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Efficient Recovery of Block Sparse Signals by an

Improved Algorithm of Block-StOMP
Boxue Huang1 Tong Zhou2

Abstract Many problems arisen in research fields like systems biology and signal processing can be formulated as problems of block
sparse signal recovery. Generally, it is known that to pursue the sparsest solution of an underdetermined system of linear equations
is non-deterministic polynomial (NP)-hard. To solve block sparse recovery problems, the algorithm of block stagewise orthogonal
matching pursuit (Block-StOMP) has been proposed to recover block sparse signals from compressed measurements, which is a
greedy algorithm with satisfactory practical performance and some particularly interesting theoretical properties. In this paper, we
propose an improved version of Block-StOMP, termed mBlock-StOMP. Specifically, mBlock-StOMP uses the estimated TDR (true
discovery rate) to prune support sets of each stage in order to decrease FAR (false alarm rate) and pursue high recovery accuracy.
Moreover, rigorous theoretical analysis for mBlock-StOMP is given in this paper. Compared with Block-StOMP, simulation results
demonstrate that mBlock-StOMP outperforms Block-StOMP in terms of reconstruction accuracy without increasing computational
burden significantly.
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1 Introduction

The research fields of signal processing, systems biology,
and large-scale system analysis have attracted more and
more attention in recent years [1]−[6]. They are involved
with the problem of recovering sparse signals from under-
determined systems of linear equations as follows [7]:

Φx = y (1)

where Φ ∈ Rn×N (n < N) and y ∈ Rn are known, x ∈ RN

is the sparse signal to be recovered. The matrix Φ is called
measurement matrix. Finding the sparsest solution to (1)
can be written as the following `0 minimization problem:

min
x∈RN

‖x‖0 s.t. Φx = y . (2)

Unfortunately, it is an NP-hard problem to find the so-
lution to (2) in general. However, many algorithms have
been proposed to deal with (2) when the measurement ma-
trix and the sparsity satisfy certain conditions [8]. There
are two main classes of algorithms to tackle this problem.
One is the class of convex optimization algorithms. They
are used to solve the following `1 minimization problem
which is a convex relaxation version of (2):

min
x∈RN

‖x‖1 s.t. Φx = y. (3)

As (3) is a convex optimization problem, many standard
optimization tools can be used to obtain its solution. The
basis pursuit (BP) algorithm [9] is a well-known convex
optimization algorithm to solve (3).
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The other one is the class of greedy algorithms. For
example, the matching pursuit (MP) algorithm [10], the
orthogonal matching pursuit (OMP) algorithm [11], and
the stagewise orthogonal matching pursuit (StOMP) algo-
rithm belong to this class. Generally, convex optimization
algorithms can achieve global optimum but have huge com-
putational costs. Contrarily, greedy algorithms are fast and
well suited to large-scale applications.

In this paper, efficient recovery methods to solve a special
kind of block sparse signal recovery problems are proposed.
In our problem, x is a sparse vector with a special structure.
Specifically, Φ and x can be expressed as follows:

Φ = [φ1, . . . , φd︸ ︷︷ ︸
Φ[1]

, φd+1, . . . , φ2d︸ ︷︷ ︸
Φ[2]

, . . . , φN−d+1, . . . , φN︸ ︷︷ ︸
Φ[M ]

]

x = [x1, . . . , xd︸ ︷︷ ︸
xT [1]

, xd+1, . . . , x2d︸ ︷︷ ︸
xT [2]

, . . . , xN−d+1, . . . , xN︸ ︷︷ ︸
xT [M ]

]T

where N = Md. Furthermore, x is called k block sparse if
it satisfies:

‖x‖2,0=

M∑

`=1

I
(‖x[`]‖2>0

) ≤ k. (4)

Dealing with multi-band signals, or gene expression level
measurements is involved with the reconstruction of block
sparse signals. Additionally, source localization in sensor
networks, multiple-input multiple-output (MIMO) channel
equalization, and magnetoencephalography, are also asso-
ciated with the recovery of block-sparse signals [12]−[14].

There have been many algorithms proposed to recover
block sparse signals. For example, in [12] and [15], the BP
algorithm is generalized properly to give rise to a mixed
`2/`1-norm minimization recovery algorithm. Besides, the
compressive sampling matching pursuit (CoSaMP) algo-
rithm and the iterative hard thresholding (IHT) algorithm
are extended to the block sparse case with provable recov-
ery guarantees and robust properties [13]. Moreover, [12]
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proposed the algorithms of block matching pursuit (BMP)
and block orthogonal matching pursuit (BOMP), which are
the block versions of the MP algorithm and the OMP al-
gorithm, respectively. These two algorithms are both pro-
vided theoretical guarantees in terms of block coherence.
Moreover, it has been established in [16] that the block ver-
sion of the StOMP algorithm, termed Block-StOMP, is de-
rived and provided theoretical guarantees in terms of large
system limits and phase transition curve.

It can be found that the algorithm of Block-StOMP de-
termines the index of the nonzero blocks of x through hard
thresholding. Inspired by the results of [18], Block-StOMP
is improved and mBlock-StOMP is proposed to further en-
hance reconstruction efficiency with pruning support sets
of each stage. Many special problems appeared when we
tried to derive the convergence of mBlock-StOMP, which
are presented and settled eventually in this paper.

The main contributions of this paper can be summarized
as follows:

1) The algorithm of Block-StOMP with rigorous theo-
retical guarantees is modified successfully with improved
accuracy of recovery.

2) Theoretical guarantees are provided for mBlock-
StOMP from the perspective of extending a conditioned
Gaussian model to a conditioned chi-square model.

3) The predicted phase transition curve of mBlock-
StOMP is derived and shown in this paper. By depicting
the phase diagram and the predicted transition curve of
mBlock-StOMP, we see that mBlock-StOMP outperforms
Block-StOMP.

Experimental simulations show that mBlock-StOMP has
much better performance than Block-StOMP when applied
into block sparse signals reconstruction, which evidently
shows the significant effectiveness of support sets pruning.

The remainder of this paper is organized as follows. Sec-
tion 2 starts with reviewing Block-StOMP, and then de-
scribes how to improve Block-StOMP. Theoretical guaran-
tees for mBlock-StOMP are presented in Section 3. Section
4 includes the analysis of the predicted phase transition
curve. Corresponding experimental simulations and the
performance improvement caused by support sets pruning
are also reported in Section 4. Finally, Section 5 concludes
the whole paper.

