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State Feedback Stabilization of
Stochastic Feedforward
Nonlinear Systems with

Input Time-delay

XIE Xue-Jun! ZHAO Cong-Ran!

Abstract In this paper, the problem of state feedback sta-
bilization for stochastic feedforward nonlinear systems with in-
put time-delay is considered for the first time. By introducing
a variable transformation, skillfully combining the homogeneous
domination method, and constructing an appropriate Lyapunov-
Krasovskii functional, a state feedback controller is developed to
guarantee the closed-loop system globally asymptotically stable
in probability.
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Since the stochastic stability theory was established and
improved by [1—3] and other references, in recent years, the
study of stochastic lower-triangular/upper-triangular non-
linear systems without time-delay based on backstepping
design method has achieved remarkable development.

In the study of stochastic nonlinear time-delay systems
based on backstepping method, [4] considered the problem
of the fourth-moment exponential output feedback stabi-
lization. Reference [5] laid the theoretical basis for con-
troller design and stability analysis of stochastic nonlin-
ear time-delay systems. For stochastic nonlinear high-order
time-delay systems, [6] studied the output-feedback stabi-
lization problem. In [7—8], by introducing the homoge-
neous domination method first proposed by [9] to stochastic
systems, the authors further discussed this problem using
conditions on nonlinear terms that are weaker than those
in [6].

To our knowledge, for the study of controller design
based on backstepping method for stochastic feedforward
time-delay systems, [10] was the first paper. Subsequently,
[11] improved the result in [10] by relaxing the system or-
der and assumptions on nonlinearities and considered more
general stochastic feedforward time-delay systems.

However, all of the aforementioned results only consider
stochastic nonlinear systems with time-delay in the nonlin-
ear terms f;(-) and g;(-), to our knowledge, there is no re-
sult until now for stochastic feedforward nonlinear systems
with time-delay in control input. Since input time-delay
widely exists in sensors, calculation, information process-
ing or transport!!? etc., how to stabilize stochastic non-
linear systems with input time-delay is a very meaningful
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research problem.

In this paper, we will consider the afore mentioned prob-
lem for a class of stochastic feedforward nonlinear systems
with input time-delay. By introducing a variable transfor-
mation, skillfully combining with the homogeneous domi-
nation method, and constructing an appropriate Lyapunov-
Krasovskii functional, a state feedback controller is con-
structed to drive the closed-loop system globally asymp-
totically stable in probability.

1 Mathematical preliminaries

The following notations, definitions and lemmas are to
be used throughout the paper.

For a given vector or matrix X, tr{X} denotes its trace
when X is square, and |X]| is the Euclidean norm of vector
X. C([—d,0]; R™) denotes the space of continuous R"-value
functions on [—d,0]; C%,([—d,0; R") denotes the family
of all Fp-measurable bounded C([—d,0]; R")-valued ran-
dom variables § = {£(0) : —d < 6 < 0}. C* denotes the
set of all functions with continuous ¢th partial derivatives;
C*'(R™ x [~d,0); Ry) denotes the family of all nonneg-
ative functions V(z,t) on R™ x [—d, o0) which are C? in z
and C' in t. Sometimes, we denote x(s) as x to simplify
the procedure, where x and s represent some variables.

Consider the following stochastic time-delay system

dz(t) = f(t,z(t),z(t — d(t)))di+
g (t,z(t),z(t — d(t)dw(t), Vt>0 (1)
with initial data {z(6) -d < 0 < 0} = § €

C%, ([—d,0; R™), where d(t) : Ry — [0,d] is a Borel mea-
surable function, w(t) is an m-dimensional standard Wiener
process defined on the complete probability space (2, F, P)
with Q being a sample space, F being a filtration, and P
being a probability measure. f : Ry x R" x R" — R"
and g: Ry x R® x R" — R™*" are locally Lipschitz with
f(t,0,0) =0 and ¢(¢,0,0) = 0.

Definition 1%, For any given V (z(t),t) € C** associ-
ated with system (1), the differential operator L is deﬁned
as LV =20 + 2V f 4 tr{g‘f;ﬂ:2 9"}, where 1tr{g2 OIQ VgT}
is called the Hessian term of L.

Lemma 1%, For system (1), if there exist a func-
tion V(z(t),t) € C**(R" x [~d,00); R4), two class Keo
functions «1, a2 and a class K function as such that
ar(@()) < V(@(),t) < az (Sup_gerc|alt+5)]) and
LV (x(t),t) < —as(|z(t)]), then there exists a unique so-
lution on [—d, 0c0) for (1), and the equilibrium z(t) = 0 is
globally asymptotically stable in probability.

