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Application of Multi-model Active Fault-tolerant Sliding

Mode Predictive Control in Solar Thermal Power

Generation System

Xiaojuan Lu1 Haiying Dong2

Abstract To address the stability of solar thermal power generation system which is characterized by the presence of random and

strong disturbance, a multi-model active fault-tolerant controller is designed in this paper. Actually measured data is used to make

fuzzy clustering, then multi-model of the collector subsystem is established through recursive least square method. A switching

strategy based on the minimum cumulative error is applied to select the optimal control model online. In order to reduce the error

caused by missing data, fault and strong disturbance in the process of building the multi-model, the adaptive prediction model of

solar collector system is established. Active fault tolerant sliding mode predictive controller is designed to improve the tracking

accuracy and robustness of the output. Finally, the validity and advantage of the proposed algorithm are verified.
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Solar thermal power generation system is affected by nat-

ural factors such as solar radiation, and also the system has

strong interference. These uncertain factors directly affect

the quality of solar thermal power generation. Regulating

the tracking error of output oil temperature of collector

is an important control objective, therefore it has practi-

cal significance to study the active fault tolerant predictive

control of solar collector system in the state of fault or dis-

turbance.

The solar collector system uses the solar radiation to heat

the heat conduction oil, regulates the flow of heat conduc-

tion oil, and controls the outlet temperature of the heat

conduction oil in a certain range so as to ensure the stabil-

ity of the power generation. The control objective of the

collection system is that the amount of the actual output

is as close as possible to the amount of the desired target

output. In recent years, many kinds of intelligent control

algorithms are applied to the control of solar thermal power

generation system [1]−[3]. Reference [4]−[7] all applied the

model predictive control algorithm, where the control tar-

get was to minimize the tracking error.

Error of the outlet temperature and the single model are

used to predict the model. Multi-model adaptive switching

active fault tolerant control is about selecting the model

with least cumulative error to determine which model of

multi-models is the best match for the dynamic behavior

of the system online, and continuously optimize the model

parameters. The adaptive model which can be reassigned

is used to compensate for the missing data in the process

of modeling and to reduce the tracking error with strong

disturbance or fault conditions. The algorithm has been
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successfully applied to other areas [8]−[10], the control ef-

fect is good. Based on the above analysis, the main research

contents of this paper include:

1) Establish multi-model set. Collect data sets for sev-

eral consecutive days to make the fuzzy C-means (FCM)

clustering.

2) Design active fault tolerant sliding mode predictive

controller. Determine the adaptive switching strategy. The

inlet temperature and solar radiation are considered as dis-

turbance, and flow of heat conduction oil is considered as

controlled variable. Based on the multi-model, the adaptive

model of the solar collector system is established to adapt

the object and the disturbance characteristics. A model

switching strategy based on the minimum cumulative error

is used to select the optimal control model online.

3) The method is applied to the actual linear Fresnel

power generation system, and the method is compared with

[3]. The method in this paper is better than the method

[3], the control precision is higher, and the time delay is

shorter.

1 Dynamic Model of Solar Thermal

Power Generation System

1.1 The Mathematical Model of Micro-sources

1.1.1 Microturbine Cost

R Carmona, a Spanish scholar, initially used the mathe-

matical model [1] to describe the temperature of heat con-

duction oil of the solar collector [11], and then the model

was used to analyze the thermal system [4]−[6].

ρfCfAf
dTn(t)

dt
= η0G1I(t)− ρfCfv(t)

Tn(t)− Tn−1(t)

∆x
,

n = 1, . . . , N (1)

where t is time, s; ∆x is length of the collector tube section;

ρf is refrigerant density, kg/m3; Cf is specific heat capacity,

J/(kg·◦C); Af is cross section area of pipe; v(t) is conduc-
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tion heat oil flow, m3/s; I(t) is solar intensity, W/m2; η0

is mirror optical efficiency; G1 is the optical aperture of

reflector, m; Tn is conduction heat oil temperature of oil

pipeline outlet, ◦C; Tn− 1 is conduction heat oil tempera-

ture of oil pipeline outlet, ◦C.

