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Abstract In this paper, the problem of state feedback sta-
bilization for stochastic feedforward nonlinear systems with in-
put time-delay is considered for the first time. By introducing
a variable transformation, skillfully combining the homogeneous
domination method, and constructing an appropriate Lyapunov-
Krasovskii functional, a state feedback controller is developed to
guarantee the closed-loop system globally asymptotically stable
in probability.
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Since the stochastic stability theory was established and
improved by [1−3] and other references, in recent years, the
study of stochastic lower-triangular/upper-triangular non-
linear systems without time-delay based on backstepping
design method has achieved remarkable development.

In the study of stochastic nonlinear time-delay systems
based on backstepping method, [4] considered the problem
of the fourth-moment exponential output feedback stabi-
lization. Reference [5] laid the theoretical basis for con-
troller design and stability analysis of stochastic nonlin-
ear time-delay systems. For stochastic nonlinear high-order
time-delay systems, [6] studied the output-feedback stabi-
lization problem. In [7−8], by introducing the homoge-
neous domination method first proposed by [9] to stochastic
systems, the authors further discussed this problem using
conditions on nonlinear terms that are weaker than those
in [6].

To our knowledge, for the study of controller design
based on backstepping method for stochastic feedforward
time-delay systems, [10] was the first paper. Subsequently,
[11] improved the result in [10] by relaxing the system or-
der and assumptions on nonlinearities and considered more
general stochastic feedforward time-delay systems.

However, all of the aforementioned results only consider
stochastic nonlinear systems with time-delay in the nonlin-
ear terms fi(·) and gi(·), to our knowledge, there is no re-
sult until now for stochastic feedforward nonlinear systems
with time-delay in control input. Since input time-delay
widely exists in sensors, calculation, information process-
ing or transport[12], etc., how to stabilize stochastic non-
linear systems with input time-delay is a very meaningful
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research problem.
In this paper, we will consider the afore mentioned prob-

lem for a class of stochastic feedforward nonlinear systems
with input time-delay. By introducing a variable transfor-
mation, skillfully combining with the homogeneous domi-
nation method, and constructing an appropriate Lyapunov-
Krasovskii functional, a state feedback controller is con-
structed to drive the closed-loop system globally asymp-
totically stable in probability.

1 Mathematical preliminaries
The following notations, definitions and lemmas are to

be used throughout the paper.
For a given vector or matrix X, tr{X} denotes its trace

when X is square, and |X| is the Euclidean norm of vector
X. C([−d, 0];Rn) denotes the space of continuous Rn-value
functions on [−d, 0]; Cb

F0([−d, 0];Rn) denotes the family
of all F0-measurable bounded C([−d, 0];Rn)-valued ran-
dom variables ξξξ = {ξξξ(θ) : −d ≤ θ ≤ 0}. Ci denotes the
set of all functions with continuous ith partial derivatives;
C2,1(Rn × [−d,∞);R+) denotes the family of all nonneg-
ative functions V (xxx, t) on Rn × [−d,∞) which are C2 in xxx
and C1 in t. Sometimes, we denote χ(s) as χ to simplify
the procedure, where χ and s represent some variables.

Consider the following stochastic time-delay system

dxxx(t) = fff(t,xxx(t),xxx(t− d(t)))dt+

gT(t,xxx(t),xxx(t− d(t)))dωωω(t), ∀t ≥ 0 (1)

with initial data {xxx(θ) : −d ≤ θ ≤ 0} = ξξξ ∈
Cb
F0([−d, 0];Rn), where d(t) : R+ → [0, d] is a Borel mea-

surable function, ωωω(t) is an m-dimensional standard Wiener
process defined on the complete probability space (Ω,F , P )
with Ω being a sample space, F being a filtration, and P
being a probability measure. fff : R+ × Rn × Rn → Rn

and g : R+ ×Rn ×Rn → Rm×n are locally Lipschitz with
fff(t, 0, 0) ≡ 0 and g(t, 0, 0) ≡ 0.

Definition 1[13]. For any given V (xxx(t), t) ∈ C2,1 associ-
ated with system (1), the differential operator L is defined

as LV = ∂V
∂t

+ ∂V
∂xxx

fff + 1
2
tr{g ∂2V

∂xxx2 gT}, where 1
2
tr{g ∂2V

∂xxx2 gT}
is called the Hessian term of L.