Lemma 2. Given real variables z,y and positive real
numbers a,m,n, there exists constant b > 0 such that

m m+n

ax™y" < blx|mt" + s (mT"L”)7 N T K
Proof. Lemma 2 can be easily proved by Young's in-
equality. a

2 Design of state feedback controller
2.1 Problem formulation

Consider the following stochastic nonlinear systems with
input time-delay:

da:l(t) = $¢+1(t)dt + fi(t,m(t)7 u(t — d))dt+
g/ (tx(t),u(t — d))dw(t), i=1,--- ,n—1
den(t) = u(t — d)dt (2)

where z(t) = (x1(t), - ,zn(t))T € R™ and u(t) € R are
system state and control input, respectively, constant d is
time-delay. w(t) is an m-dimensional standard Wiener pro-
cess defined on the complete probability space (92, F, P).
The nonlinear functions f; : Ry x R" x R — R and
g :Ri xR"XR—=R™,i=1,--- ,n—1, are assumed to
be C* with fi(¢,0,0) = 0 and g,(t,0,0) = 0.

The purpose of this paper is to design a state feedback
controller for system (2) under the following assumption
such that the closed-loop system is globally asymptotically
stable in probability.

Assumption 1. For 1 <i <n — 1, there exist positive
constants a1 and as such that

Ifil < a1 (|zipa(t)| + - -
9i] < a2 (|Jzit2(t)| + -

+ [zn (O] + Ju(t — d)])
+ [zn (O] + |u(t — d)])

Remark 1. Obviously, system (2) satisfying Assump-
tion 1 is a stochastic feedforward nonlinear system. As we
discussed in [10] and [11], Assumption 1 is a frequently-used
condition. d

2.2 State feedback controller design

Part 1). Change of coordinates
Motivated by [14] ~ [16], we introduce a variable trans-
formation

t
Zn(t) = zn(t) +/ u(s)ds (3)
t—d
and a set of coordinate transformations
T T u .
ni:Liiil7n":LTTi17v:ﬁ77':17"'7n_1 (4)

where 0 < L < 1 is a gain to be determined. By (3) and
(4), system (2) can be reinterpreted as

dni(t) = Lyig1 (8)dt + fi(t,n(t),v(t — d))dt+
g;r(t7n(t)7v(t_d))dw(t)7 1= 17 777'_1
dn, (t) = Lo(t)dt (5)

where fl = ﬁfi(t, z1(t),- -
u(t — d)) i1=1,-
Tn— 1 ft d
Lil—lgi(t7 xl(t)» T
1o ,n—1.

Part 2) State feedback controller design of system (5)

In what follows, we design the state feedback controller
for system (5) by the homogeneous domination method.

Step 1. Introduce & = n1 and choose Vi = iff From

Definition 1 and (5), it follows that LV; = Lf%ng +F1+Gh,
where F1 = g%fh and Gy = 3tr{g, aa ‘Q g1 }. The virtual
controller 3 = —A1&1, A1 =c11 >0 leads to

s Tn—1(t), Tn — ftt_d u(s)ds
=2, fn- 1—Ln12fn 1(t xl(t)""v
s)ds,u(t — d)) ft Ju(s)ds, g, =

Tt (1) &0 — [ u(s)ds, u(t—d)),i:

LVi < —Len&l + L& (n2 —m3) + F1L + Gy (6)

Step i (i=2,---,n). We present this step by the follow-
ing proposition.

Proposition 1. Suppose that at step i —1, there exist a
C , positive definite and proper Lyapunov functlon Vil =
i Z; 11§J and a series of virtual controllers nj, -+, n;:

m=0,n =-XN-1&-1, &1 =n-1—1m-1  (7)
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with j = 2,--- 4, such that

1—1

LV <=L e85+ L& (n:

Jj=1

—ni )+ Fici+ Gica

(8)

where A, ¢i—1,5, j = 1,---,4 — 1, are positive constants,
~ 9%V,

i— 1 3V1
Fioy = Z lfj’ i—1 = ZP‘Z 1 2tr{gp8np3nq93
Then the ith Lyapunov function

Vi=Via+Us, U= is? 9)

is C?, positive definite and proper, and there is N1 =
—A:&; such that

LV; < =LY ciéy + L& (v —niy1) + Fo+ Gi - (10)

j=1

with F; = ZQ 18 fj and G; =
Proof. See Appendlx
Hence, at step m, by choosing V;, = 7 ZZ 1 4 there
exists a control law

3 T
2pa=1 2tr{gp onp anng}

V=11 = —Mbn = =t + -+ Ao + i) (11)
such that

n

LVa < =LY caibi + Fo + G (12)
i=1

77471 n 3 —_— n
where F, = Y5, W . G = Y00, bue(g, s g7,
Xi = An---Xiy Cni, © = 1,---,n, are positive constants.