Throughout the paper, we denote vectors by lowercase
letters, e.g., a, and matrices by uppercase letters, e.g., Φ.
For a given set T , |T | and T c denote its cardinality and
complement, respectively. IN denotes an N × N identity
matrix. For a given matrix D, DT , D−1 denote its trans-
pose and inverse respectively. The Euclidean norm of r is
denoted by ‖r‖2.

2 An Improved Algorithm of Block-
StOMP

2.1 Review of Block-StOMP

From the analysis of Block-StOMP [17], we get to know
that the usual set of block matching filter coefficients can be
viewed as being sampled from conditional chi-squares dis-
tribution and conditional non-central chi-squares distribu-
tion, which are corresponding to null case and non-null case
respectively. Block-StOMP sets an appropriate threshold

value to select the locations of nonzero entries of unknown
block sparse signal, and then subtracts the least-square fit
to produce a new residual. After a few iterations, a block
sparse solution will be achieved.

We consider y = Φx, where Φ is an n×N matrix with
each column sampled from uniform sphere ensemble (USE),
and x is a k block sparse vector, nonzero entries of which fol-
low a symmetric distribution on {−1, 1}. Denote the sup-
port set of x and its block support set as T = {i : x(i) 6= 0}
and T ′ =

{
i : ‖x[i]‖2 6= 0

}
, respectively. In the algorithm

procedure of Block-StOMP, the stage counter s begins at
s = 1 with initial solution x0 = 0, initial residual r0 = y
and initial support set I0 = ∅. At the sth stage, we as-
sume that the sequence of solution is x0, x1, . . . , xs, and
the sequence of the estimated support set of vector x is
I0, I1, . . ., Is. The maximum number of iteration stages is
S. Let I ′s−1 denote the set of the locations of nonzero blocks
of xs−1.

Suppose Block-StOMP operates in S stages, and the
sequence of residuals is denoted as r0, r1, . . . , rS . The
procedure in Table I will be performed at the sth stage

of Block-StOMP, where Φ[j] =
(
φ(j−1)d+1, . . . , φjd

)
, and

σs−1 = ‖rs−1‖2/
√

n , ts is a threshold parameter.

TABLE I

Block-StOMP Algorithm

Input: measurement matrix Φ, measurement vector y according

to y = Φx, and block-sparsity level k;

Output: the estimate of x

Procedure:

The following steps will be performed repeatedly if the conditions

s < S and ‖rs‖2 > ε and Js 6= ∅ are all satisfied, until the

stopping criterion becomes true.

Step 1: Matched Filtering.

cs(j) =

∥∥∥∥
ΦT [j]rs−1

σs−1

∥∥∥∥
2

2
, j = 1, 2, . . . , M .

Step 2: Hard Thresholding.

J′s = {j : cs(j) > ts};
Js =

{
j : 1 +

[
J′s(i)− 1

]
d ≤ j ≤ J′s(i)d, i = 1, 2, . . . ,

∣∣J′s
∣∣}.

Step 3: Support Set Update. Is = Is−1 ∪ Js .

Step 4: Projection and Pursuit.

(xs)Is
=

(
ΦT

Is
ΦIs

)−1
ΦT

Is
y .

Step 5: Residual Update. rs = y− Φxs .

In [17], the statistical behavior of block matching filter

coefficients
∥∥∥ΦT [j]rs

σs

∥∥∥
2

2
is analyzed, and the following re-

sults are obtained:

1) Null case:

L
(∥∥∥ΦT [j] rs

∥∥∥
2

2

∣∣∣∣ j 6∈ T ′∪I ′s−1

)

≈ L (
Z̄s|

∣∣Z̄i

∣∣ < tsσ
2
i , i = 1, . . . , s− 1

)

where

Z̄s/σ2
s ∼ χ2

d, σ2
s = p. lim

n→∞

‖rs‖22
n

.
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2) Non-null case:

L
(∥∥∥ΦT [j] rs

∥∥∥
2

2

∣∣∣∣ j ∈ T ′∩I ′
c
s−1

)

≈ L (
X̄s|

∣∣X̄i

∣∣ < tsσ
2
i , i = 1, . . . , s− 1

)

where X̄s/σ2
s ∼ χ2

d,λ̄, λ̄ = d (µ̄s/σ̄s)
2 , µs = p. lim

n→∞

‖rs‖22
ksd

and σ2
s = p. lim

n→∞

ksd− 1

ksd

‖rs‖22
n

The above conditioned chi-squares model is exploited in
[17] to model the statistical behavior of the block matching
filter coefficients in the above two cases. It derives the
boundary of phase transition curve from the perspective of
large-system limits.

In [18], a modified version of StOMP was proposed which
can be generalized to the block-sparse case. Denote φφφi,φφφj

as two columns of the measurement matrix Φ. If the angle
between φφφi and rs−1 is close to the angle between φφφj and

rs−1, then | 〈φφφi, rs−1〉 | will be close to | 〈φφφj , rs−1

〉 |. Con-
sequently, it will be hard to separate these two columns
φφφi,φφφj from each other through matched filtering at the sth
stage of StOMP. Similarly, if this kind of situation happens

to
∥∥∥ΦT [i]rs−1

σs−1

∥∥∥
2

2
and

∥∥∥ΦT [j]rs−1
σs−1

∥∥∥
2

2
in the block sparse case,

it will be difficult to separate them from each other by the
steps of matched filtering and hard thresholding.

From this perspective, at each stage of Block-StOMP, the
support set which is achieved through matched filtering and
hard thresholding is just a rough estimate. Based on the
above analysis, an improved algorithm which can obtain a
more accurate support set at each stage is needed.

2.2 An Improved Algorithm of Block-StOMP

In this subsection, an improved algorithm of Block-
StOMP, termed mBlock-StOMP, is proposed. Notably, the
coordinates in Is are called discoveries, the coordinates in
Is ∩ T are called true discoveries and the coordinates in
Is ∩T c are called false alarms. Firstly, some definitions are
introduced:





ks = k − ] true discoveries prior to stage s

ns = n− ] discoveries prior to stage s

Ns = N − ] discoveries prior to stage s

αs = P

{∥∥∥ΦT [j]rs

σs

∥∥∥
2

2
> ts|j ∈ T ′c ∩ I ′cs−1

}

βs = P

{∥∥∥ΦT[j]rs

σs

∥∥∥
2

2
> ts|j ∈ T ′ ∩ I ′cs−1

}

hs =
(
ρs, ds, νs, σ

2
s

)
=

(
ks

n
,
ns

n
,
Ns

n
,
‖rs‖22

n

)

where αs, βs are called false alarm rate (FAR) and true
discovery rate (TDR), respectively. In [17], the convergence
of the state vector hs at the sth stage is proved:

hs → h̄s =
(
ρ̄s, d̄s, ν̄s, σ̄

2
s

)
.

