http://europepmc.org/articles/PMC4373928
[93] Toshev A, Szegedy C. Deeppose:Human pose estimation via deep neural networks. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA:IEEE, 2014.1653-1660 https://www.computer.org/csdl/proceedings/cvpr/2014/5118/00/index.html
[94] Williams R J, Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1989, 1(2):270-280 doi: 10.1162/neco.1989.1.2.270
[95] Graham B. Sparse arrays of signatures for online character recognition. arXiv:1308.0371, 2013. http://cn.bing.com/academic/profile?id=2360228825&encoded=0&v=paper_preview&mkt=zh-cn
[96] Jaderberg M, Simonyan K, Vedaldi A, Zisserman A. Synthetic data and artificial neural networks for natural scene text recognition. arXiv:1406.2227, 2014. http://arxiv.org/abs/1406.2227?context=cs
[97] Jaderberg M, Vedaldi A, Zisserman A. Deep features for text spotting. In:Proceedings of the 13th European Conference Computer Vision. Zurich, Switzerland:Springer, 2014.512-528 http://cn.bing.com/academic/profile?id=70975097&encoded=0&v=paper_preview&mkt=zh-cn
[98] Wu Y C, Yin F, Liu C L. Evaluation of neural network language models in handwritten Chinese text recognition. In:Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis:IEEE, 2015.166-170
[99] Bengio Y, Schwenk H, Senécal J S, Morin F, Gauvain J L. Neural probabilistic language models. Innovations in Machine Learning. Berlin Heidelberg, Germany:Springer, 2006.137-186
[100] Chen X, Tan T, Liu X, Lanchantin P, Wan M, Gales MJF, Woodland PC. Recurrent neural network language model adaptation for multi-genre broadcast speech recognition. In:Proceedings of the 2015 International Speech Communication Association Interspeech. Dresden, Germany, 2015.3511-3515
[101] Sak H, Senior A, Rao K,ÌIrsoy O, Graves A, Beaufays F, Schalkwyk J. Learning acoustic frame labeling for speech recognition with recurrent neural networks. In:Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing. South Brisbane, QLD:IEEE, 2015.4280-4284
[102] De Mulder W, Bethard S, Moens M F. A survey on the application of recurrent neural networks to statistical language modeling. Computer Speech & Language, 2015, 30(1):61-98 http://cn.bing.com/academic/profile?id=2154137718&encoded=0&v=paper_preview&mkt=zh-cn
[103] He K M, Zhang X Y, Ren S Q, Sun J. Delving deep into rectifiers:surpassing human-level performance on imagenet classification. In:Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015.1026-1034
[104] Ioffe S, Szegedy C. Batch normalization:accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015. http://cn.bing.com/academic/profile?id=2397299141&encoded=0&v=paper_preview&mkt=zh-cn
[105] Fukushima K. Neocognitron:a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980, 36(4):193-202 doi: 10.1007/BF00344251
[106] Werbos P J. Backpropagation through time:what it does and how to do it. Proceedings of the IEEE, 1990, 78(10):1550-1560 doi: 10.1109/5.58337
[107] Littman M L. Reinforcement learning improves behaviour from evaluative feedback. Nature, 2015, 521(7553):445-451 doi: 10.1038/nature14540
[108] Mnih V, Kavukcuoglu K, Silver D, Rusu A A, Veness J, Bellemare M G, Graves A, Riedmiller M, Fidjeland A K, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540):529-533 doi: 10.1038/nature14236
[109] Cuda-ConvNet2 [Online], available:https://github.com/akrizhevsky/cuda-convnet2, May 11, 2016
[110] Bengio Y, LeCun Y, Nohl C, Burges C. LeRec:a NN/HMM hybrid for on-line handwriting recognition. Neural Computation, 1995, 7(6):1289-1303 doi: 10.1162/neco.1995.7.6.1289
[111] Simard P Y, Steinkraus D, Platt J C. Best practices for convolutional neural networks applied to visual document analysis. In:Proceedings of the 7th International Conference on Document Analysis and Recognition. Edinburgh, UK:IEEE, 2003.958-963
[112] Caffe[Online], available:http://caffe.berkeleyvision.org/, May 11, 2016
[113] Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, Bouchard N, Warde-Farley D, Bengio Y. Theano:new features and speed improvements. arXiv:1211.5590, 2012. http://cn.bing.com/academic/profile?id=2166015963&encoded=0&v=paper_preview&mkt=zh-cn
[114] Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley D, Bengio Y. Theano:a CPU and GPU math expression compiler. In:Proceedings of the 9th Python for Scientific Computing Conference. Austin, TX, USA, 2010.1-7 http://dl.acm.org/citation.cfm?id=2912118
[115] Torch[Online], available:http://torch.ch/, May 11, 2016
[116] Lin M, Li S, Luo X, Yan S C. Purine:a bi-graph based deep learning framework. arXiv:1412.6249, 2014.