Next, we estimate F,, + G, on the right-hand side of (12).
Prop051t10n 2. There exist positive constants a;1, b1,
ani, bn1, Gn1 and bn1, such that

|Fo + Gl < L* (@it + bia)& + L (@n1 + bn1)én(t — d)+

L2 Anl Bnl t :lb d
(a0 +b) [ €do)as

Proof. See Appendix. a
Substituting Proposition 2 into (12) yields

LVo < =LY (cni — (air +bi) L)ES + L (@m + bna) x
i=1
t
En(t —d) + L*(an1 +bn1) [ €n(s)ds (13)

t—d

Construct the Lyapunov-Krasovskii functional:
t
V) = Valn(@) + Pam +b) [ h(5)ds+
t—d

) 0 ft
L (an1 + bn1) / - £n(s)dsdo (14)

which together with (13) yields

n—1

LV <-L Z(an - (azl + bzl))€ - L(Cnn - L(an1+

i=1

Defining L* = minj<j<n— — Cnn - 1
& lsisn 1{anl+bn1+an1+bn1+(an1+bn1)d7 ’

“ni_ % and choosing 0 < L < L*,

ne h.
a;j1+bi1 one has

LV (n(t)) < wZé‘?(t) (16)

where 1 > 0 is a constant.
Part 3) State feedback controller design of system (2).
From (3) and (4), it follows that the state feedback con-
troller of system (2) is

u(t) = —Lnj\ll'l(t) — Lnilj\Ql'g(t) — s — Lj\nmn(t)—

L\, /t_d u(s)ds (17)

3 Stability analysis

We now present the main result of this paper.

Theorem 1. If Assumption 1 holds for system (2),
then under the state feedback controller (17), the closed-
loop system has a unique solution on [—d, c0), and the equi-
librium at the origin of the closed-loop system is globally
asymptotically stable in probability.

Proof. Considering the Lyapunov-Krasovskii func-
tional V given in (14), it is obvious that V is C2. Since
V, is C?, positive definite and proper, by Lemma 4.3 in
[17], there exist Koo functions au, a21 such that

ar(In(®)]) < Va(n(?)) < ax(n(@)]) (18)
By the first integral mean value theorem, one gets
B t 0 gt
L*(@n1 + bn1) / &h(s)ds + L? / £ (s)dsdfx
t—d —dJo+t
(&nl + i)nl) <

t
L2(an1 + bur + dnid + bnd) / ¢4 (s)ds <
t—d
t o=s5+t
cor [ az(in(o) o =2
t—d

601/ asa(In(s +t)d(s +t) <

—d
co2 sup aza(n(s+1)) <

—d<s<0
ax (_sup_ (s +0)) (19)

—d<s<0
where cp1 and cp2 are positive constants, as2 and

a2 are class Ko functions. Note that az1(n(t)]) <
@21 (SUpP_g< <o IN(s +1)]). Setting az = o1 + @22, by (14),
(18) and (19), one gets

ar(In(®))) < V() < as ( sup

—d<s<0

In(s + t)|) (20)

From (16) and (18

LV (n(t)) < —4poa(In(t)]) (21)

By (20) and (21), the conditions of Lemma 1 are satisfied.
Then, the closed-loop system (5) and (11) has a unique
solution on [—d, 00), and n(t) = 0 is globally asymptotically
stable in probability.

), it follows that
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Note that (4) is an equivalent transformation, and that
when (21, -+ ,Tn—1,%,) and u converge to zero asymptoti-
cally as t — oo, by (3), (1, ,Zn—1,Zn) converges to zero
asymptotically as ¢t — co. Hence, the closed-loop system
consisting of (2) and (17) has a unique solution on [—d, c0),
and the equilibrium z(t) = 0 is globally asymptotically sta-
ble in probability. g

Remark 2. In this paper, the homogeneous domination
idea is generalized to the stochastic feedforward nonlinear
systems with input time-delay for the first time. The under-
lying philosophy of this approach is that the state feedback
controller is first constructed without dealing with the non-
linear terms, and then a scaling gain L in (4) whose value
range is given in (16) is introduced to the state feedback
controller to dominate the nonlinearities.

4 A simulation example

Consider the stochastic feedforward nonlinear system:

d£E1 (t)
dZCQ (t)

z2(t)dt + u(t — 0.3)dt + 0.2u(t — 0.3)dw(t)
u(t — 0.3)dt (22)

It is obvious that Assumption 1 holds with a; = 1 and
az = 0.2. Following the design procedure as in Section 3,
the state feedback controller is designed as

wlt) = — LNz (8) — Lhows(t) — L /t io u(s)ds (23

In the simulation, L = 0.05, A1 = o = 4.9449, the
initial values x1(0) = —3, x2(0) = 0.3. Fig. 1 demonstrates
the effectiveness of the control scheme.