Take ∆x = L, then (1) can be

ρfCfAf
dTn(t)

dt
= η0G1I(t)− ρfCfv(t)

Tn(t)− T0(t)

L
,

n = 1, . . . , N (2)

where L is the total length of pipeline of the collection sys-

tem; T 0(t) is the entrance conduction heat oil temperature

of collector.

2 Clustering Modeling of Solar Ther-

mal Power Generation Set

2.1 Fuzzy Clustering of Data Set

The data acquisition in the linear Fresnel thermal power

generation system is used to make FCM clustering analysis.

In this clustering algorithm, the membership degree is used

to determine the degree of each element and the measured

data is classified by the method of subtraction clustering

[12], [13].

Step 1: Determine the number of categories C, fuzzy

weight index m and the initial clustering center v;

Step 2: The fuzzy membership degree uij is calculated

according to

uij =





[
C∑

k=1

‖xi−υj‖ 2
m−1

‖xi−υk‖
2

m−1

]−1

, ‖xi − υk‖ 6= 0

1, ‖xi − υk‖ = 0, k = j

0, ‖xi − υk‖ = 0, k 6= j.

(3)

uij is the fuzzy membership degree of category J of indi-

vidual. υj is cluster center of category J .

Step 3: Use (4) to calculate the center of each category.

υj =

n∑
i=1

um
ij xi

n∑
i=1

um
ij

. (4)

Step 4: The target value is calculated according to (5)

to determine whether the values meet the target value or

not. If the values meet the target value, the clustering is

end. Otherwise, return Step 2.

J =

n∑
i=1

C∑
j=1

(uij)
m ‖xi − υj‖. (5)

In this paper, DB is used as an evaluation index of the

classification [14]. The smaller the index value is, the bet-

ter the clustering effect is. In this paper, for 3500 sets

of actual power generation data M from the solar ther-

mal power generation system of Gansu Lanzhou Dacheng

company, which is put into use in Lanzhou New District,

M(m1, m2, m3, m4) is classified, among them, m1 is the

outlet temperature, m2 is the heat transfer oil outlet tem-

perature, m3 is flow, and the solar radiation is m4. Fuzzy

clustering is used to analyze such data. When C = 6, DB

is the smallest, and Table I lists the clustering results.

TABLE I

Clustering Results

C 2 3 4 5 6 7 8 9

DB 1.3893 1.0168 0.6306 0.7065 0.1746 0.9135 0.4936 0.6304

The clustering centers of the 6 types are respectively:

υ1 = ( 236.6 196.0 10.15 780.5 )

υ2 = ( 244.4 203.0 10.03 890.9 )

υ3 = ( 250.1 210.0 10.20 916.6 )

υ4 = ( 253.6 213.4 10.32 933.0 )

υ5 = ( 259.7 219.6 10.18 935.5 )

υ6 = ( 273.6 232.9 10.04 953.2 ).

2.2 Least-squares Modeling

The above classification data results considered the inlet

oil temperature, solar radiation and flow rate of conduction

heat oil as input, and outlet temperature as output. In or-

der to overcome the shortcomings of the least squares due to

its poor correction ability, forgetting factor recursive least

square method is adopted [9], [15], [16]. The controlled

auto regressive (CAR) model expressed by formula (6) is

used to identify the parameters.

y(k) = ϕT (k)θ̂(k). (6)

where,

y(k + 1) = [y1(k + 1), y2(k + 1), y3(k + 1),

y4(k + 1), y5(k + 1), y6(k + 1)]T

θ̂ =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

a51 a52 a53 a54

a61 a62 a63 a64




ϕT (k + 1) =




−y1(k) u1(k) Tout1(k) I1(k)

−y2(k) u2(k) Tout2(k) I2(k)

−y3(k) u3(k) Tout3(k) I3(k)

−y4(k) u4(k) Tout4(k) I4(k)

−y5(k) u5(k) Tout5(k) I5(k)

−y6(k) u6(k) Tout6(k) I6(k)




.

