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Nonlinear Control for

Multi-agent Formations with

Delays in Noisy Environments
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Abstract In this paper, we investigate the nonlinear control
problem for multi-agent formations with communication delays
in noisy environments and in directed interconnection topolo-
gies. A stable theory of stochastic delay differential equations
is established and then some sufficient conditions are obtained
based on this theory, which allow the required formations to
be gained at exponentially converging speeds with probability
one for time-invariant formations, time-varying formations, and
time-varying formations for trajectory tracking under a special
“multiple leaders” framework. Some numerical simulations are
also given to illustrate the effectiveness of the theoretical results.
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Multi-agent systems formation control is a consensus-
related problem (first-order dynamics[1−4] or second-order
dynamics[5−8], to name a few) that has been intensively
investigated across many scientific disciplines in the past
few years with a lot of results applicable to a range of engi-
neering control problems. Rapid advances have been made,
for example, in the cooperative control of some notoriously
difficult systems such as unmanned aerial vehicles (UAVS),
autonomous underwater vehicles (AUVS) and mobile robot
systems (MRS), where there is a great need for consensus
of both the agent states (such as positions, velocities, etc.)
and the group formations (i.e. the alignments).

Many formation control methods have been proposed
in [9−18]. For example, some methods that use concepts
from graph theory and dynamical systems were proposed
in [13−14]. In [9, 12], the authors discussed the formation
control problems for a class of fractional-order dynamics by
using the distributed communication protocols. From the
viewpoint of network connectivity, the authors of [11, 14]
designed some decentralized formation controllers. In [16]
and [17], the authors investigated the formation control
problems under the conditions of noise disturbance and
communication delays, respectively. Particularly, a kind of
formation control framework was proposed in [12, 19−21],
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which classifies all information into global and local classes
with the global information being accessible to only a few
of the selected agents and the local information to all.
This control protocol is very practical in design and highly
suitable for applications, though coupling time delays and
transmission noise perturbations are completely ignored.

Time delays, however, are always present in real-world
physical systems[21−24] because of the unavoidable time-
lags in the exchange of information between system nodes
(time-lags could be caused, for example, by the finite
switching speeds of the amplifiers in an electrical circuit)
and time-delay-free protocols are prone to be unstable in
numerical simulation experiments. By the same token,
noise disturbances are prevalent in nature with system
properties (such as agent group motions) being typically
susceptible to their effects[25−27]. Despite the knowledge
that we have gained in noise-free formation problems over
the years, however, general results on time-delayed noise-
perturbed complex systems are still very much a scarcity.

In this paper, based on our previous works of [18, 28−29],
we further investigate a class of nonlinear control problems
for multi-agent formations with single-integrator dynamic
that possess time-delayed couplings and directed graphs
under noisy environments. In particular, we apply a spe-
cial “multiple leaders” framework and classify the agents
into leaders and followers with the global information be-
ing accessible to only the leaders. We allow a small number
of the leaders (called the leaders of the leaders) to regulate
their states in accordance with their state deviations and to
pin the other leaders into attaining the expected formations
and allow a small number of followers (called the leaders
of the followers) to do the same with other followers. It is
also assumed that the followers′ states are being continu-
ously updated with the latest global formation information
during the formation process and that the leaders′ own dy-
namics remain perfectly unaffected by those of their follow-
ers. Our aim is to obtain sufficient conditions for attain-
ing time-invariant formations, time-varying formations and
time-varying formations for trajectory tracking and extend
the results of [12] to the case of communication-delayed and
noise-disturbed nonlinear multi-agent dynamics.

This paper has three main contributions. Firstly, a sta-
bility theory of stochastic delay differential equations has
been established, which can be used to resolve a large class
of nonlinear control problems. Secondly, our treatment of
multiple-agent classes provides a good general model for
commercial corporate structures in which multiple level
management systems are prevalent and specific duties are
assigned to the leaders at different levels. Thirdly, we con-
sider the effects of coupling delays and noise disturbance on
formation control, and the upper bound of the time delays
is derived. Such theoretical results can be applied to the
actual noise-disturbed multi-agent systems with nonlinear
coupling function and time delays running in asymmetric
communication topologies.

