[1] Hu M Q, Liu B. Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2004. 168-177
[2] 柳位平, 朱艳辉, 栗春亮, 向华政, 文志强. 中文基础情感词词典构建方法研究. 计算机应用, 2009, 29(10): 2875-2877 doi: 10.3724/SP.J.1087.2009.02875

Liu Wei-Ping, Zhu Yan-Hui, Li Chun-Liang, Xiang Hua-Zheng, Wen Zhi-Qiang. Research on building Chinese basic semantic lexicon. Journal of Computer Applications, 2009, 29(10): 2875-2877 doi: 10.3724/SP.J.1087.2009.02875
[3] Liu B. Sentiment Analysis and Opinion Mining. San Rafael, CA: Morgan & Claypool Publishers, 2012. doi: 10.1007/978-1-4899-7502-7_907-1
[4] Strapparava C, Valitutti A. WordNet-affect: an affective extension of wordNet. In: Proceedings of the 2004 International Conference on Language Resources and Evaluation. Lisbon: LREC, 2004. 1083-1086 http://www.oalib.com/references/13143558
[5] Neviarouskaya A, Prendinger H, Ishizuka M. SentiFul: a lexicon for sentiment analysis. IEEE Transactions on Affective Computing, 2011, 2(1): 22-36 doi: 10.1109/T-AFFC.2011.1
[6] Kim S M, Hovy E. Determining the sentiment of opinions. In: Proceedings of the 20th International Conference on Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2004. 1367-1377 http://cn.bing.com/academic/profile?id=2112422413&encoded=0&v=paper_preview&mkt=zh-cn
[7] Blair-Goldensohn S, Hannan K, McDonald R, Neylon T, Reis G, Reynar J. Building a sentiment summarizer for local service reviews. In: Proceedings of the WWW2008 Workshop: NLP in the Information Explosion Era. Beijing, China: NLPIX, 2008. 200-207
[8] Kamps J, Marx M, Mokken R J, De Rijke M. Using wordnet to measure semantic orientations of adjectives. In: Proceedings of the 4th International Conference on Language Resources and Evaluation. Paris: European Language Resources Association, 2004. 1115-1118 http://cn.bing.com/academic/profile?id=1951269370&encoded=0&v=paper_preview&mkt=zh-cn
[9] Hassan A, Abu-Jbara A, Jha R, Radev D. Identifying the semantic orientation of foreign words. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 592-597 http://cn.bing.com/academic/profile?id=2344367074&encoded=0&v=paper_preview&mkt=zh-cn
[10] Andreevskaia A, Bergler S. Mining WordNet for a fuzzy sentiment: sentiment tag extraction from wordNet glosses. In: Proceedings of the 2006 Conference of the European Chapter of the Association for Computational Linguistics. Budapest: EACL, 2006. 209-216
[11] Baccianella S, Esuli A, Sebastiani F. Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the 2010 International Conference on Language Resources and Evaluation. Malta: LREC, 2010. 2200-2204 https://www.researchgate.net/publication/220746537_SentiWordNet_30_An_Enhanced_Lexical_Resource_for_Sentiment_Analysis_and_Opinion_Mining
[12] Esuli A, Sebastiani F. PageRanking wordNet synsets: an application to opinion mining. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics. Prague: Association for Computational Linguistics, 2007. 424-431 http://cn.bing.com/academic/profile?id=2163941230&encoded=0&v=paper_preview&mkt=zh-cn
[13] Hatzivassiloglou V, McKeown K R. Predicting the semantic orientation of adjectives. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 1997. 174-181 http://cn.bing.com/academic/profile?id=2199803028&encoded=0&v=paper_preview&mkt=zh-cn
[14] Kanayama H, Nasukawa T. Fully automatic lexicon expansion for domain-oriented sentiment analysis. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2006. 355-363
[15] Huang S, Niu Z D, Shi C Y. Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. Knowledge-Based Systems, 2014, 56: 191-200 doi: 10.1016/j.knosys.2013.11.009
[16] 王科, 夏睿. 一种基于连接关系的情感词典构建方法. 见: 第十四届全国计算语言学学术会议. 广州: 中国中文信息学会, 2015.