Moreover, a chi-square random variable Z̄s and a non-
central chi-square random variable X̄s are defined. Specif-
ically,

Z̄s

σ̄2
s

∼ χ2
d,

X̄s

σ̄2
s

∼ χ2
d,λ

where λ = d(µ̄s/σ̄s)
2 is the non-central parame-

ter. Let Z̃s denote the random variable Z̄s con-
ditioned on

{
Z̄s < tsσ̄

2
i , i = 1, . . . , s− 1

}
. Similarly,

let X̃s denote the random variable X̄s conditioned on{
X̄s < tsσ̄

2
i , i = 1, . . . , s− 1

}
.

With the above definitions, the following results about
the convergence of TDR and FAR are derived in [17].





αs → ᾱs = P
{

Z̃s≥tsσ̄
2
s

}

βs → β̄s = P
{

X̃s≥tsσ̄
2
s

}
.

Based on the above results, in the limit quantities up-
date formulas for the algorithm of Block-StOMP, when the
system size n tends to infinity, the dimension-normalized
variable νs can be updated according to the following equa-
tion:

ν̄s+1 = ν̄s − β̄sρ̄sd− ᾱs(ν̄s − ρ̄sd). (5)

Straightly, it holds

p. lim
n→∞

(
Ns+1

n

)
= p. lim

n→∞

(
Ns −∆Ns

n

)

where ∆Ns = βsksd + αs (Ns − ksd), and it is the cardi-
nality of the support set Js. Since ∆Ns indices selected
by Block-StOMP at the sth stage are composed of βsksd
true discoveries and αs (Ns − ksd) false alarms, the ratio of
true discoveries can be further increased if only βsksd true
discoveries are included in the support set at the sth stage.

In the following problem, we consider an n×N matrix
Φ with each column sampled from USE. Since ‖φφφi‖2 = 1,〈
φφφi,φφφj

〉 ∼ N(0, 1/n) for any i 6= j, we get to know that

p. lim
n→∞

ΦT Φ = IN . It is easy to obtain

p. lim
n→∞

ΦT Φx = p. lim
n→∞

ΦT y

then,

p. lim
n→∞

x = p. lim
n→∞




φφφT
1 y

φφφT
2 y

...

φφφT
Ny




. (6)

From the perspective of large system limits, the abso-
lute values of matched filter coefficients corresponding to
non-zero entries of x are larger than those corresponding
to zero entries. On the other hand, at the sth stage of
Block-StOMP, the new approximation xs supported in Is

is (xs)Is
=

(
ΦT

Is
ΦIs

)−1
ΦT

Is
y. Similarly, we can get

p. lim
n→∞

(xs)Is
= p. lim

n→∞




φφφT
j1y

φφφT
j2y

...

φφφT
jms

y




. (7)

where Is = Is−1 ∪ Js and Is = {j1, j2, . . . , jms}.
We denote (xs)Js as the new approximation xs supported

in Js. With (6) and (7), it is shown that Js obtained at
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the sth stage can be further pruned according to the am-
plitudes of the entries of (xs)Js . Specifically, a new Js is
derived as the set of βsksd indices corresponding to the
largest amplitude entries of (xs)Js . In the next, some par-
ticular procedures are proposed to estimate βs and ks.

It is shown in [1] that, in the null case, the statistical
behavior of 〈φφφj , rs〉 is approximated as follows:

L (〈φφφj , rs〉 |j 6∈ T ∪ Is−1 )

≈ L
(
Z̄s

∣∣|Z̄i| < tσ̄i, i = 1, 2, . . . , s− 1
) ≈ L(Ẑs)

where Ẑs ∼ N
(
0, σ

(1)
s

2
)
.

In the non-null case, it is approximated as follows:

L (〈φφφj , rs〉 |j ∈ T ∪ Ic
s−1 )

≈ L
(
X̄s

∣∣|X̄i| < tσ̄i, i = 1, 2, . . . , s− 1
) ≈ L(X̂s)

where X̂s ∼ N
(
µs, σ

(2)
s

2
)
.

From the literature of statistics, the coefficients of the
matched filter output at the same stage are statistically
independent in the null case, while they are statistically
independent as the problem size n tends to infinity in the
non-null case. We consider the following quantity in the
null case, whose statistical behavior is approximated by
chi-square distribution with d degrees of freedom:

∥∥∥∥
ΦT [j] rs

σ
(1)
s

∥∥∥∥
2

2

=

d∑
i=1

(〈
φφφ(j−1)d+1, rs

〉

σ
(1)
s

)2

∼ χ2
d. (8)

In the non-null case, the above quantity follows approx-
imately non-central chi-square distribution with d degrees
of freedom and non-central parameter λ̂:

∥∥∥∥
ΦT [j] rs

σ
(2)
s

∥∥∥∥
2

2

=

d∑
i=1

(〈
φφφ(j−1)d+1, rs

〉

σ
(2)
s

)2

∼ χ2
d,λ̂. (9)

Based on (8) and (9), the TDR at the sth stage can be
estimated by the following formula:

β̂s =

{∥∥∥∥∥
ΦT [j] rs−1

σ
(1)
s−1

∥∥∥∥∥

2

2

> ts

}

= P

{∥∥∥∥∥
ΦT [j ]rs−1

σ
(2)
s−1

∥∥∥∥∥

2

2

·
(

σ
(2)
s−1

σ
(1)
s−1

)2

> ts

}

= P

{∥∥∥∥∥
ΦT [j ]rs−1

σ
(2)
s−1

∥∥∥∥∥

2

2

> ts

(
σ

(1)
s−1

σ
(2)
s−1

)2}

= P

{
χ2

d,λ̂ > ts

(
σ

(1)
s−1

σ
(2)
s−1

)2}

where λ̂ =
∑d

i=1

(
µs−1

σ
(2)
s−1

)2

.

On the other hand, we can take the cardinality of J ′s
obtained in the second step of Block-StOMP (hard thresh-
olding) as the estimate of ks. On the basis of the estimates

of βs and ks, the set Js can be pruned according to the
amplitude of each entry of the solution xs at the sth stage.

Suppose mBlock-StOMP operates in S stages, and the
sequence of residuals is denoted as r0, r1, . . . , rs. The pro-
cedure of mBlock-StOMP is shown in Table II.

TABLE II

mBlock-StOMP Algorithm

Input: measurement matrix Φ, measurement vector y according

to y = Φx, and block-sparsity level k.