This paper is organized as follows. In Section 1, we for-
mulate the formation control problems. In Section 2, we
discuss the stability theory of stochastic delay differential
equations and present three main formation control proto-
cols in Section 3. In Section 4, we consider some exam-
ples and show some simulation results, and conclusions are
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drawn in Section 5.
Throughout this paper and unless specified, let | · | be

the Euclidean norm. If A is a vector or a matrix, then
AT denotes its transpose. If A is a matrix, ‖A‖ denotes
the operator norm of A, i.e., ‖A‖ = sup {|Ax| : |x| = 1}.
Moreover, let λmax(A) and λmin(A) be the maximum and
minimum eigenvalues of symmetric matrix A, respectively.
For any stochastic variable x, let E(x ) be its mathematical
expectation.

1 Model description and preliminaries

In this paper, we consider a system that is made up of `
leaders (indexed by 1, 2, · · · , `) and N−` followers (indexed
by ` + 1, ` + 2, · · · , N). We assume that the motions of
the leaders are independent and that the motions of the
followers are dependent on those of their leaders and other
agents. The inter-relationships between the agents can then
be conveniently described by a digraph G with the N agents
at the vertices.

Let xi ∈ Rn be the state of agent i with dynamics

ẋi = ui (1)

where ui is the state feedback called the protocol to be
designed.

In order to facilitate our analysis, this paper only consid-
ers the one-dimensional case, i.e., n = 1. However, similar
analysis can also be done for the higher-dimensional case by
means of Kronecker product. Let N ` = {1, 2, · · · , `}, Nf =
{` + 1, · · · , N}, xxx = (x1, · · · , xN )T and xxx` = (x1, · · · , x`)

T.
During the formation processes of practical multi-agent

systems, the leaders, located in some key positions (such
as the centers or boundaries), grasp the global formation
information that will be transmitted to its followers imme-
diately. Accordingly, the followers can be in contact with
their neighbors instantly and exchange their state informa-
tion locally. As time goes on, all the followers can finally
converge to the convex hull of the leaders′ positions, then
the expected formation can be achieved. From this kind of
formation idea[12, 19−21], one gives the following formation
definition.

Definition 1. A formation (FFF , W ) of N agents consists
of a time-dependent column vector FFF = [f1, f2, · · · , f`]

T ∈
R` (` ≤ N) with fi ∈ R (which can be considered as the
whole formation shape function), representing the global
formation information, and a time-independent nonneg-
ative matrix W = [WT

`+1, · · · , WT
N ]T ∈ R(N−`)`, repre-

senting the local formation information, with the property
that the entry sum of matrix WWW iii = (W 1

i , · · · , W `
i )T ∈ R`

(i ∈ Nf ) is 1 and the ith entry of Wi is zero. If there exists
an Rn-valued function fc(t) (which can be considered as
the whole tracking object function) such that xi → fi + fc

for i ∈ N ` and xi → WWW iiixxx
` for i ∈ Nf as t → ∞, then

we say that system (1) solves the formation problem. Es-
pecially, the problem is classified as a time-invariant for-
mation (TIF) problem, a time-varying formation (TVF)
problem and a time-varying formation for trajectory track-
ing (TVFT) problem, respectively, if both the formation
shape and the tracking object are constants (ḟi = 0 with
ḟc = 0), the formation shape is time-varying while the
tracking object is a constant (ḟi 6= 0 with ḟc = 0), and both

the formation shape and tracking object are time-varying
(ḟi 6= 0with ḟc 6= 0), respectively.

Vector F defines the basic frame of the formation that
will be formed by the leaders and the non-negative matrix
W specifies the local-state restrictions faced by the follow-
ers in relation to their leaders. W therefore determines
the space distribution of the followers which, as a result of
W ′s unit row entry sum property, must be a convex region.
The column vector FFFccc(t) = [fc(t), fc(t), · · · , fc(t)]

T ∈ R`,
on the other hand, determines the state of the formation
as a whole and could therefore be dependent on both the
initial states of the motions and on the driving force of any
external inputs that are used to guide the group of agents
into their prescribed trajectories.