Initial value θ(0) = 0 is the positive real vector with

zero or small value. The mathematical model of the solar

collector system can be obtained, as shown in the model

(7).
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y1(k + 1) = 0.9217y1(k) + 0.3011u1(k)

+ 0.0701Tin1(k) + 0.0015I1(k)

y2(k + 1) = 0.9501y2(k) + 0.2126u2(k)

+ 0.0631Tin2(k) + 0.0041I2(k)

y3(k + 1) = 0.9438y3(k) + 0.6421u3(k)

+ 0.0763Tin3(k) + 0.0039I3(k)

y4(k + 1) = 0.9573y4(k) + 0.434u4(k)

+ 0.0614Tin4(k) + 0.0032I4(k)

y5(k + 1) = 0.9680y5(k) + 0.3171u5(k)

+ 0.0549Tin5(k) + 0.0036I5(k)

y6(k + 1) = 0.9702y6(k) + 0.4021u6(k)

+ 0.0593Tin6(k) + 0.0031I6(k)

(7)

where yi(k) is output oil temperature, ui(k) is the flow rate

of conduction heat oil, Tini(k) is input oil temperature, and

Ii(k) is solar radiation.

According to the results of the optimal clustering cen-

ter, the outlet temperature is considered as the center to

analyze the error of classification. Fig. 1 shows the effect of

deviation of each class of data from the center point of the

cluster. In different temperature and cross sectional output

data, outlet temperature is also affected by the inlet tem-

perature and solar radiation. Therefore, the system can be

considered as a multi disturbance system.

Fig. 1. Error of multi-model and clustering center.

3 Multi-model Active Fault Tolerant

Sliding Mode Predictive Controller

Predictive control includes prediction model, rolling op-

timization and feedback correction. Under the condition

of system fault or disturbance, the multi-model adaptive

switching active fault tolerant control can update the con-

trol law based on the optimal predictive model online,

which results in stable operation of the closed-loop system.

In the process of rolling optimization, update control law

online, and through the feedback of correction, the error

is corrected online. Fig. 2 is the structure of a multi-model

active fault tolerant controller of solar thermal power gener-

ation. yr(k) is the desired output, y(k) is the actual output

of model, yi(k) is the most optimal sub model, and yp(k)

is the adaptive model.

Fig. 2. The structure of a multi-model active fault tolerant con-

troller of solar thermal power generation.

In [17]−[19], a single model sliding mode predictive con-

trol is designed for the high speed aircraft. In [18], a multi-

model sliding mode predictive control is designed for the

disturbance signal. Active fault tolerant predictive con-

troller is designed for high-speed train based on [19]. In

the literature, the designed controller according to differ-

ent system has achieved good control effect. By referring to

the above documents, this article designed the active fault

tolerant control in solar thermal applications. Consider the

following uncertain discrete linear systems

y(k + 1)−Ay(k) = Bu(k) + ξ(k) (8)

where y(k) is the output, u(k) ∈ R is the control input, A

and B are matrixes with appropriate dimension, and ξ(k)

is the total interference.

3.1 Sliding Mode Surface Design

Define the switching function: set the reference com-

mand signal yr(k), define the tracking error (9).

e(k) = y(k)− yr(k). (9)

Define the linear switching function:

s(k) = σT e(k) (10)

where σT = [σ1, . . . , σn]. After the solar collector model

expression (2) is discretized, the configuration of poles of

the expected oil outlet temperature is set inside the unit

circle, and then σi is obtained through the calculation. In

order to guarantee the stability and dynamic performance

of the ideal sliding mode, construct the following sliding

mode prediction model.

s(k + 1) = σT e(k + 1). (11)

The predicted sliding mode surface is Sm = {e(k)|s(e(k))

= 0}. The p step ahead predictor is as follow.

s(k + p) = σT Apy(k)

+

p∑
i=1

σT Ap−i[Bu(k + p− i)

+ ξ(k + p− i)]− σT yr(k + p). (12)
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Use the difference value between actual switching func-

tion output value s(k) and p step ahead prediction at the

moment of k−p to make the feedback correction of output

value sp(k+p) of sliding mode prediction model. Thus, the

output s̃p(k + p) of the closed-loop sliding mode prediction

model can be expressed as:

s̃p(k + p) = s(k + p) + ζp[s(k)− sp(k|k − p)] (13)

where ζp ∈ R is the weighted feedback correction factor.