Lemma 1[13]. For system (1), if there exist a func-
tion V (xxx(t), t) ∈ C2,1(Rn × [−d,∞);R+), two class K∞
functions α1, α2 and a class K function α3 such that
α1(|xxx(t)|) ≤ V (xxx(t), t) ≤ α2

(
sup−d≤s≤0 |xxx(t + s)|) and

LV (xxx(t), t) ≤ −α3(|xxx(t)|), then there exists a unique so-
lution on [−d,∞) for (1), and the equilibrium xxx(t) = 0 is
globally asymptotically stable in probability.

Lemma 2. Given real variables x, y and positive real
numbers a, m, n, there exists constant b > 0 such that

axmyn ≤ b|x|m+n + n
m+n

(
m+n

m

)−m
n b−

m
n a

m+n
n |y|m+n.

Proof. Lemma 2 can be easily proved by Young′s in-
equality. ¤

2 Design of state feedback controller
2.1 Problem formulation

Consider the following stochastic nonlinear systems with
input time-delay:

dxi(t) = xi+1(t)dt + fi(t,xxx(t), u(t− d))dt+

gggT
i (t,xxx(t), u(t− d))dωωω(t), i = 1, · · · , n− 1

dxn(t) = u(t− d)dt (2)

where xxx(t) = (x1(t), · · · , xn(t))T ∈ Rn and u(t) ∈ R are
system state and control input, respectively, constant d is
time-delay. ωωω(t) is an m-dimensional standard Wiener pro-
cess defined on the complete probability space (Ω,F , P ).
The nonlinear functions fi : R+ × Rn × R → R and
gggi : R+ ×Rn ×R → Rm, i = 1, · · · , n− 1, are assumed to
be C1 with fi(t, 0, 0) = 0 and gggi(t, 0, 0) = 0.

The purpose of this paper is to design a state feedback
controller for system (2) under the following assumption
such that the closed-loop system is globally asymptotically
stable in probability.

Assumption 1. For 1 ≤ i ≤ n− 1, there exist positive
constants a1 and a2 such that

|fi| ≤ a1 (|xi+2(t)|+ · · ·+ |xn(t)|+ |u(t− d)|)
|gggi| ≤ a2 (|xi+2(t)|+ · · ·+ |xn(t)|+ |u(t− d)|)

Remark 1. Obviously, system (2) satisfying Assump-
tion 1 is a stochastic feedforward nonlinear system. As we
discussed in [10] and [11], Assumption 1 is a frequently-used
condition. ¤
2.2 State feedback controller design

Part 1). Change of coordinates
Motivated by [14]∼ [16], we introduce a variable trans-

formation

x̃n(t) = xn(t) +

∫ t

t−d

u(s)ds (3)

and a set of coordinate transformations

ηi =
xi

Li−1
, ηn =

x̃n

Ln−1
, v =

u

Ln
, i = 1, · · · , n− 1 (4)

where 0 < L < 1 is a gain to be determined. By (3) and
(4), system (2) can be reinterpreted as

dηi(t) = Lηi+1(t)dt + f̃i(t,ηηη(t), v(t− d))dt+

g̃ggT
i (t,ηηη(t), v(t− d))dωωω(t), i = 1, · · · , n− 1

dηn(t) = Lv(t)dt (5)

where f̃i = 1
Li−1 fi(t, x1(t), · · · , xn−1(t), x̃n −

∫ t

t−d
u(s)ds,

u(t− d)), i = 1, · · · , n− 2, f̃n−1 = 1
Ln−2 fn−1(t, x1(t), · · · ,

xn−1(t), x̃n − ∫ t

t−d
u(s)ds, u(t − d)) − ∫ t

t−d
u(s)ds, g̃ggi =

1
Li−1gggi(t, x1(t), · · · , xn−1(t), x̃n−

∫ t

t−d
u(s)ds, u(t−d)), i =

1, · · · , n− 1.
Part 2) State feedback controller design of system (5)
In what follows, we design the state feedback controller

for system (5) by the homogeneous domination method.
Step 1. Introduce ξ1 = η1 and choose V1 = 1

4
ξ4
1 . From

Definition 1 and (5), it follows that LV1 = Lξ3
1η2 +F1 +G1,

where F1 = ∂V1
∂η1

f̃1, and G1 = 1
2
tr{g̃gg1

∂2V1
∂η2

1
g̃ggT

1 }. The virtual

controller η∗2 = −λ1ξ1, λ1 = c11 > 0 leads to

LV1 ≤ −Lc11ξ
4
1 + Lξ3

1(η2 − η∗2) + F1 + G1 (6)

Step iii (((iii===222,,, · · ·· · ·· · · ,,,nnn)))... We present this step by the follow-
ing proposition.