Output: the estimate of the block-sparse signal x.

Procedure:

The following procedure will be performed repeatedly if the

conditions s < S and ‖rs‖ > ε and Js 6= ∅ are all satisfied,

otherwise it stops.

Step 1: Matched Filtering.

cs(j) =

∥∥∥∥∥
ΦT [j]rs−1

σ
(1)
s−1

∥∥∥∥∥
2

2

, j = 1, 2, . . . , M ;

Step 2: Hard Thresholding.

J̃′s = {j : cs(j) > ts}, where

J̃s =
{

i : 1 +
[
J̃′s(j)− 1

]
d ≤ i ≤ J̃′s(i)d, j = 1, 2, . . . ,

∣∣∣J̃′s
∣∣∣
}

Step 3: Estimate True Discovery Rate β̂s.

To calculate β̂s, we assume that matched filter coefficients chosen

in Step 2 follow Gaussian distribution with nonzero mean:

〈φφφj , rs−1〉 ∼ N
(
µs−1, σ

(2)
s−1

2)

The estimates of µs−1, σ
(2)
s−1 can be obtained through maximum

likelihood method. Thus, β̂s can be calculated as follows:

β̂s = Prob





χ2

d,
d∑

i=1




µs−1

σ
(2)
s−1



2 > ts ·

σ
(1)
s−1

2

σ
(2)
s−1

2





and we take the cardinality of J̃′s as the estimate of ks, denoted

as k̂s.

Step 4: Pruning J̃s.

First, update set according to Ĩs = Is−1 ∪ J̃s, and then use Least-

squares, (xs)Ĩs
=

(
ΦT

Ĩs
ΦĨs

)−1
ΦT

Ĩs
y; based on the above solution,

we can get (xs)J̃s
and (x′s)J̃′s

, corresponding to J̃s, which can be

written as (x′s)J̃′s
=

(
(x′s)J̃′s

[1], . . . , (x′s)J̃′s
[k̂s]

)

where (x′s)J̃′s
[j] =

∑jd
i=(j−1)d+1((xs)J̃s

(i))2, j = 1, 2, . . . , k̂s.

Then, sort the elements of (x′s)J̃′s
in descending order based on

their amplitudes, and we take the first k̂s × β̂s indices as the

components of J′s, and

Js =
{
i : 1 +

[
J′s(j)− 1

]
d ≤ i ≤ J′s(i)d, j = 1, 2, . . . , |J′s|

}
.

Step 5: Support Set Update. Is = Is−1 ∪ Js .

Step 6: Projection and Pursuit.

(xs)Is
=

(
ΦT

Is
ΦIs

)−1
ΦT

Is
y .

Step 7: Residual Update. rs = y− Φxs.

In Table II, Φ[j ] =
(
φφφ(j−1)d+1 , . . . ,φφφjd

)
, σ

(1)
s−1 =

‖rs−1‖2/
√

n, and ts is the α quantile of Chi-square dis-
tribution with d degrees of freedom.

Next, we will give a simple example showing that the
procedure in Table II works in a specific case.

We generate an n × N measurement matrix Φ with
n = 100, N = 400, M = 200, and d = 2. The columns of
Φ are sampled from USE independently, while x has k = 20
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Fig. 1. Progression of the mBlock-StOMP algorithm. Panels (a), (e), and (i) (the 1st column): Successive block matched filtering

outputs. Panels (b), (f) and (j) (the 2nd column): Successive hard thresholding results. Panels (c), (g), and (k) (the 3rd column):

Successive pruned support sets. Panels (d), (h), and (l) (the 4th column): Successive approximate solutions.

non-zero entries and the non-zero entries of x are drawn
from standard Gaussian distribution. The mBlock-StOMP
algorithm is applied to this sparse reconstruction prob-
lem. The results are shown in Fig. 1. Figs. 1(a)−(l) depict
each block matched filtering output, its hard thresholding,
pruned support set and the evolving approximate solution.

In this example, Figs. 1(a)−(d) (the 1st row) show the re-
sults of the first stage of the procedure of mBlock-StOMP.
Specifically, Fig. 1(a) depicts the block matched filter coeffi-

cients

∥∥∥∥ΦT [j]r0

σ
(1)
0

∥∥∥∥
2

2

, j = 1, 2, . . . , M . After hard thresholding,

the remaining block matched filter coefficients which are
greater than t1 are shown in Figs. 1(b). The estimated TDR
β̂1 = 0.5531. Furthermore, the support set J̃1 correspond-
ing to Figs. 1(b) is pruned based on β̂1. The pruned support
set J1 is depicted in Figs. 1(c). The approximate solution
x1 is shown in Figs. 1(d), ‖x1 − x‖2 / ‖x‖2 = 0.5456.

Figs. 1(e)−(h) (the 2nd row) show the results of the
second stage of the procedure of mBlock-StOMP. Specif-
ically, Figs. 1(e) depicts the block matched filter coeffi-

cients

∥∥∥∥ΦT [j]r1

σ
(1)
1

∥∥∥∥
2

2

, j = 1, 2, . . . , M . After hard threshold-

ing, the remaining block matched filter coefficients which
are greater than t2 are shown in Fig. 1(f). The estimated
TDR β̂2 = 0.6148. Furthermore, the support set J̃2 corre-
sponding to Fig. 1(f) is pruned based on β̂2. The pruned

support set J2 is depicted in Fig. 1(g). The approximate so-
lution x2 is shown in Fig. 1(h), ‖x2 − x‖2 / ‖x‖2 = 0.1473.

Fig. 1(i)−(l) (the 3rd row) show the results of the
third stage of the procedure of mBlock-StOMP. Specifi-
cally, Fig. 1(i) depicts the block matched filter coefficients∥∥∥∥ΦT [j]r2

σ
(1)
2

∥∥∥∥
2

2

, j = 1, 2, . . . , M . After hard thresholding,

the remaining block matched filter coefficients which are
greater than t3 are shown in Fig. 1(j). The estimated TDR
β̂3 = 0.7389. Furthermore, the support set J̃3 correspond-
ing to Fig. 1(j) is pruned based on β̂3. The pruned support
set J3 is depicted in Fig. 1(k). The approximate solution
x3 is shown in Fig. 1(l), ‖x3 − x‖2 / ‖x‖2 = 5.8636× 10−16.

As we can see, after 3 stages an approximate solution is
achieved which matches well the true sparse signal x. In
fact, the relative error at the end of the third stage is re-
duced to 5.8636 × 10−16, which shows that a mere three
stages were required to obtain an accuracy of 16 decimal
digits.