Let ζ1 = 1, 0 < ζp < 1 (p ≥ 1). Decrease of ζp can reduce

the role of feedback correction.

3.2 Sliding Mode Reference Trajectory

Take the commonly reaching rate as the reference tra-

jectory.

{
sr(k + p) = µsr(k + p− 1) + ηsgn(sr(k + p− 1))

sr(k) = s(k)

(14)

where 0 < µ < 1, η > 0. The greater the µ, the smaller the

switching power. Control objective is that the error state

reaches the sliding mode surface that is to say s(e(k)) = 0.

3.3 Control Law Design

Define the performance index

J =

N∑
i=1

(sr(k + i)− s̃(k + i))2 +

M−1∑
j=0

λju
2(k + j) (15)

where N and M are positive integers, which respectively

represent the predicted time domain and control time do-

main, M needs to meet N < 0 < M, u(k+j) = u(k+M−1),

M ≤ j < N , and λj is weight coefficient.

If the output vector is expressed as:

S = [s(k + 1), . . . , s(k + N)]T

Sr = [sr(k + 1), . . . , sr(k + N)]T

S̃ = [s̃(k + 1), . . . , s̃(k + N)]T

S̄ = [s(k)− sp(k |k − 1), . . . , s(k)− sp(k |k −N )]T

= [S̄(1), . . . , S̄(N)]T

U = [u(k), . . . , u(k + M − 1)]T

F = [σT A, . . . , σT AN ]T

Ξ = diag{ζ1, . . . , ζN}
Λ = diag{λ1, . . . , λM}
Ỹr = [ỹr(k), . . . , ỹr(k + N − 1)]T

G =




σT B 0 · · · 0

σT AB σT B · · · 0
.
..

.

.. · · · σT B
..
.

..

.
. . .

..

.

σT AN−2B σT AN−3B · · ·
N−M−1∑

i=0
σT AiB

σT AN−1B σT AN−2B · · ·
N−M∑

i=0
σT AiB




P =




σT 0 · · · 0

σT A σT · · · 0
...

...
. . .

...

σT AN−1 σT AN−2 · · · σT




then (12) and (13) can be represented as a vector form,

which can be expressed by (16) and (17).

S = Fe(k) + GU + PỸr (16)

S̃ = S + ΞS̄. (17)

So, the performance index expressed by(15) can be writ-

ten as a vector form expressed by (18).

J = (H −GU)T (H −GU) + ΛUT U (18)

where H = (L1α
k + L2β

k)s(0)− Fe(k) + PY d −ΞS̄, L0 =

[1, . . . , 1]T , L1 = [γ1, . . . , γN ]T , L2 = [η1, . . . , ηN ]T , 0 < γ

< 1, 0 < η < 1.

Let ∂J(U)
∂U

= 0, solve the corresponding equations, and

the optimal flow rate of U in the collection process is cal-

culated:

U = (GT G + Λ)−1GT H. (19)

3.4 Multi-model Switching Strategy

The switching strategy is to select the optimal control

model online [18] for the state of system under the condi-

tion of unknown fault or disturbance, and the active fault

tolerant predictive control is carried out through the rolling

optimization and feedback correction.

At the kth moment, ei(k) = y(k) − ŷi(k) is the output

error between actual output and i (1 ≤ i ≤ P ∗+2) model.

The definition of switching index is shown in (20).

Ji(k) = αe2
i (k) + β

L∑
j=1

θje2
i (k − j) (20)

where α is error coefficient at present, β error coefficient for

historical moment, α > 0, β > 0, α+β = 1, L is the number

of the concerned historical sampled data, and θ = 1.