Proposition 1. Suppose that at step i−1, there exist a
C2, positive definite and proper Lyapunov function Vi−1 =
1
4

∑i−1
j=1 ξ4

j and a series of virtual controllers η∗1 , · · · , η∗i :

η∗1 = 0, η∗j = −λj−1ξj−1, ξj−1 = ηj−1 − η∗j−1 (7)
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with j = 2, · · · , i, such that

LVi−1≤−L

i−1∑
j=1

ci−1,jξ
4
j + Lξ3

i−1(ηi − η∗i ) + Fi−1+ Gi−1

(8)

where λj , ci−1,j , j = 1, · · · , i − 1, are positive constants,

Fi−1 =
∑i−1

j=1

∂Vi−1
∂ηj

f̃j , Gi−1 =
∑i−1

p,q=1
1
2
tr{g̃ggp

∂2Vi−1
∂ηp∂ηq

g̃ggT
q }.

Then the ith Lyapunov function

Vi = Vi−1 + Ui, Ui =
1

4
ξ4

i (9)

is C2, positive definite and proper, and there is η∗i+1 =
−λiξi such that

LVi ≤ −L

i∑
j=1

cijξ
4
j + Lξ3

i (ηi+1 − η∗i+1) + Fi + Gi (10)

with Fi =
∑i

j=1
∂Vi
∂ηj

f̃j and Gi =
∑i

p,q=1
1
2
tr{g̃ggp

∂2Vi
∂ηp∂ηq

g̃ggT
q }.

Proof. See Appendix. ¤
Hence, at step n, by choosing Vn = 1

4

∑n
i=1 ξ4

i , there
exists a control law

v = η∗n+1 = −λnξn = −(λ̄nηn + · · ·+ λ̄2η2 + λ̄1η1) (11)

such that

LVn ≤ −L

n∑
i=1

cniξ
4
i + Fn + Gn (12)

where Fn =
∑n−1

j=1
∂Vn
∂ηj

f̃j , Gn =
∑n−1

p,q=1
1
2
tr{g̃ggp

∂2Vn
∂ηp∂ηq

g̃ggT
q },

λ̄i = λn · · ·λi, cni, i = 1, · · · , n, are positive constants.
Next, we estimate Fn + Gn on the right-hand side of (12).

Proposition 2. There exist positive constants ai1, bi1,
ãn1, b̃n1, ân1 and b̂n1, such that

|Fn + Gn| ≤ L2
n∑

i=1

(ai1 + bi1)ξ
4
i + L2(ãn1 + b̃n1)ξ

4
n(t− d)+

L2(ân1 + b̂n1)

∫ t

t−d

ξ4
n(s)ds

Proof. See Appendix. ¤
Substituting Proposition 2 into (12) yields

LVn ≤ −L

n∑
i=1

(cni − (ai1 + bi1)L)ξ4
i + L2(ãn1 + b̃n1)×

ξ4
n(t− d) + L2(ân1 + b̂n1)

∫ t

t−d

ξ4
n(s)ds (13)

Construct the Lyapunov-Krasovskii functional:

V (ηηη(t)) = Vn(ηηη(t)) + L2(ãn1 + b̃n1)

∫ t

t−d

ξ4
n(s)ds+

L2(ân1 + b̂n1)

∫ 0

−d

∫ t

θ+t

ξ4
n(s)dsdθ (14)

which together with (13) yields

LV ≤ −L

n−1∑
i=1

(cni − L(ai1 + bi1))ξ
4
i − L(cnn − L(an1+

bn1 + ãn1 + b̃n1 + ân1d + b̂n1d))ξ4
n(t) (15)

Defining L∗ = min1≤i≤n−1{ cnn

an1+bn1+ãn1+b̃n1+(ân1+b̂n1)d
, 1,

cni
ai1+bi1

, } and choosing 0 < L < L∗, one has

LV (ηηη(t)) ≤ −µ

n∑
i=1

ξ4
i (t) (16)

where µ > 0 is a constant.
Part 3) State feedback controller design of system (2).
From (3) and (4), it follows that the state feedback con-

troller of system (2) is

u(t) = −Lnλ̄1x1(t)− Ln−1λ̄2x2(t)− · · · − Lλ̄nxn(t)−

Lλ̄n

∫ t

t−d

u(s)ds (17)

3 Stability analysis

We now present the main result of this paper.
Theorem 1. If Assumption 1 holds for system (2),

then under the state feedback controller (17), the closed-
loop system has a unique solution on [−d,∞), and the equi-
librium at the origin of the closed-loop system is globally
asymptotically stable in probability.