3 Theoretical Analysis of mBlock-
StOMP

The problem suite S(k, n, d, N ; USE,±1) is considered
in this section. A rigorous theoretical analysis of mBlock-
StOMP is presented. Specifically, each column of Φ is sam-
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pled from USE, x is a block sparse signal with d entries in
each block, and y is obtained through y = Φx. Moreover,
x has k nonzero blocks in random positions with nonzero
entries following a symmetric distribution on {−1, 1}. We
fix ρ, δ ∈ (0, 1), and k = bnρc, N = bn/δc, where b·c repre-
sents the floor function. Furthermore, an augmented state
vector is defined as follows:

gs =
(
ρs, ds, νs, σ

2
s , µs

)
=

(
ks

n
,
ns

n
,
Ns

n
,
‖rs‖22

n
,
‖rs‖22
ksd

)
.

3.1 Main Results

With the above definitions, we state main results of this
paper in the form of the following three theorems, and their
proofs are given in Appendix A and Appendix B.

Theorem 1: (large-system limits) For s = 1, 2, . . . , S +1,
there are constants σ̄s, ρ̄s, d̄s, ν̄s, µ̄s depending on ρ and δ,
so that gs → ḡs =

(
ρ̄s, d̄s, ν̄s, σ̄

2
s , µ̄s

)
.

To investigate the convergence of αs, βs, we introduce
chi-square random variable Z̄s with distribution parameter
σ̄2

s defined by Theorem 1, and non-central chi-square ran-
dom variable X̄s with µ̄s, σ̄

2
s defined by Theorem 1. Specif-

ically,

Z̄s

σ̄2
s

∼ χ2
d,

X̄s

σ̄2
s

∼ χ2
d,λ

where λ =
∑d

i=1 (µ̄i/σ̄i)
2. Let X̃s denote the random vari-

able X̄s conditioned on
{
X̄s < tσ̄i, i = 1, . . . , s− 1

}
.

In the null case, we present the following theorem:
Theorem 2: (false alarm rate) For the sth stage of the

procedure of mBlock-StOMP, and w ∈ R, when n → ∞,
the following result can be obtained:

P

(∥∥∥Φ [j ]T rs

∥∥∥
2

2
≤ w

∣∣j ∈ T ′c ∪ I ′cs−1

)
→ P

{
Z̄s≤w

}

then it holds,

αs → ᾱs = P
{
Z̄s≥tsσ̄

2
s

}
.

In the non-null case, the comparable result is shown as
follows:

Theorem 3: (true discovery rate) For the sth stage of the
procedure of mBlock-StOMP, and w ∈ R, when n → ∞,
the following result can be obtained:

P

(∥∥∥Φ [j ]T rs

∥∥∥
2

2
≤ w

∣∣j ∈ T ′ ∩ I ′cs−1

)
→ P

{
X̃s≤w

}

then it holds,

βs → β̄s = P
{

X̃s≥tsσ̄
2
s

}
.

The proof for Theorem 3 is almost the same as of Theo-
rem 3 in [17], which is thus omitted here.

To clarify the relationship among the above theorems,
some notations have to be introduced. Denote Theorem 11

as Theorem 1 when s = 1, and Theorem 12 when s = 2,
etc. Similarly, we denote Theorem 21 as Theorem 2, and
Theorem 31 as Theorem 3 when s = 1, etc. With these
notations, Theorem 1 can be divided into many little theo-
rems 11, 12, . . . , 1S+1, and Theorem 2 and 3 can be divided
into theorems 21, 22, . . . , 2S and 31, 32, . . . , 3S respectively.

In the subsequent subsections of proofs, Theorem 21 and
Theorem 31 are proved based on Theorem 11, and Theo-
rem 12 is proved based on Theorem 11 ,Theorem 21, and
Theorem 31, etc.

In general, when s > 1, the proof of Theorem 1s requires
that Theorem 1`, Theorem 2` and Theorem 3` be proved
for 1 ≤ ` < s.

4 Numerical Simulations

In this section, we perform numerical simulations to ob-
serve the empirical performance of mBlock-StOMP. We
adopt the same performance metrics with [17] to show the
significant effectiveness of mBlock-StOMP.

4.1 Performance Analysis by Phase Transition

In this subsection, the reconstruction performance of
mBlock-StOMP is evaluated by phase diagram and phase
transition.

Phase diagram for mBlock-StOMP is shown in Fig. 2(b).
The diagram displays a rapid transition from perfect recon-
struction to perfect disagreement. Moreover, Fig. 2 displays
a grid of δ− ρ values, with δ, ρ ranging through 25 equiva-
lently spaced points in the interval [0.05, 1] and [0.05/d, 1/d]
respectively. Here N = 800, d = 2. Each point on the grid
shows the mean number of coordinates at which original
and reconstruction differ by more than 10−4, averaged over
100 independent realizations of the standard problem suite
Sst(k, n, d, N). Specifically, each column of Φ is sampled
from USE, and x is a block sparse vector with k nonzero
blocks in random positions, and these nonzero entries fol-
low the standard Gaussian distribution. Take Fig. 2(a) for
example, it can be seen that this diagram displays a phase
transition. For small ρ, it seems that highly accurate recon-
struction is obtained, while for large ρ reconstruction fails.
The transition from success to failure occurs at different ρ
for different values of δ.

In the next, we will show that based on the derived theo-
retical results, the transition curve of mBlock-StOMP from
success to failure can be accurately predicted. The quan-
tities of ᾱs, β̄s, ρ̄s, ν̄s, d̄s can be approximately calculated
and updated on the basis of their initial values and the
following iterative formulas:





d̃s+1 = d̃s − β̃s · ρ̃s · d
ν̃s+1 = ν̃s − β̃s · ρ̃s · d
ρ̃s+1 = ρ̃s − β̃s · ρ̃s

α̃s = P

{∥∥∥ΦT [j]rs

σ̃s

∥∥∥
2

2
> ts

}
= P

{
χ2

d > ts

}

β̃s = P
{
χ2

d > tsσ̃
2
s

}

(10)

where σ̃s =
√

(ksd)/ns. The above heuristic computation
formulas of ᾱs, β̄s in the block sparse case were proposed
by [17].