Let G = (V, ε, A) be a weighted digraph of order N with
nodes V = {1, 2, · · · , N}, arcs ε ⊆ V × V and a weighted
adjacency A = (aij) ∈ RN×N , where aii = 0 and aij ≥
0 for all i 6= j. In the present context, aij > 0 if and
only if there is an edge from vertex j to vertex i and a
diagonal matrix D = diag{d1, d2, · · · , dN} ∈ RN×N with
di =

∑
j∈Ni

aij for i = 1, 2, · · · , N is called a degree matrix
of G, where Ni = {j ∈ V : (i, j) ∈ ε} is the set of all
the neighbors of node i. Matrix L = D − A ∈ RN×N is
called the Laplacian matrix of the weighted digraph G and
a directed tree is a digraph with N nodes and N − 1 edges
such that there is a directed path from the root vertex to
every other vertex. A spanning tree of a digraph, on the
other hand, is a subgraph that is a directed tree with the
same vertex set[28].

Since state xi of agent i may be unobservable and one
usually observes a nonlinear function h(xi) of state xi, the
following nonlinear function class is introduced.

Definition 2[30]. A nonlinear continuous function h :
R → R is said to belong to the acceptable nonlinear cou-
pling function class, denoted by NCF (∆, α, β), if there
exist three nonnegative scalars ∆, α and β, such that
h(x)−∆x satisfies

α |x− y| ≤ |h(x)− h(y)−∆(x− y)| ≤ β |x− y|
for all x, y ∈ R.

Intuitively, the oscillatory amplitudes of the (nonlinear)
functions h ∈ NCF (∆, α, β) are being restricted by the
linear functions ∆x. Clearly, class NCF (∆, α, β) contains
all the continuously differentiable functions h(·) : Rn →
Rn such that |h′(x) −∆| ∈ [α, β]. There are lots of these
nonlinear functions, take h(x) = x+0.3sinx as an example,
it is easy to verify that h(x) ∈ NCF (∆, 0.2, 0.8) by taking
∆ = 0.5.

2 A stable theory of stochastic delay dif-
ferential equations

In this section, we state a result on the stability of the
n-dimensional stochastic differential delay equation[31]

dxxx(t) = f(t,xxx(t),xxx(t− τ))dt + g(t,xxx(t),xxx(t− τ))dwww(t)
(2)

at t ≥ 0 with initial data x(t) = ξ(t) for −τ ≤ t ≤ 0. Here,
f : R+×Rn ×Rn → Rn and g : R+×Rn ×Rn → Rn×m

are locally Lipschitz continuous functions that satisfy the
linear growing conditions and www(t) = (w1(t), · · · , wm(t))T
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is the m-dimensional Brownian motion that is defined
in a complete probability space (Ω, F , P ) with natural
filtration {Ft}t≥0 and time delay τ > 0. If ξ(s) ∈
L2

F0
([−τ, 0] ;Rn) and the family of Rn-valued stochastic

processes such that ξ(s) is F0-measurable at every second
with

∫ 0

−τ
E |ξ(s)|2 ds < ∞ for −τ ≤ s < 0, then equa-

tion (2) has a unique solution x(t, ξ) which is trivial (i.e.
x(t, 0) ≡ 0) for the particular case when f(t, 0, 0) = 0 and
g(t, 0, 0) = 0.

Definition 3[31]. The trivial solution of (2) is said to be
exponentially stable in mean square (respectively, almost
surely exponentially stable) if

lim
t→∞

sup
1

t
ln(E |x(t, ξ)|2) < 0

(respectively

lim
t→∞

sup
1

t
ln |x(t, ξ)| < 0 a.s.)