Wang Ke, Xia Rui. An approach to Chinese sentiment lexicon construction based on conjunction relation. In: Proceedings of the 14th China National Conference on Computational Linguistics. Guangzhou, China: CCL, 2015.
[17] Xia Y Q, Cambria E, Hussain A, Zhao H. Word polarity disambiguation using Bayesian model and opinion-level features. Cognitive Computation, 2014, 7(3): 369-380
[18] Church K W, Hanks P. Word association norms, mutual information, and lexicography. Computational Linguistics, 1990, 16(1): 22-29 http://cn.bing.com/academic/profile?id=1593045043&encoded=0&v=paper_preview&mkt=zh-cn
[19] Turney P D. Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In: Proceedings of the 12th European Conference on Machine Learning. Berlin Heidelberg: Springer, 2001. 491-502 http://cn.bing.com/academic/profile?id=1567365482&encoded=0&v=paper_preview&mkt=zh-cn
[20] Turney P D. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2002. 417-424 http://cn.bing.com/academic/profile?id=2155328222&encoded=0&v=paper_preview&mkt=zh-cn
[21] Turney P D, Littman M L. Measuring praise and criticism: inference of semantic orientation from association. ACM Transactions on Information Systems, 2003, 21(4): 315-346 doi: 10.1145/944012
[22] Krestel R, Siersdorfer S. Generating contextualized sentiment lexica based on latent topics and user ratings. In: Proceedings of the 24th ACM Conference on Hypertext and Social Media. New York, NY: ACM, 2013. 129-138 http://cn.bing.com/academic/profile?id=1972846540&encoded=0&v=paper_preview&mkt=zh-cn
[23] Tai Y J, Kao H Y. Automatic domain-specific sentiment lexicon generation with label propagation. In: Proceedings of the 2013 International Conference on Information Integration and Web-based Applications & Services. New York, NY: ACM, 2013. 191-200
[24] Wawer A. Mining co-occurrence matrices for SO-PMI paradigm word candidates. In: Proceedings of the Student Research Workshop at the 13th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 74-80 http://cn.bing.com/academic/profile?id=2159990968&encoded=0&v=paper_preview&mkt=zh-cn
[25] Glavaš G, Šnajder J, Bašić B D. Experiments on hybrid corpus-based sentiment lexicon acquisitionIn: Proceedings of the 2012 Workshop on Innovative Hybrid Approaches to the Processing of Textual Data. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 1-9
[26] Bollegala D, Weir D, Carroll J. Using multiple sources to construct a sentiment sensitive thesaurus for cross-domain sentiment classification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 132-141
[27] Velikovich L, Blair-Goldensohn S, Hannan K, McDonald R. The viability of web-derived polarity lexicons. In: Proceedings of the 2010 North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 777-785
[28] 阳爱民, 林江豪, 周咏梅. 中文文本情感词典构建方法. 计算机科学与探索, 2013, 7(11): 1033-1039 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTS201311009.htm

Yang Ai-Ming, Lin Jiang-Hao, Zhou Yong-Mei. Method on building Chinese text sentiment lexicon. Journal of Frontiers of Computer Science and Technology, 2013, 7(11): 1033-1039 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTS201311009.htm
[29] 魏志生, 吉阳生, 罗春勇, 陈家骏. 加入领域先验知识的产生式情感分类模型. 计算机科学与探索, 2011, 5(12): 1105-1113 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTS201112006.htm

Wei Zhi-Sheng, Ji Yang-Sheng, Luo Chun-Yong, Chen Jia-Jun. Generative sentiment classification model affiliating domain-specific sentiment lexicons. Journal of Frontiers of Computer Science and Technology, 2011, 5(12): 1105-1113 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTS201112006.htm
[30] Kaji N, Kitsuregawa M. Building lexicon for sentiment analysis from massive collection of HTML documents. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague: Association for Computational Linguistics, 2007. 1075-1083
[31] Peng W, Park D H. Generate adjective sentiment dictionary for social media sentiment analysis using constrained nonnegative matrix factorization. In: Proceedings of the 15th International AAAI Conference on Weblogs and Social Media. Menlo Park, CA: AAAI Press, 2011. 273-280
[32] Rao D, Ravichandran D. Semi-supervised polarity lexicon induction. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009. 675-682 http://cn.bing.com/academic/profile?id=2089173648&encoded=0&v=paper_preview&mkt=zh-cn
[33] Xu G, Meng X F, Wang H F. Build Chinese emotion lexicons using a graph-based algorithm and multiple resources. In: Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 1209-1217
[34] 李荣军, 王小捷, 周延泉. PageRank模型在中文情感词极性判别中的应用. 北京邮电大学学报, 2010, 33(5): 141-144 http://www.cnki.com.cn/Article/CJFDTOTAL-BJYD201005031.htm