It is shown in [17] that there are two thresholding strate-
gies to determine the value of ts: control false alarm rate
(CFAR), and control false discovery rate (CFDR). Accord-
ing to the CFAR thresholding, ts is chosen as the[
1− δ(1−dρ)

S(1−dδρ)

]
quantile of chi-square distribution with d

degrees of freedom. If the CFDR thresholding strategy
is chosen, the number of false discoveries cannot exceed a
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fixed fraction q of all discoveries. As it is reported in [1] that
it is more appropriate to use the strategy of CFAR in the
noiseless case, we use this thresholding strategy when inves-
tigating the phase diagram and the predicted phase tran-
sition curve. In the experimental simulations, the CFDR
thresholding is used when the measurement noise level is
high. It will be elaborated in the next section.

Fig. 2. Phase diagrams and predicted phase transition curves.

(a) Block-StOMP. (b) mBlock-StOMP.

Assume that ρ̃s, d̃s, ν̃s are initialized as {k/n, 1, N/n},
then α̃s, β̃s, ρ̃s, d̃s, ν̃s can be updated according to (22).
With different values of δ−ρ, we achieve a predicted phase
transition curve, which can be shown as an overlaid curve in
Fig. 2 (b). The calculation announces success, at or before
stage S,

d̄s ≥ η, ρ̄s ≤ ηρ

where η = 0.001. Otherwise, it announces failure. Thus,
the phase transition curve can be plotted according to the
above results. It can be seen from Fig. 2(b) that the agree-
ment between the simulation result and the predicted tran-
sition curve is reasonably good.

The phase diagram and phase transition of Block-
StOMP is shown in Fig. 2(a). With the comparison be-
tween Figs. 2(a) and (b), the predicted phase transition
curve of mBlock-StOMP significantly outperforms that of
Block-StOMP when δ is not very large. Moreover, we see

that the performance difference between Block-StOMP and
mBlock-StOMP becomes less and less with the increment
of the value of δ.

4.2 Performance Comparison With Other Recov-
ery Algorithms

In this subsection, we adopt the following metrics to eval-
uate the effectiveness of different recovery algorithms: fre-
quency of successful reconstruction, number of iterations
and running time. To calculate the frequency of successful
reconstruction, the strategy mentioned in [1] is used. De-
note xs and x respectively as the estimate and real value of
the signal to be recovered. We declare that the sparse signal
x is reconstructed successfully if xs satisfies the following
formula:

relerr =
‖xs − x‖2
‖x‖2

≤ εx

where εx takes the fixed value of 10−4 in the following nu-
merical simulations.

In this paper, we compare mBlock-StOMP with the orig-
inal algorithm of Block-StOMP and four other recovery al-
gorithms: the OMP algorithm, the generalized orthogonal
matching pursuit (gOMP-2) algorithm [17], the StOMP al-
gorithm, and the BOMP algorithm.

Suppose block-sparsity levels are from 1 to 35. We per-
form 500 trials for each block sparsity, and then compute
the corresponding frequency of successful reconstruction for
each recovery algorithm. In each trial, we generate an n×N
measurement matrix Φ with n = 100, N = 400, and d = 2.
The columns of Φ are sampled from USE independently,
while the non-zero entries of x are drawn from standard
Gaussian distribution. In the next, we investigate the effec-
tiveness of the above mentioned algorithms in the noiseless
and noisy settings respectively.

We consider that Φ and y are both contaminated by
white Gaussian noise in the noisy setting. Let Φ̂ and ŷ de-
note the noisy measurement matrix and the noisy observa-
tion vector respectively. Then, Φ̂ and ŷ obey the following
constraints:

{
y = Φx

ŷ = y + ỹ Φ̂ = Φ + Φ̃,

where the elements of ỹ and Φ̃ are independently identical
distribution. N(0, η2) random variables. The vector x is to
be recovered based on known Φ̂ and ŷ.

Due to space limitations, we have considered only four
different noise levels, and performed experimental simula-
tions with η ∈ {0, 5× 10−6, 1× 10−5, 2× 10−5}.

To enhance recovery performance, the CFAR thresh-
olding is used to choose the value of hard thresholding
when the noise level is moderate, and ts is chosen as the[
1− δ(1−dρ)

S(1−dδρ)

]
quantile of chi-square distribution with d

degrees of freedom.
However, the strategy of CFDR thresholding is utilized

instead of CFAR thresholding when the noise level becomes
larger.

Fig. 3 shows each algorithm’s performance in terms of the
frequency of successful reconstruction under different noise
levels. We find that the performance of Block-StOMP is
improved a lot after pruning support sets. From Fig. 3, we
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Fig. 3. Frequency of successful reconstruction as a function of block sparsity. (a) CFAR thresholding, η = 0, S = 10. (b) CFAR

thresholding, η = 5× 10−6, S = 10. (c) CFDR thresholding, η = 1× 10−1, q = 0.2. (d) CFDR thresholding, η = 2× 10−5, q = 0.1.

find that, using the CFAR thresholding, mBlock-StOMP
performs best in terms of frequency of successful recon-
struction when η = 0 in the noiseless case and η = 5×10−6

in the noisy case. We can see that mBlock-StOMP is ro-
bust to measurement noise when the noise level is moder-
ate. Furthermore, it can be seen that BOMP tends to be
more robust to measurement noise compared with mBlock-
StOMP when the noise level is increased.

The curves of the number of iterations for each algorithm
are presented in Fig. 4, and the curves of the running time
for them are shown in Fig. 5. The running time is the phys-
ical running time in a personal computer. It is measured
using the MATLAB(R2009a) program under Core i5-2400
64-bit processor and Windows 7 environment. It is obvious
that mBlock-StOMP performs almost the same as Block-
StOMP and outperforms all other algorithms in terms of
the number of iterations. Moreover, mBlock-StOMP has
less running time than BOMP, gOMP-2 and OMP when
the block sparsity is more than a certain threshold value.
Furthermore, mBlock-StOMP, with the CFDR threshold-
ing, has almost the same running time as Block-StOMP
and StOMP when the block sparsity is over one threshold
value.

5 Conclusions

In this paper, an improved algorithm of the Block-
StOMP algorithm, called mBlock-StOMP, is proposed. At
each stage, similar to Block-StOMP, mBlock-StOMP per-
forms matched filtering on the residual, and determines
a rough support set of the sparse vector x through hard
thresholding.

The novelty of mBlock-StOMP lies in that the TDR at
each stage is estimated and used to prune the support
set, and then a more accurate support set is obtained.
Moreover, a rigorous convergence analysis is provided for
mBlock-StOMP. In the numerical simulations, compared
with other recovery algorithms, based on the original algo-
rithm of Block-StOMP and some modifications, mBlock-
StOMP has attractive performances in terms of the fre-
quency of successful reconstruction, number of iterations
and running time in the noiseless and noisy settings.