for all initial data ξ ∈ L2
F0

([−τ, 0];Rn).
Theorem 1. Assume there exists a constant γ > 0 such

that

2xxxTf(t,xxx,xxx) ≤ −γ |xxx|2 for all (t,xxx) ∈ R+ ×Rn

and nonnegative constants θ1, θ2, θ3 and α1, α2 such that





|f(t,xxx,xxx)− f(t,xxx,yyy)| ≤ θ1 |xxx− yyy|
|f(t,xxx,yyy)| ≤ θ2 |xxx|+ θ3 |yyy|
tr [gT(t,xxx,yyy)g(t,xxx,yyy)] ≤ α1 |xxx|2 + α2 |yyy|2

for all (t,xxx,yyy) ∈ R+ × Rn × Rn. If the communication

delay τ < τ∗ =

√
θ2
1(α1+α2)2+(θ2

2+θ2
3)(γ−α1−α2)2−θ1(α1+α2)

4θ1(θ2
2+θ2

3)
,

then the trivial solution of (2) is both exponentially stable
in mean square and almost surely exponentially stable.

Proof. Let xxx(t) = xxx(t, ξ) be the unique solution of (2)
for the initial value ξ. By the conditions of τ < τ∗ in this
theorem, one yields

γ > (α1 + α2) + 2θ1

√
2τ (2τ [θ2

2 + θ2
3] + α1 + α2)

Thus one can take

δ =
√

2τ(2τ(θ2
2 + θ2

3) + α1 + α2) (3)

such that

γ = (α1 + ε) + α2e
ετ + θ1δ + θ1

δ
[2τ(2τ(θ2

2 + α1)e
ετ+

2τ(2τ(θ2
3 + α2)e

2ετ ]

(4)

for some chosen ε > 0. Then we define the Lyapunov func-
tion

V (t) = eεtxxx(t)Txxx(t)

and use Ito′s formula to obtain

dV (t) = Vtdt + Vxdx + (1/2)tr(gTVxxg)dt =

[ε eεtxxxT(t)xxx(t) + 2eεtxxxT(t)f(t,xxx(t), x(t− τ))+

eεttr(gT(t,xxx(t),xxx(t− τ))g(t,xxx(t),xxx(t− τ))]dt+

2eεtxxxT(t)g(t,xxx(t),xxx(t− τ))dwww

(5)

so that we have

E
∫ t

0
d (V (s)) ≤ (−γ + θ1δ + α1 + ε)

∫ t

0
eεsE |xxx(s)|2 ds+

α2

∫ t

0
eεsE |xxx(s− τ)|2 ds+

2E
∫ t

0
eεsxxx(s)Tgdwww+

θ1
δ

∫ t

0
eεsE |xxx(s)− xxx(s− τ)|2 ds

(6)

because of the assumption

2xxx(t)Tf(t,xxx(t),xxx(t− τ)) = 2xxx(t)Tf(t,xxx(t),xxx(t))+

2xxx(t)T(f(t,xxx(t),xxx(t− τ))− f(t,xxx(t),xxx(t)))− ≤
γ |xxx(t)|2 + θ1(δ |xxx(t)|2 + 1

δ
|xxx(t)− xxx(t− τ)|2)

where tr(gTg) ≤ (α1 |xxx(t)|2 +α2 |xxx(t− τ)|2). It now follows
(from the conditions of this theorem) that xxx(t) is integrable
in mean square and g(t,xxx(t),xxx(t − τ)) satisfies the linear
growing conditions and so g(t,xxx(t),xxx(t − τ)) is also inte-
grable in mean square. Hence, by Ito′s isometry, we have
E

∫ t

0
eεsxxx(s)Tgdwww = 0 and deduce that

E(V (t)) ≤ E(V (0)) + α2

∫ t

0
eεsE |xxx(s− τ)|2 ds+

(−γ + θ1δ + α1 + ε)
∫ t

0
eεsE |xxx(s)|2 ds+

θ1
δ

∫ t

0
eεsE |xxx(t)− xxx(s− τ)|2 ds

(7)

for all t ≥ 0. In particular, for t ≥ τ , we have
∫ t

0
eεsE |xxx(s− τ)|2 ds =∫ τ

0
eεsE |xxx(s− τ)|2 ds +

∫ t

τ
eεsE |xxx(s− τ)|2 ds ≤

eετ
∫ 0

−τ
E |ξ(s)|2 ds + eετ

∫ t−τ

0
E |xxx(s)|2 ds ≤

c1e
ετ + eετ

∫ t

0
E |xxx(s)|2 ds

(8)

for some c1 =
∫ 0

−τ
E |ξ(s)|2 ds and so

E

∣∣∣∣
∫ s

s−τ

gdwww(r)