Li Rong-Jun, Wang Xiao-Jie, Zhou Yan-Quan. Semantic orientation computing using PageRank model. Journal of Beijing University of Posts and Telecommunications, 2010, 33(5): 141-144 http://www.cnki.com.cn/Article/CJFDTOTAL-BJYD201005031.htm
[35] 李寿山, 李逸薇, 黄居仁, 苏艳. 基于双语信息和标签传播算法的中文情感词典构建方法. 中文信息学报, 2013, 27(6): 75-81 http://www.cnki.com.cn/Article/CJFDTOTAL-MESS201306011.htm

Li Shou-Shan, Li Yi-Wei, Huang Ju-Ren, Su Yan. Construction of Chinese sentiment lexicon using bilingual information and label propagation algorithm. Journal of Chinese Information Processing, 2013, 27(6): 75-81 http://www.cnki.com.cn/Article/CJFDTOTAL-MESS201306011.htm
[36] Volkova S, Wilson T, Yarowsky D. Exploring sentiment in social media: bootstrapping subjectivity clues from multilingual twitter streams. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia, Bulgaria: Association for Computational Linguistics, 2013. 505-510 http://cn.bing.com/academic/profile?id=2251535218&encoded=0&v=paper_preview&mkt=zh-cn
[37] Zhang Z, Singh M P. ReNew: a semi-supervised framework for generating domain-specific lexicons and sentiment analysis. In: Proceedings of the 52nd Annual Meeting on Association for Computational Linguistics. Baltimore, Maryland, USA: Association for Computational Linguistics, 2014. 542-551 http://cn.bing.com/academic/profile?id=2251198526&encoded=0&v=paper_preview&mkt=zh-cn
[38] Weichselbraun A, Gindl S, Scharl A. Using games with a purpose and bootstrapping to create domain-specific sentiment lexicons. In: Proceedings of the 20th ACM international conference on Information and knowledge management. New York, NY, USA: ACM, 2011. 1053-1060 http://cn.bing.com/academic/profile?id=2048008937&encoded=0&v=paper_preview&mkt=zh-cn
[39] Gao D H, Wei F R, Li W J, Liu X H, Zhou M. Co-training based bilingual sentiment lexicon learning. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2013. 26-28
[40] Tang D Y, Wei F R, Qin B, Zhou M, Liu T. Building large-scale twitter-specific sentiment lexicon: a representation learning approach. In: Proceedings of the 25th International Conference on Computational Linguistics. Dublin, Ireland: COLING, 2014. 172-182 http://aclweb.org/anthology/C14-1018
[41] 梁军, 柴玉梅, 原慧斌, 昝红英, 刘铭. 基于深度学习的微博情感分析. 中文信息学报, 2014, 28(5): 155-61 http://www.cnki.com.cn/Article/CJFDTOTAL-MESS201405021.htm

Liang Jun, Chai Yu-Mei, Yuan Hui-Bin, Zan Hong-Ying, Liu Min. Deep learning for Chinese micro-blog sentiment analysis. Journal of Chinese Information Processing, 2014, 28(5): 155-61 http://www.cnki.com.cn/Article/CJFDTOTAL-MESS201405021.htm
[42] 杨阳, 刘龙飞, 魏现辉, 林鸿飞. 基于词向量的情感新词发现方法. 山东大学学报(理学版), 2014, 49(11): 51-58 http://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201411008.htm

Yang Yang, Liu Long-Fei, Wei Xian-Hui, Lin Hong-Fei. New methods for extracting emotional words based on distributed representations of words. Journal of Shandong University (Natural Science), 2014, 49(11): 51-58 http://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201411008.htm
[43] Tang D Y, Wei F R, Yang N, Zhou M, Liu T, Qin B. Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, Maryland, USA: Association for Computational Linguistics, 2014. 1555-1565 http://cn.bing.com/academic/profile?id=2250879510&encoded=0&v=paper_preview&mkt=zh-cn
[44] Collobret R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 2011, 12(1): 2493-2537 http://cn.bing.com/academic/profile?id=2158899491&encoded=0&v=paper_preview&mkt=zh-cn
[45] Mikolov T, Sutskever I, Chen K, Corrado G S, Dean J. Distributed representations of words and phrases and their compositionality. In: Proceedings of the 2013 Advances in Neural Information Processing Systems. Nanjing: NIPS, 2013: 3111-3119
[46] 杨超, 冯时, 王大玲, 杨楠, 于戈. 基于情感词典扩展技术的网络舆情倾向性分析. 小型微型计算机系统, 2010, 31(4): 691-695 http://cdmd.cnki.com.cn/Article/CDMD-10145-1013109396.htm