3.5 Adaptive Fault-tolerant Control

3.5.1 Active Fault-tolerant Algorithm

Under the condition of system failure or disturbance, the

active fault tolerant control can update the control law ac-

cording to the optimal control model online selection, which

can stabilize the closed loop system [19]. Active fault tol-

erant control is realized by the adaptive model switching.
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3.5.2 Adaptive Model Switching

The adaptive model can be used to obtain a faster con-

vergence rate according to the different conditions. Accord-

ing to the model switching strategy, if the initial parame-

ters of the model are the optimal model parameters of the

multi-model set, the optimal model can be selected from the

current optimal model set and the parameters can be up-

dated with (21). Otherwise, the initial value of the model is

reassigned to the minimum cumulative error model param-

eters, and then the model parameters are updated online

through (21). According to the model switching strategy,

the obtained optimal model is the adaptive model, which

can guarantee the stability of the system and the accuracy

of tracking. Parameters are updated as follows [9], [19].




θ̂(k) = θ̂(k − 1) + K(k)[y(k)− ϕT (k)θ̂(k − 1)]

K (k) =
P (k − 1) ϕ (k)

λ + ϕT (k) P (k − 1) ϕ (k)

P (k) =
1

λ

[
I −K(k)ϕT (k)

]
P (k − 1)

(21)

where θ(k) are the parameters to be identified, K(k) is

gain matrix, ϕ(k) is observation matrix, P (k) is covariance

matrix, and λ is forgetting factor.

4 Simulation Result Analysis

In the process of simulation analysis, system model se-

lects (2). Parameters of the linear Fresnel power generation

demonstration project in the west of China are selected and

the outlet oil temperature of conducting oil on August 5,

2015 is taken as the target curve. Controlled variable is

the flow of heat conduction oil. Inlet oil temperature and

solar radiation are disturbances which can be measured.

The flow range of heat conduction oil is 3 (l/s)−12 (l/s).

ρf = 800 kg/m3, η0 = 0.60, Cf = 2600 J/kg◦C, T = 20 s,

L = 220m, Af = 0.65m2, G = 0.80m. Parameter values of

simulation analysis are: α = 0.3, β = 0.7, θ is the positive

real vector with zero or small initial value, P (0) = 105I,

and forgetting factor λ = 0.95. Methods in [3] are compared

with this paper, the two algorithms simulation results are

shown in Fig. 3 to Fig. 8. Fig. 7 and Fig. 10 are the flow

of heat conductive oil, and the curve of the control value

respectively. Fig. 11 is switching progress between the six

models.

The average variance of two kinds of simulation results

is analyzed and calculated. MSE = 1.53264 in Fig. 5 and

MSE = 0.43276 in Fig. 8.

It can be seen from Fig. 7 and Fig. 10 that multi-model

active fault-tolerant sliding mode predictive control is bet-

ter than that of [3].

5 Conclusion

In this paper, we collected the data of 3500 sets of so-

lar thermal power generation sets, classified them, and set

up the mathematical model. A fault-tolerant sliding mode

predictive controller is designed, which can reduce error,

improve the system’s robustness and anti-interference abil-

ity. The adaptive prediction model can be used to reduce

the error caused by loss of data, the disturbance and fault.

Fig. 3. Solar radiation intensity.

Fig. 4. Inlet oil temperature.

Fig. 5. Control effect of [3].
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Fig. 6. Tracking error of [3].

Fig. 7. Oil flow of [3].

Fig. 8. Control effect of this paper.

Fig. 9. Output error of this paper.

Fig. 10. Oil flow result of this paper.

Fig. 11. Curve of models switching.

Administrator
椭圆形
是MMPC 还是 SMPC ?
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From Fig. 5 and Fig. 8, it can be seen that the method

proposed in this paper has higher accuracy and shorter lag

time, and has the ability to improve the robustness and con-

vergence rate of the solar thermal power generation system.
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