Proof. Considering the Lyapunov-Krasovskii func-
tional V given in (14), it is obvious that V is C2. Since
Vn is C2, positive definite and proper, by Lemma 4.3 in
[17], there exist K∞ functions α1, α21 such that

α1(|ηηη(t)|) ≤ Vn(ηηη(t)) ≤ α21(|ηηη(t)|) (18)

By the first integral mean value theorem, one gets

L2(ãn1 + b̃n1)

∫ t

t−d

ξ4
n(s)ds + L2

∫ 0

−d

∫ t

θ+t

ξ4
n(s)dsdθ×

(ân1 + b̂n1) ≤

L2(ãn1 + b̃n1 + ân1d + b̂n1d)

∫ t

t−d

ξ4
n(s)ds ≤

c01

∫ t

t−d

α22(|ηηη(σ)|)dσ
σ=s+t

=

c01

∫ 0

−d

α22(|ηηη(s + t)|)d(s + t) ≤

c02 sup
−d≤s≤0

α22(|ηηη(s + t)|) ≤

ᾱ22

(
sup

−d≤s≤0
|ηηη(s + t)|

)
(19)

where c01 and c02 are positive constants, α22 and
ᾱ22 are class K∞ functions. Note that α21(|ηηη(t)|) ≤
α21(sup−d≤s≤0 |ηηη(s + t)|). Setting α2 = α21 + ᾱ22, by (14),
(18) and (19), one gets

α1(|ηηη(t)|) ≤ V (ηηη(t)) ≤ α2

(
sup

−d≤s≤0
|ηηη(s + t)|

)
(20)

From (16) and (18), it follows that

LV (ηηη(t)) ≤ −4µα1(|ηηη(t)|) (21)

By (20) and (21), the conditions of Lemma 1 are satisfied.
Then, the closed-loop system (5) and (11) has a unique
solution on [−d,∞), and ηηη(t) = 0 is globally asymptotically
stable in probability.
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Note that (4) is an equivalent transformation, and that
when (x1, · · · , xn−1, x̃n) and u converge to zero asymptoti-
cally as t →∞, by (3), (x1, · · · , xn−1, xn) converges to zero
asymptotically as t → ∞. Hence, the closed-loop system
consisting of (2) and (17) has a unique solution on [−d,∞),
and the equilibrium xxx(t) = 0 is globally asymptotically sta-
ble in probability. ¤

Remark 2. In this paper, the homogeneous domination
idea is generalized to the stochastic feedforward nonlinear
systems with input time-delay for the first time. The under-
lying philosophy of this approach is that the state feedback
controller is first constructed without dealing with the non-
linear terms, and then a scaling gain L in (4) whose value
range is given in (16) is introduced to the state feedback
controller to dominate the nonlinearities.

4 A simulation example

Consider the stochastic feedforward nonlinear system:

dx1(t) = x2(t)dt + u(t− 0.3)dt + 0.2u(t− 0.3)dω(t)

dx2(t) = u(t− 0.3)dt (22)

It is obvious that Assumption 1 holds with a1 = 1 and
a2 = 0.2. Following the design procedure as in Section 3,
the state feedback controller is designed as

u(t) = −L2λ̄1x1(t)− Lλ̄2x2(t)− Lλ̄2

∫ t

t−0.3

u(s)ds (23)

In the simulation, L = 0.05, λ̄1 = λ̄2 = 4.9449, the
initial values x1(0) = −3, x2(0) = 0.3. Fig. 1 demonstrates
the effectiveness of the control scheme.

Fig. 1 The responses of closed-loop system (22) and (23)

5 Conclusions
In this paper, we make an initial attempt to construct a

state feedback controller for stochastic feedforward nonlin-
ear systems with input time-delay. Our future work is to
explore more deeply the properties and control problems of
stochastic feedforward nonlinear time-delay systems, as we
have done on stochastic nonlinear systems [10−11].