In our paper, the tools of phase diagram and phase tran-
sition are explored to rate the success of mBlock-StOMP.
Based on the theoretical results of large system limits,
the predicted phase transition curve of mBlock-StOMP is
derived. Through numerical simulations, we find that the
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Fig. 4. Number of iterations as a function of block sparsity. (a) CFAR thresholding, η = 0, S = 10. (b) CFAR thresholding,

η = 5× 10−6, S = 10. (c) CFDR thresholding, η = 1× 10−1, q = 0.2. (d) CFDR thresholding, η = 2× 10−5, q = 0.1.

simulation result of the phase diagram of mBlock-StOMP
matches the predicted phase transition curve quite well.

As many problems of network topological identification,
like gene regulatory network identification, can be treated
as block sparse signals recovery problems [6], mBlock-
StOMP can be applied to these problems. It is our another
line of research in the future.

Appendix

A. Proof of Theorem 1
The aforementioned augmented state vector is rewritten

below:

gs =

(
ks

n
,
ns

n
,
Ns

n
,
‖rs‖22

n
,
‖rs‖22
ksd

)
, 1 ≤ s ≤ S + 1.

According to the procedure of mBlock-StOMP, it is ob-
vious to derive the following updating formulas:





ks+1 = ks − |Js ∩ T |
d

ns+1 = ns − |Js|
Ns+1 = Ns − |Js|

where, J ′s =

{
j :

∥∥∥Φ [j ]T rs

∥∥∥
2

2
> tσ2

s , j ∈ T ′ ∩ I ′cs−1

}
,

Js = {j : 1 + [J ′s(i)− 1] d ≤ j ≤ J ′s(i)d, i = 1, 2, . . . , |J ′s|}.
Based on the above updating formulas, we derive that

gs = g`, `≤s≤S + 1 if the algorithm of mBlock-StOMP

stops at the `-th (`<S) stage. Define random vectors:
Gs = (g1, . . . , gs) and G′s = (g′1, . . . , g

′
s), then the distance

measure between them is: d(Gs, G
′
s) = max1≤`≤s d(g`, g

′
`).

To prove Theorem 1, the large system limit of GS+1 has
to be proved to exist, that is, if δ, ρ and d are given,
GS+1,n(δ, ρ, d) should satisfy:

Pn

{
d(GS+1,n, ḠS+1) > ε

} → 0, n →∞. (11)

The existence of a deterministic sequence (ḡs, s =
1, . . . , S +1) is proved in the next. Moreover, this sequence
satisfies: ḡs+1 = ḡs − ∆s

(
Ḡs

)
, s = 1, . . . , S, and for each

ε > 0,

Pn

{
d(gs+1,n, ḡs+1) > 2ε

∣∣d(gs,n, ḡs) < ε
} → 0, n →∞.

(12)
If the above results are achieved, (10) can be proved.

Thereafter, for 1 ≤ i ≤ 5, ∆s,i

(
Ḡs

)
is used to represent

the i-th component of ∆s

(
Ḡs

)
.

When s = 1, obviously, we have

g1 =

(
k

n
, 1,

N

n
,
‖y‖22

n
,
‖y‖22
kd

)
.

We assume y =
∑k

`=1±`φφφi` in the case of s = 1, then
p. limn→∞ ‖y‖22 /n = limn→∞ kn/n = ρ. Hence, we get the
following lemma:
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Fig. 5. Running time as a function of block sparsity. (a) CFAR thresholding, η = 0, S = 10. (b) CFAR thresholding, η = 5× 10−6,

S = 10. (c) CFDR thresholding, η = 1× 10−1, q = 0.2. (d) CFDR thresholding, η = 2× 10−5, q = 0.1.

Lemma 1: As n→∞, and n/Nn→δ, kn/n→ρ, it
can be achieved that p. limn→∞ g1,n = ḡ1(δ, ρ) =

(ρ, 1, δ−1, ρ, d−1).
To investigate the relationship between ḡs+1 and ḡs, we

start with analyzing the first component of gs. Accord-
ing to the above analysis, ks+1 and ks should satisfy the
following equation:

ks+1 = ks − |Js ∩ T |
d

= ks − |J ′s ∩ T ′|

|J ′s ∩ T ′| = ∑
j∈T c

s−1∩T ′
1{‖Φ[j ]T rs‖2

2
>tσ2

s

} =
ks∑

`=1

V`,s.

It is obvious that (Φ[j ], j ∈ T ′) are all statistically in-
dependent, and the columns of (Φ[j ], j ∈ I ′cs−1 ∩ T ′) be-
long to (Φ[j ], j ∈ I ′cs−1 ). It implies that random variables(∥∥∥Φ [j ]T rs

∥∥∥
2

2
, j ∈ I ′cs−1 ∩ T ′

)
, conditional on I ′s−1, are in-

dependent and identically distributed, which are condition-
ally exchangeable random variables. Then we obtain the
following lemma.

Lemma 2: Under the condition Gs, (V`,s : ` =
1, 2, . . . , ks) are exchangeable random variables.

Suppose either that s = 1 or that s > 1 and (11) has been
proved for 1 ≤ ` ≤ s − 1. Let X̃s denote the conditioned
non-central chi-square random variable defined by the se-
quence (µ̄` : 1 ≤ ` ≤ s), (σ̄` : 1 ≤ ` ≤ s), and (λ` : 1 ≤ ` ≤
s). Here, µ̄s = ḡs(4)/ḡs(1), σ̄s =

√
ḡs(4), λs = d (µ̄s/σ̄s)

2.
Suppose that Theorem 1`, Theorem 2` and Theorem 3`,

for 1 ≤ ` < s, are already proved, then the following lemma

is addressed:
Lemma 3: Based on the above definitions, we obtain:

lim
n→∞

Pn

(∥∥∥Φ [j ]T rs

∥∥∥
2

2
> tσ2

s

∣∣i ∈ T ′ ∩ I ′
c
s−1, T

′, I ′s−1

)

= P
{
|X̃s| > tσ̄2

s

}
.

Lemma 4: p. lim
n→∞

Cov(V1,s, V2,s|Gs) = 0.

Combining the above three lemmas, it is clear that

|Js ∩ T |
nd

=
|J ′s ∩ T ′|

n
→ ks

n
P

{
|X̃s| > tσ̄2

s

}
, n →∞.

