[1] |
Almeida T A, Yamakami A. Content-based spam filtering. In: Proceedings of the 2010 International Joint Conference on Neural Networks. Barcelona: IEEE, 2010. 1-7 |
[2] |
Zhang L, Zhu J B, Yao T S. An evaluation of statistical spam filtering techniques. ACM Transactions on Asian Language Information Processing, 2004, 3(4): 243-269 |
[3] |
Cao Jian-Ping, Wang Hui, Xia You-Qing, Qiao Feng-Cai, Zhang Xin. Bi-path evolution model for online topic model based on LDA. Acta Automatica Sinica, 2014, 40(12): 2877-2886(曹建平, 王晖, 夏友清, 乔凤才, 张鑫. 基于LDA的双通道在线主题演化模型. 自动化学报, 2014, 40(12): 2877-2886) |
[4] |
Liu Hong-Yu, Zhao Yan-Yan, Qin Bing, Liu Ting. Comment target extraction and sentiment classification. Journal of Chinese Information Processing, 2006, 24(1): 84-88, 122(刘鸿宇, 赵妍妍, 秦兵, 刘挺. 评价对象抽取及其倾向性分析. 中文信息学报, 2006, 24(1): 84-88, 122) |
[5] |
Jindal N, Liu B, Lim E P. Finding unusual review patterns using unexpected rules. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York, United States: ACM, 2010. 1549-1552 |
[6] |
Ott M, Choi Y, Cardie C, Hancock J T. Finding deceptive opinion spam by any stretch of the imagination. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Stroudsburg, PA, USA: ACL, 2011. 309-319 |
[7] |
Niu Y, Wang Y M, Chen H, Ma M, Hsu F. A quantitative study of forum spamming using context-based analysis. In: Proceedings of the 2007 Network and Distributed System Security Symposium. San Diego, United States: ISOC, 2007. 1-14 |
[8] |
Mao Jia-Xi, Liu Yi-Qun, Zhang Min, Ma Shao-Ping. Social influence analysis for micro-blog user based on user behavior. Chinese Journal of Computers, 2014, 37(4): 791-799 (毛佳昕, 刘奕群, 张敏, 马少平. 基于用户行为的微博用户社会影响力分析. 计算机学报, 2014, bf 37(4): 791-799) |
[9] |
Hayati P, Chai K, Potdar V. Computational Science and Its Applications---ICCSA2010. Berlin, Heidelberg: Springer, 2010. 351-360 |
[10] |
Song J, Lee S, Kim J. Recent Advances in Intrusion Detection. Berlin. Heidelberg: Springer, 2011. 301-317 |
[11] |
Murmann A J. Enhancing Spammer Detection in online Social Networks with Trust-based Metrics [Master dissertation], San Jose State University, United States, 2009. |
[12] |
Xu Zhi-Ming, Li Dong, Liu Ting, Li Sheng, Wang Gang, Yuan Shu-Lun. Measuring similarity between microblog users and its application. Chinese Journal of Computers, 2014, 37(1): 207-218 (徐志明, 李栋, 刘挺, 李生, 王刚, 袁树仑. 微博用户的相似性度量及其应用. 计算机学报, 2014, 37(1): 207-218) |
[13] |
Yang C, Harkreader R, Gu G F. Empirical evaluation and new design for fighting evolving Twitter spammers. IEEE Transactions on Information Forensics and Security, 2013, 8(8): 1280-1293 |
[14] |
Hu Yun, Wang Chong-Jun, Wu Jun, Xie Jun-Yuan, Li Hui. Overlapping community discovery and global representation on microblog network. Journal of Software, 2014, 25(12): 2824-2836(胡云, 王崇骏, 吴骏, 谢俊元, 李慧. 微博网络上的重叠社群发现与全局表示. 软件学报, 2014, 25(12): 2824-2836) |
[15] |
Zhou Xiao-Ping, Liang Xun, Zhang Hai-Yan. User community detection on micro-blog using R-C model. Journal of software, 2014, 25(12): 2808-2823(周小平, 梁循, 张海燕. 基于R-C模型的微博用户社区发现. 软件学报, 2014, 25(12): 2808-2823) |
[16] |
Lin C F, He J H, Zhou Y, Yang X K, Chen K, Song L. Analysis and identification of spamming behaviors in Sina Weibo microblog. In: Proceedings of the 7th Workshop on Social Network Mining and Analysis. Chicago, United States: ACM, 2013: Article No.5 |
[17] |
Fu Ju-Lei, Liu Wen-Li, Zheng Xiao-Long, Fan Ying, Wang Shou-Yang. Analyzing the characteristics of "East Turkistan" activities using text mining and network analysis. Acta Automatica Sinica, 2014, 40(11): 2456-2468(付举磊, 刘文礼, 郑晓龙, 樊瑛, 汪寿阳. 基于文本挖掘和网络分析的"东突"活动主要特征研究. 自动化学报, 2014, 40(11): 2456-2468) |
[18] |
Bai Lin-Gen, Chen Zhi-Qun, Wang Rong-Bo, Huang Xiao-Xi. Empirical analysis on K-core of microblog following relationship network. New Technology of Library and Information Service, 2013, 29(11): 68-74(白林根, 谌志群, 王荣波, 黄孝喜. 微博关注关系网络K-!核结构实证分析. 现代图书情报技术, 2013, bf 29(11): 68-74) |
[19] |
Chen K, Chen L, Zhu P D, Xiong Y S. Unveil the spams in Weibo. In: Proceedings of the 2013 IEEE and Internet of Things, IEEE International Conference on and IEEE Cyber, Physical and Social Computing, Green Computing and Communications. Beijing, China: IEEE, 2013: 916-922 |
[20] |
Benevenuto F, Magno G, Rodrigues T, Almeida V. Detecting spammers on Twitter. In: Proceedings of the 7th Annual Collaboration, Electronic Messaging, Anti-Abuse and Spam Conference. Redmond, United States: CEAS, 2010: 12-21 |
[21] |
Han Zhong-Ming, Xu Feng-Min, Duan Da-Gao. Probabilistic graphical model for identifying water army in microblogging system. Journal of Computer Research and Development, 2013, 50(Suppl): 180-186 (韩忠明, 许峰敏, 段大高. 面向微博的概率图水军识别模型. 计算机研究与发展, 2013, 50(Suppl): 180-186) |
[22] |
Mo Qian, Yang Ke. Overview of web spammer detection. Journal of Software, 2014, 25(7): 1505-1526 (莫倩, 杨珂. 网络水军识别研究. 软件学报, 2014, 25(7): 1505-1526) |
[23] |
Lu Hao, Wang Fei-Yue, Liu De-Rong, Zhang Nan, Zhao Xue-Liang. Analytics of lastest research progress in automation discipline based on academic knowledge mapping. Acta Automatica Sinica, 2014, 40(5): 994-1015 (陆浩, 王飞跃, 刘德荣, 张楠, 赵学亮. 基于科研知识图谱的近年国内外自动化学科发展综述. 自动化学报, 2014, 40(5): 994-1015) |