Appendix

Proof of Proposition 1. By (9), it is easy to verify
that Vi is C2, positive definite and proper. Next, we prove
inequality (10). From (7)∼ (9), it follows that

LVi≤−L

i−1∑
j=1

ci−1,jξ
4
j + Lξ3

i−1(ηi − η∗i ) + Lξ3
i ηi+1+

(
Fi−1 +

i∑
j=1

∂Ui

∂ηj

f̃j

Lj−1

)
− Lξ3

i

i−1∑
j=1

∂η∗i
∂ηj

ηj+1+

(
Gi−1 +

i∑
p,q=1

1

2
tr

{
g̃ggp

Lp−1

∂2Ui

∂ηp∂ηq

g̃ggT
q

Lq−1

})
≤

− L

i−1∑
j=1

ci−1,jξ
4
j + Lξ3

i (ηi+1 − η∗i+1) + Lξ3
i η∗i+1 + Fi+

Gi+ Lξ3
i−1(ηi − η∗i ) + Lξ3

i

i−1∑
j=1

λi−1 · · ·λjηj+1 (A1)

By (7) and Lemma 2, one obtains

|ξ3
i−1(ηi − η∗i )| ≤ li,i−1,1ξ

4
i−1 + σi1ξ

4
i∣∣∣∣∣ξ

3
i

i−1∑
j=1

λi−1 · · ·λjηj+1

∣∣∣∣∣ ≤
i−1∑
j=1

lij2ξ
4
j + σi2ξ

4
i (A2)

Choosing cij =

{
ci−1,j − lij2 > 0, j = 1, · · · , i− 2,
ci−1,i−1 − li,i−1,1 − li,i−1,2 > 0, j = i− 1,

η∗i+1 = −λiξi, λi = cii +σi1 +σi2, cii > 0, and substituting
(A2) into (A1), one gets the result. ¤

Proof of Proposition 2. For i = 1, · · · , n − 2, by
Assumption 1, (4) and 0 < L < 1, one has

|f̃i|≤ a1

Li−1

(
Li+1|ηi+2|+ · · ·+ Ln−1|ηn|+

Ln

∫ t

t−d

|v(s)|ds + Ln|v(t− d)|
)
≤

a1L
2

(
n∑

j=i+2

|ηj |+
∫ t

t−d

|v(s)|ds + |v(t− d)|
)

(A3)

For i = n− 1, by the definition of f̃n−1, Assumption 1 and
0 < L < 1, one has

|f̃n−1| ≤ a1L
2

(
|v(t− d)|+

∫ t

t−d

|v(s)|ds

)
(A4)

Combining (A3) and (A4), for i = 1, · · · , n− 1, one has

|f̃i| ≤ a1L
2

(
n∑

j=i+2

|ηj |+
∫ t

t−d

|v(s)|ds + |v(t− d)|
)

(A5)
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Hence, by Lemma 2, (7) and (11), one obtains

|Fn| ≤ a1L
2

n−1∑
i=1

∣∣∣∣∣ξ
3
i +

n∑
j=i+1

λj−1 · · ·λiξ
3
j

∣∣∣∣∣

(
|λnξn(t− d)|+

n∑
j=i+2

|ξj − λj−1ξj−1|+ λn

∫ t

t−d

|ξn(s)|ds

)
≤

L2
n∑

i=1

ai1ξ
4
i + L2ân1

∫ t

t−d

ξ4
n(s)ds+

L2ãn1ξ
4
n(t− d) (A6)

where ai1, ãn1 and ân1, i = 1, · · · , n are positive constants.
Similar to (A5), for i = 1, · · · , n− 1, one has

|g̃ggi| ≤ ã2L
2

(
n∑

j=i+1

|ξj |+
∫ t

t−d

|ξn(s)|ds + |ξn(t− d)|
)

(A7)

with ã2 being a positive constant. From (A7), Vn =∑n
i=1 Ui and Lemma 2, it follows that

|Gn|≤
n∑

i=1

i∑
p,q=1

b̂

∣∣∣∣
∂2Ui

∂ηp∂ηq

∣∣∣∣ |g̃ggp||g̃ggq| ≤

L2
n∑

i=1

i∑
p,q=1

b̌pqξ
2
i

(
n∑

j=p+1

|ξj |+
∫ t

t−d

|ξn(s)|ds+

|ξn(t− d)|
)(

n∑
j=q+1

|ξj |+
∫ t

t−d

|ξn(s)|ds+

|ξn(t− d)|
)
≤

L2
n∑

j=1

bj1ξ
4
j + L2b̃n1ξ

4
n(t− d) + L2b̂n1

∫ t

t−d

ξ4
n(s)ds

(A8)

where b̂, b̌pq, bj1, b̃n1 and b̂n1 are positive constants. Com-
bining (A6) and (A8), one gets the desired result. ¤
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