Finally, we present Lemma 5:
Lemma 5: With the above three lemmas, we can derive

the following equation

ks+1

n
=

ks

n

(
1− P

{∣∣∣X̃s

∣∣∣ > tσ̄2
s

})
+ op(1), n →∞ (13)

where P
{∣∣∣X̃s

∣∣∣ > tσ̄2
s

}
only depends on Ḡs. Furthermore,

on the condition that ks/n →p ḡs(1) is proved at a previous
stage of the argument, (12) can be rewritten as

ḡs+1(1) = ḡs(1)−∆s,1(Ḡs) (14)

where ∆s,1(Ḡs) = ḡs(1) · P
{∣∣∣X̃s

∣∣∣ > tσ̄2
s

}
.

Similarly, for the second and third component of the
state vector, the following equations can be derived:

ḡs+1(2) = ḡs(2)−∆s,2(Ḡs) (15)

ḡs+1(3) = ḡs(3)−∆s,3(Ḡs) (16)
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In the next, we will give the proof that the fourth com-
ponent of the state vector also satisfies the equation similar
to (13)−(15). Based on the analysis of rs+1 and rs, we have
the following equation:

‖rs+1‖22 = ‖rs‖22 − cT
s

(
ΦT

Js
ΦJs

)−1

cs (17)

where cs = ΦT
Js

rs . Define ρ̄s = ḡs(1), and Γs(Ḡs) =
ρ̄s

∫
x·1{

j:‖Φ[j ]T rs‖2
2
>tσ2

s

}pX̃s
(x)dx.

Lemma 6: p. lim
n→∞

‖cs‖22 /n =
Γs(Ḡs)

d
.

Proof:

‖cs‖22
=

∑

i∈I′cs−1∩T ′

∥∥∥Φ [j ]T rs

∥∥∥
2

2
1{‖Φ[j ]T rs‖2

2
>tσ2

s

}

∼ ks

∫
x1{‖Φ[j ]T rs‖2

2
>tσ2

s

}pX̃s
(x)dx

∼ nρ̄s

∫
x · 1{‖Φ[j ]T rs‖2

2
>tσ2

s

}pX̃s
(x)dx ∼ n · Γs(Ḡs).

¥
Lemma 7: Based on (16) and Lemma 6, then

n−1 ‖rs+1‖22 = n−1 ‖rs‖22−∆s,4(Ḡs) + op(1), n →∞ (18)

where

∆s,4(Ḡs) =
Γs(Ḡs)

d

d̄s+1 + Γs(Ḡs)

(dσ̄2
s)

Proof: With (16) and Lemma 6, we get the following
equation:

p. lim
n→∞

n−1cT
s

(
ΦT

Js
ΦJs

)−1

cs =
Γs(Ḡs)

d

d̄s+1 + Γs(Ḡs)

(dσ̄2
s)

.

Then we can derive (17). Eventually, we achieve the
following equation:

ḡs+1(4) = ḡs(4)−∆s,4(Ḡs). (19)

With (13)−(15) and (18), it shows that

(
ks

n
,
ns

n
,
Ns

n
,
‖rs‖22

n

)
→ (

ρ̄s, d̄s, ν̄s, σ̄
2
s

)
. (20)

For the last component of the state vector gs, we have
the following equation:

µs =
‖rs‖22
ksd

=
n

ksd

‖rs‖22
n

=

‖rs‖22
n

ksd
n

=
gs(4)

gs(1)d

With (19), it implies that:

p lim
n→∞

µs =
ḡs(4)

ḡs(1)d
= µ̄s.

Consequently, we obtain the following equation:

ḡs+1(5) = ḡs(5)−∆s,5(Ḡs) (21)

where ∆s,5(Ḡs) = µ̄s − µ̄s+1. Combining the above results
completes the proof of Theorem 1. ¥

B. Proof of Theorem 2

The proof of Theorem 1 is associated with a particular

model for the statistical behavior of
∥∥∥ΦT [j]rs

σs

∥∥∥
2

2
. To prove

Theorem 2, a conditioned chi-square model is used to model

the statistical behavior of
∥∥∥ΦT [j]rs

σs

∥∥∥
2

2
in the null case, and

then the FAR is proven to be convergent when the problem
size n tends to infinity.

Denote Ψ0 = (ψψψ01 ,ψψψ02 , . . . ,ψψψ0d), where ψψψ0i ∼
N (0, (1/n)In), and ψψψ0i, i = 1, . . . , d are statistically inde-
pendent random vectors. Assume vs is a determined vector
which has the same definition as that in [1], and we define
a random vector a ∈ Rd and a scalar random variable Zs

as follows:

a = (a1, a2, . . . , ad)T = ΨT
0 vs, Zs =

∥∥∥ΨT
0 vs

∥∥∥
2

2
= aT a.

Lemma 8: With the above definitions, it holds that:

ai ∼ N
(
0, σ2

s

)
,

Zs

σ2
s

∼ χ2
d

where σ2
s =

‖vs‖22
n

.

The proof of the above lemma is elementary, thus omit-
ted here. After normalization, Φ0 = (φφφ01 ,φφφ02 , . . . ,φφφ0d),

where φφφ0i =
ψψψ0i

‖ψψψ0i‖2
, i = 1, 2, . . . , d.

Define matrix D=diag
(‖ψψψ01‖−1

2 , . . . , ‖ψψψ0d‖−1
2

)
, then

Φ0 = Ψ0·D. Moreover, we define Ws =
∥∥ΦT

0 vs

∥∥2

2
=∥∥DΨT

0 vs

∥∥2

2
= aT D2a.

Lemma 9: The sequence of (Ws, s = 1, 2, . . . , S) can
be asymptotically well approximated by the sequence of
(Zs, s = 1, 2, . . . , S). More precisely, for a sequence ξn de-
pending on n only,

E|Ws−Zs|
σ2

s
≤ dξn→0, n→∞

where σ2
s = ‖vs‖22 /n , ξn =

[
3E

(‖ψψψ0i‖−2
2 − 1

)2
]1/2

.

The proof of the above lemma can be referred to
[17]. With the above notations, the statistical behavior

of
∥∥∥Φ [j ]T rs

∥∥∥
2

2
can be described as follows:

L

(∥∥∥Φ [j ]T rs

∥∥∥
2

2

∣∣j ∈ T ′
c ∩ I ′

c
s−1

)
= L

(∥∥∥φφφ0
T rs

∥∥∥
2

2

)
(22)

where L(·) denotes the probability law. Therefore, when n
tends to infinity,

P

(∥∥∥φφφ0
T rs

∥∥∥
2

2
< w

∣∣j ∈ T ′
c ∪ I ′

c
s−1

)
→P (Z̄s≤w).

which completes the proof of Theorem 2.
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