Yang Chao, Feng Shi, Wang Da-Ling, Yang Nan, Yu Ge. Analysis on web public opinion orientation based on extending sentiment lexicon. Journal of Chinese Computer Systems, 2010, 31(4): 691-695 http://cdmd.cnki.com.cn/Article/CDMD-10145-1013109396.htm
[47] 周咏梅, 杨佳能, 阳爱民. 面向文本情感分析的中文情感词典构建方法. 山东大学学报(工学版), 2013, 43(6): 27-33 http://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201306006.htm

Zhou Yong-Mei, Yang Jia-Neng, Yang Ai-Ming. A method on building Chinese sentiment lexicon for text sentiment analysis. Journal of Shandong University (Engineering Science), 2013, 43(6): 27-33 http://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201306006.htm
[48] 李勇敢, 周学广, 孙艳, 张焕国. 结合依存关联分析和规则统计分析的情感词库构建方法. 武汉大学学报(理学版), 2013, 59(5): 491-498 http://www.cnki.com.cn/Article/CJFDTOTAL-WHDY201305016.htm

Li Yong-Gan, Zhou Xue-Guang, Sun Yan, Zhang Huan-Guo. The study of construction for emotion thesaurus based on dependency parsing combined with rules and statistics methods. Journal of Wuhan University (Natural Science Edition), 2013, 59(5): 491-498 http://www.cnki.com.cn/Article/CJFDTOTAL-WHDY201305016.htm
[49] 殷春霞, 彭勤科. 利用复杂网络为自由评论鉴定词汇情感倾向性. 自动化学报, 2012, 38(3): 389-398 doi: 10.3724/SP.J.1004.2012.00389

Yin Chun-Xia, Peng Qin-Ke. Identifying word sentiment orientation for free comments via complex network. Acta Automatica Sinica, 2012, 38(3): 389-398 doi: 10.3724/SP.J.1004.2012.00389
[50] He Y L, Alani H, Zhou D Y. Exploring English lexicon knowledge for Chinese sentiment analysis. In: Proceedings of CIPS-SIGHAN Joint Conference on Chinese Language Processing. Beijing, China: ORO, 2010. 91-104
[51] 王昌厚, 王菲. 使用基于模式的Bootstrapping方法抽取情感词. 计算机工程与应用, 2014, 50 (1): 127-129 http://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201401028.htm

Wang Chang-Hou, Wang Fei. Extracting sentiment words using pattern based Bootstrapping method. Computer Engineering and Applications, 2014, 50(1): 127-129 http://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201401028.htm
[52] Choi Y, Cardie C. Adapting a polarity lexicon using integer linear programming for domain-specific sentiment classification. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009. 590-598 http://cn.bing.com/academic/profile?id=2136680862&encoded=0&v=paper_preview&mkt=zh-cn
[53] Du W F, Tan S B, Cheng X Q, Yun X C. Adapting information bottleneck method for automatic construction of domain-oriented sentiment lexicon. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2010. 111-120 http://www.oalib.com/references/16891436
[54] Li F T, Pan S J, Jin O, Yang Q, Zhu X Y. Cross-domain co-extraction of sentiment and topic lexicons. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 410-419 http://cn.bing.com/academic/profile?id=2148966043&encoded=0&v=paper_preview&mkt=zh-cn
[55] Ding X, Liu B, Yu P S. A holistic lexicon-based approach to opinion mining. In: Proceedings of the 2008 International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2008. 231-240 http://cn.bing.com/academic/profile?id=1964613733&encoded=0&v=paper_preview&mkt=zh-cn
[56] Lek H H, Poo D C C. Sentix: an aspect and domain sensitive sentiment lexicon. In: Proceedings of the 2012 IEEE 24th International Conference on Tools with Artificial Intelligence. Washington, DC, USA: IEEE Computer Society, 2012. 261-268
[57] Qiu G, Liu B, Bu J J, Chen C. Expanding domain sentiment lexicon through double propagation. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009. 1199-1204
[58] Balahur A, Montoyo A. OpAL: applying opinion mining techniques for the disambiguation of sentiment ambiguous adjectives in SemEval-2 task 18. In: Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 444-447 http://dl.acm.org/citation.cfm?id=1859763
[59] Dragut E C, Yu C, Sistla P, Meng W Y. Construction of a sentimental word dictionary. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2010. 1761-1764
[60] Wu Y F, Wen M M. Disambiguating dynamic sentiment ambiguous adjectives. In: Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 1191-1199
[61] 谢松县, 刘博, 王挺. 应用语义关系自动构建情感词典. 国防科技大学学报, 2014, 36(3): 111-115 http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201403020.htm