[117] MXNet[Online], available:https://github.com/dmlc/mx-net,May11,2016
[118] DIGITS[Online], available:https://developer.nvidia.com/digits, May 11, 2016
[119] ConvNet[Online], available:https://code.google.com/p/cuda-convnet/, May 11, 2016
[120] DeepCNet[Online], available:http://www2.warwick.ac.u-k/fac/sci/statistics/staff/academic-research/graham/,May11,2016
[121] Xing E P, Ho Q R, Dai W, Kim J K, Wei J L, Lee S, Zheng X, Xie P T, Kumar A, Yu Y L. Petuum:a new platform for distributed machine learning on big data. IEEE Transactions on Big Data, 2015, 1(2):49-67 doi: 10.1109/TBDATA.2015.2472014
[122] Weninger F, Bergmann J, Schuller B. Introducing CURRENNT:the Munich open-source CUDA recurrent neural network toolkit. The Journal of Machine Learning Research, 2015, 16(1):547-551
[123] Minerva[Online], available:https://github.com/dmlc/min-erva,May11,2016
[124] TensorFlow[Online], available:https://github.com/tensor-flow/tensorflow,May11,2016
[125] DMTK[Online], available:https://github.com/Microsoft/DMTK,May3,2016
[126] Cireçsan D C, Meier U, Schmidhuber J. Transfer learning for Latin and Chinese characters with deep neural networks. In:Proceedings of the 2012 International Joint Conference on Neural Networks. Brisbane, QLD:IEEE, 2012.1-6
[127] Ciresan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island:IEEE, 2012.3642-3649
[128] Bastien F, Bengio Y, Bergeron A, Boulanger-Lewandowski N, Breuel T, Chherawala Y, Cisse M, Côté M, Erhan D, Eustache J, Glorot X, Muller X, Lebeuf S P, Pascanu R, Rifai S, Savard F, Sicard G. Deep self-taught learning for handwritten character recognition. arXiv:1009.3589, 2010.