0.5

0

States

0 20 40 60 80 100
Time /s

-0.01

-0.02

Control input

-0.03

-0.04

0 20 40 60 80

Time /s

Fig.1 The responses of closed-loop system (22) and (23)

5 Conclusions

In this paper, we make an initial attempt to construct a
state feedback controller for stochastic feedforward nonlin-
ear systems with input time-delay. Our future work is to
explore more deeply the properties and control problems of
stochastic feedforward nonlinear time-delay systems, as we
have done on stochastic nonlinear systems (10-11]

Appendix

Proof of Proposition 1. By (9), it is easy to verify
that V; is C2, positive definite and proper. Next, we prove
inequality (10). From (7) ~ (9), it follows that

i—1

LV, <=Ly cim1,,6 + LE_1(ns

Jj=1

U on;
(Foar s ) ey S
1

“1 [ g oU g,
i = <
<G 1+ Z 2'61"{ To—1 G0, Li }) <

—07) + LE i1+

P,g=1
i—1
— LY cimg€) + LE (nivr — nia) + L& i1 + Fit
j=1
Git+ L& 1 (i — i) + L& Z Aicr- A (A1)
j=1
By (7) and Lemma 2, one obtains
|§f’_1(m )| < lijic1 1601 + o€l
i—1
& Z N Ay | <Y ligo€f + o0&l (A2)
j=1
Ci—1,5 —lijg > O,j: 1,'” ,i—2,

Choosing ¢;; = L
& Cij Ci—1,i-1 —liji—11 —liji—12>0,7=19—1,

Nit1 = —Xi&i, Ni = ¢ii +0i1 + 042, ¢ > 0, and substituting
(A2) into (A1), one gets the result. O

Proof of Proposition 2. Fori =1,---
Assumption 1, (4) and 0 < L < 1, one has

,TL—Q, by

|fil <

Lz 1 (Ll+1|772+2| o L |+

L"/tid [v(s)lds + L™ |v(t — d)|> <

arL? ( Z [n;] +/ v(s)|ds + |v(t — d)) (A3)

Jj=1+2

For i = n — 1, by the definition of fn_l, Assumption 1 and
0 < L < 1, one has

Frlar? (joe-a)+ | wellas) (a0

Combining (A3) and (A4), fori=1,---

S Iyl + / <s>|ds+|v<t—d>|> (A5)

J=i+2

,n— 1, one has

Ifil <aL® <
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Hence, by Lemma 2, (7) and (11), one obtains 7 Xie X J, Liu L. Further result on output feedback stabiliza-
tion for stochastic high-order nonlinear systems with time-

<aL? -
|Fn‘ Sal Z 51 + Z Aj-1 Xie X J, Liu L. A homogeneous domination approach to
state feedback of stochastic high-order nonlinear systems

varying delay. Automatica, 2012, 48(9): 2577—2586
Jj=i+1
n t with time-varying delay. IEEE Transactions on Automatic
&l + 0 [ l6n(lds
t

Qm&u—>w .

E &5 — N Control, 2013, 58(2): 494—499

J=it2 9 Qian C J. A homogeneous domination approach for global

9 n 4 5. toy output feedback stabilization of a class of nonlinear systems.

L Z ainé&; + Loan1 / & (s)ds+ In: Proceedings of the 2005 American Control Conference.
P t—d Portland, USA: IEEE, 2005. 4708—4715

L2C~ln1§i(t —d) (A6) 10 Liu L, Xie X J. State feedback stabilization for stochastic
feedforward nonlinear systems with time-varying delay. Au-
where a;1, an1 and an1, ¢ =1, -+ ,n are positive constants. tomatica, 2013, 49(4): 936—942
Similar to (A5), for i =1,--- ,n — 1, one has

11 Zhao C R, Xie X J. Global stabilization of stochastic high-
order feedforward nonlinear systems with time-varying delay.

n t .
. Automatica, 2014, 50(1): 203—210
|gisazL2(Z 61+ [ |£n(8)ld5+|£n(t—d)) utomatica .
j=it1 t—d 12 Michiels W, Niculescu S I. Stability and Stabilization of
(A7) Time-Delay Systems: An Eigenvalue-Based Approach. Sin-
gapore: STAM, 2007.

WiElh a2 being a positiye constant. From (A7), V, = 13 Liu S J. Controller Design for Stochastic Nonlinear Sys-
>-7_ Ui and Lemma 2, it follows that tems and Performance Analysis of the Closed-Loop Sys-

tems [Ph.D. dissertation], Chinese Academy of Sciences,
China, 2009. (in Chinese)

i

Gal<> > b
i=1 p,q=1

0*U;
Onpong |gp||g‘7 - 14 Zhang X F. Stabilization of Nonlinear Time-Delay Systems
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) t sity, China, 2005. (in Chinese)
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