Xie Song-Xian, Liu Bo, Wang Ting. Applying semantic relations to construct construct sentiment lexicon automaticlly. Journal of National University of Defense Technology, 2014, 36(3): 111-115 http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201403020.htm
[62] Feng S, Bose R, Choi Y. Learning general connotation of words using graph-based algorithms. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Edinburgh, Scotland, UK: Association for Computational Linguistics, 2011. 1092-1103 http://cn.bing.com/academic/profile?id=2180724871&encoded=0&v=paper_preview&mkt=zh-cn
[63] Zhang L, Liu B. Identifying noun product features that imply opinions. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 575-580 http://cn.bing.com/academic/profile?id=2165379166&encoded=0&v=paper_preview&mkt=zh-cn
[64] Balahur A, Hermida J M, Montoyo A. Detecting implicit expressions of sentiment in text based on commonsense knowledge. In: Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 53-60
[65] Brody S, Diakopoulos N. Cooooooooooooooollllllllllllll!!!!!!!!!!!!!!: using word lengthening to detect sentiment in microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 562-570 http://cn.bing.com/academic/profile?id=2152815769&encoded=0&v=paper_preview&mkt=zh-cn
[66] Huang M L, Ye B R, Wang Y C, Chen H Q, Cheng J J, Zhu X Y. New word detection for sentiment analysis. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, Maryland, USA: Association for Computational Linguistics, 2014. 531-541 http://www.aclweb.org/anthology/P14-1050
[67] 张清亮, 徐健. 网络情感词自动识别方法研究. 现代图书情报技术, 2011, 27(10): 24-28 http://www.cnki.com.cn/Article/CJFDTOTAL-XDTQ201110007.htm

Zhang Qing-Liang, Xu Jian. Research on automatic extraction of web sentiment words. Journal of Library and Information Technology, 2011, 27(10): 24-28 http://www.cnki.com.cn/Article/CJFDTOTAL-XDTQ201110007.htm
[68] Williams G K, Anand S S. Predicting the polarity strength of adjectives using wordnet. In: Proceedings of the Third International ICWSM Conference. Menlo Park, CA: AAAI Press, 2009. 346-349
[69] Esuli A, Sebastiani F. Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of the 2006 Language Resources and Evaluation. Genoa, Italy: LREC, 2006. 417-422 http://www.oalib.com/references/16886054
[70] Kumar A, Sebastian T M. Sentiment analysis on twitter. International Journal of Computer Science Issues, 2012, 9(4): 372-378 http://cn.bing.com/academic/profile?id=2160969591&encoded=0&v=paper_preview&mkt=zh-cn
[71] Lu Y, Kong X F, Quan X J, Liu W Y, Xu Y L. Exploring the sentiment strength of user reviews. Web-Age Information Management. Berlin Heidelberg: Springer, 2010. 471-482 http://cn.bing.com/academic/profile?id=1599391609&encoded=0&v=paper_preview&mkt=zh-cn
[72] Gatti L, Guerini M. Assessing sentiment strength in words prior polarities. In: Proceedings of the 23th International Conference on Computational Linguistics. Mumbai: CSCL, 2012. 361-370
[73] Schneider A, Dragut E. Towards debugging sentiment lexicons. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing, China: Association for Computational Linguistics, 2015. 1024-1034 http://www.aclweb.org/anthology/P/P15/P15-1099.pdf
[74] Mohammad S, Dunne C, Dorr B. Generating high-coverage semantic orientation lexicons from overtly marked words and a thesaurus. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009. 599-608 http://cn.bing.com/academic/profile?id=2160250477&encoded=0&v=paper_preview&mkt=zh-cn
[75] Wilson T, Wiebe J, Hoffmann P. Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the 2005 Conference on Human Language Technology and Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2005. 347-354 http://cn.bing.com/academic/profile?id=2022204871&encoded=0&v=paper_preview&mkt=zh-cn
[76] 杨鼎, 阳爱民. 一种基于情感词典和朴素贝叶斯的中文文本情感分类方法. 计算机应用研究, 2010, 27(10): 3737-3739 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201010037.htm