[129] Chen L, Wang S, Fan W, Sun J, Naoi S. Beyond human recognition:a CNN-based framework for handwritten character recognition. In:Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition. Kuala Lumpur, Malaysia:IEEE, 2015.695-699
[130] Chen K T. Integration of paths-A faithful representation of paths by noncommutative formal power series. Transactions of the American Mathematical Society, 1958, 89(2):395-407 http://cn.bing.com/academic/profile?id=2074884967&encoded=0&v=paper_preview&mkt=zh-cn
[131] Lyons T. Rough paths, Signatures and the modelling of functions on streams. arXiv:1405.4537, 2014. http://econpapers.repec.org/RePEc:arx:papers:1405.4537
[132] Graham B. Fractional max-pooling. arXiv:1412.6071, 2014. http://arxiv.org/abs/1412.6071
[133] Graves A, Fernández S, Gomez F, Schmidhuber J. Connectionist temporal classification:labelling unsegmented sequence data with recurrent neural networks. In:Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, Pennsylvania, USA:ACM, 2006.369-376 http://cn.bing.com/academic/profile?id=2168772685&encoded=0&v=paper_preview&mkt=zh-cn
[134] Graves A, Schmidhuber J. Offline handwriting recognition with multidimensional recurrent neural networks. In:Proceedings of the 2009 Advances in Neural Information Processing Systems 21. Vancouver, B.C., Canada:Curran Associates, Inc., 2009.545-552
[135] Zhang X, Wang M, Wang L J, Huo Q, Li H F. Building handwriting recognizers by leveraging skeletons of both offline and online samples. In:Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis:IEEE, 2015.406-410
[136] Simistira F, Ul-Hassan A, Papavassiliou V, Gatos B, Katsouros V, Liwicki M. Recognition of historical Greek polytonic scripts using LSTM networks. In:Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis:IEEE, 2015.766-770 http://dl.acm.org/citation.cfm?id=2880878
[137] Frinken V, Uchida S. Deep BLSTM neural networks for unconstrained continuous handwritten text recognition. In:Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis:IEEE, 2015.911-915 http://dl.acm.org/citation.cfm?id=2880731
[138] Messina R, Louradour J. Segmentation-free handwritten Chinese text recognition with LSTM-RNN. In:Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis:IEEE, 2015.171-175 http://dl.acm.org/citation.cfm?id=2880731
[139] Mioulet L, Garain U, Chatelain C, Barlas P, Paquet T. Language identification from handwritten documents. In:Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis:IEEE, 2015.676-680
[140] Huang S M, Jin L W, Lv J. A novel approach for rotation free online handwritten Chinese character recognition. In:Proceedings of the 10th International Conference on Document Analysis and Recognition. Barcelona, Spain:IEEE, 2009.1136-1140
[141] Moysset B, Kermorvant C, Wolf C, Louradour J. Paragraph text segmentation into lines with recurrent neural networks. In:Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis:IEEE, 2015, 456-460 http://dl.acm.org/citation.cfm?id=2880731
[142] He P, Huang W L, Qiao Y, Loy C C, Tang X O. Reading scene text in deep convolutional sequences. arXiv:1506.04395, 2015. http://cn.bing.com/academic/profile?id=2338605913&encoded=0&v=paper_preview&mkt=zh-cn
[143] Shi B G, Bai X, Yao C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. arXiv:1507.05717, 2015. http://arxiv.org/abs/1507.05717
[144] iiMedia Research. 2015Q2 Report of input methods for mobile phone in China market[Online], available:http://www.iimedia.com.cn/,May11,2016
[145] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T18790-2010联机手写汉字识别系统技术要求与测试规程. 2011

General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T18790-2010 Requirements and test procedure of on-line handwriting Chinese character recognition system. 2011
[146] Long T, Jin L W. A novel orientation free method for online unconstrained cursive handwritten Chinese word recognition. In:Proceedings of the 19th International Conference on Pattern Recognition. Tampa, FL, USA:IEEE, 2008.1-4
[147] He T T, Huo Q. A character-structure-guided approach to estimating possible orientations of a rotated isolated online handwritten Chinese character. In:Proceedings of the 10th International Conference on Document Analysis and Recognition. Barcelona, Spain:IEEE, 2009.536-540
[148] 黄盛明.联机手写汉字的旋转无关识别研究[硕士学位论文].华南理工大学, 2010 http://cdmd.cnki.com.cn/article/cdmd-10561-1014063919.htm

Huang S. A Study on Recognition for Rotated Isolated Online Handwritten Chinese Character[Master dissertation], South China University of Technology, China, 2010 http://cdmd.cnki.com.cn/article/cdmd-10561-1014063919.htm
[149] Karatzas D, Gomez-Bigorda L, Nicolaou A, Ghosh S, Bagdanov A, Iwamura M, Matas J, Neumann L, Chandrasekhar V R, Lu S J, Shafait F, Uchida S, Valveny E. ICDAR 2015 competition on robust reading. In:Proceedings of the 13th International Conference on Document Analysis and Recognition. Tunis:IEEE, 2015.1156-1160