Yang Ding, Yang Ai-Min. Classification approach of Chinese texts sentiment based onsemantic lexicon and naive Bayesian. Application Research of Computers, 2010, 27(10): 3737-3739 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201010037.htm
[77] 赵妍妍, 秦兵, 刘挺. 文本情感分析. 软件学报, 2010, 21(8): 1834-1848 doi: 10.3724/SP.J.1001.2010.03832

Zhao Yan-Yan, Qin Bing, Liu Ting. Sentiment analysis. Journal of Software, 2010, 21(8): 1834-1848 doi: 10.3724/SP.J.1001.2010.03832
[78] Lee Y, Na S H, Kim J, Nam S H, Jng H Y, Lee J H. KLE at TREC 2008 blog track: blog post and feed retrieval. In: Proceedings of 2008 Text REtrieval Conference. Pohang, South Korea: Pohang University of Science and Technology (South Korea), 2008.
[79] Xu R F, Xu J, Kit C. HITSZ_CITYU: Combine collocation, context words and neighboring sentence sentiment in sentiment adjectives disambiguation. In: Proceedings of the 5th International Workshop on Semantic Evaluation. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 448-451 http://cn.bing.com/academic/profile?id=1735306610&encoded=0&v=paper_preview&mkt=zh-cn
[80] Toh Z Q, Wang W T. DLIREC: aspect term extraction and term polarity classification system. In: Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin, Ireland: IWSE, 2014. 235-240
[81] Saias J, Ramalho R R. Sentiue: target and aspect based sentiment analysis in SemEval-2015 task 12. In: Proceedings of the 9th International Workshop on Semantic Evaluation. Denver, Colorado: Association for Computational Linguistics, 2015. 767-771
[82] 刘军, 刘全升, 陈漠沙, 宋鸿彦, 黄高辉, 张潇君, 姚天昉. 第一届中文倾向性分析评测结果浅析. 见: 第一届中文倾向性分析评测研讨会论文集. 北京: 中国中文信息学会, 2008. 125-141

Liu Jun, Liu Quan-Sheng, Chen Mo-Sha, Song Hong-Yan, Huang Gao-Hui, Zhang Xiao-Jun, Yao Tian-Fang. Analysis on the evaluation results of the first Chinese orientation analysis evaluation. In: Proceedings of the 1st Conference on Chinese Opinion Analysis Evaluation. Beijing, China: COAE, 2008. 125-141
[83] 徐戈, 蒙新泛, 王厚峰. 基于多模态学习的情感评级. 见: 第二届中文倾向性分析评测研讨会论文集. 上海: 中国中文信息学会, 2009. 24-29

Xu Ge, Meng Xin-Fan, Wang Hou-Feng. Emotion ranking based on multi-modality learning. In: Proceedings of the 2nd Conference on Chinese Opinion Analysis Evaluation. Shanghai, China: COAE, 2009. 24-29
[84] 徐睿峰, 王亚伟, 徐军, 张玥, 郑海清, 桂林, 叶璐. 基于多知识源融合和多分类器表决的中文观点分析. 见: 第三届中文倾向性分析评测会议 (COAE 2011)论文集. 济南: 中国中文信息学会, 2011. 77-87

Xu Rui-Feng, Wang Ya-Wei, Xu Jun, Zhang Yue, Zheng Hai-Qing, Gui Lin, Ye Lu. Chinese opinion analysis based on multi knowledge integration and multi classifier voting. In: Proceedings of the 3rd Conference on Chinese Opinion Analysis Evaluation. Ji'nan, China: COAE, 2011. 77-87
[85] 廖健, 王素格, 李德玉, 陈鑫. 基于构词规则与互信息的微博情感新词发现与判定. 见: 第六届中文倾向性分析评测会议论文集. 昆明: 中国中文信息学会, 2014. 90-96

Liao Jian, Wang Su-Ge, Li De-Yu, Chen Xin. Using word-formation rules and mutual information for new sentiment word identification in microblogs. In: Proceedings of the 6th Conference on Chinese Opinion Analysis Evaluation. Kunming, China: COAE, 2014. 90-96