∣∣∣∣
2

≤
∫ s

s−τ

E[tr(gTg)]dr

for all s ≥ τ (because g(t,xxx(t),xxx(t − τ)) is integrable
in mean square and, again, because of Ito′s Isometry).
Hölder′s inequality and the model assumptions now imply
that

E |xxx(s)− xxx(s− τ)|2 = E
∣∣∣
∫ s

s−τ
dxxx(r)

∣∣∣
2

≤
2E

∣∣∣
∫ s

s−τ
f (r,xxx(r),xxx(r − τ)) dr

∣∣∣
2

+

2E
∣∣∣
∫ s

s−τ
gdwww(r)

∣∣∣
2

≤
2τE

∫ s

s−τ
|f (r,xxx(r),xxx(r − τ))|2 dr+

2
∫ s

s−τ
E

[
tr

(
gTg

)]
dr ≤

2τE
(∫ s

s−τ
(θ2 |xxx(r)|+ θ3 |xxx(r − τ)|)2 dr

)
+

2
∫ s

s−τ

(
α1E |xxx(r)|2 + α2E |xxx(r − τ)|2) dr =

2
(
2τθ2

2 + α1

) ∫ s

s−τ
E |xxx(r)|2 dr+

2
(
2τθ2

3 + α2

) ∫ s

s−τ
E |xxx(r − τ)|2 dr

(9)

and that, in particular,
∫ t

0
eεsE |xxx(s)− xxx(s− τ)|2 ds ≤

c2 + 2
(
2τθ2

2 + α1

) ∫ t

τ
eεs

∫ s

s−τ
E |xxx(r)|2 drds+

2
(
2τθ2

3 + α2

) ∫ t

τ
eεs

∫ s

s−τ
E |xxx(r − τ)|2 drds

(10)
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for all t ≥ τ for some c2 =
∫ τ

0
eεsE |xxx(s)− xxx(s− τ)|2 ds.

Since this last inequality can be written as

∫ t

0
eεsE |xxx(s)− xxx(s− τ)|2 ds ≤

c2 + 2(2τθ2
2 + α1)τeετ

∫ t

0
eεsE |xxx(s)|2 ds+

2(2τθ2
3 + α2)τe2ετ

(
c1 +

∫ t

0
eεsE |xxx(s)|2 ds

)

(11)

by using the facts that

∫ t

τ
eεs

∫ s

s−τ
E |xxx(r)|2 drds =∫ t

0
E |xxx(r)|2 (

∫ (r+τ)∧t

r∨τ
eεsds)dr ≤

τeετ
∫ t

0
eεsE |xxx(s)|2 ds

and

∫ t

τ
eεs

∫ s

s−τ
E |xxx(r − τ)|2 drds =∫ t

0
E |xxx(r − τ)|2

(∫ (r+τ)∧t

r∨τ
eεsds

)
dr ≤

τeετ
∫ t

0
eεsE |xxx(s− τ)|2 ds ≤

c1τd2ετ + τe2ετ
∫ t

0
eεsE |xxx(s)|2 ds

substitution of (8) and (11) into (7) gives

E[V (t)] ≤ E[V (0)] + c1α2e
ετ+

θ1 (1/δ)
[
c2 + 2c1

(
2τθ2

3 + α2

)
τe2ετ

]
+(∫ t

0
eεsE |xxx(s)|2 ds

)
{(−γ + α1 + ε + θ1δ) +

α2e
ετ + θ1(1/δ)[2τ(2τθ2

2 + α1)e
ετ+

2τ(2τθ2
3 + α2)e

2ετ ]}

which can be written, by using (4), as

E[V (t)] ≤ E[V (0)] + θ1
δ

[c2 + 2c1

(
2τθ2

3 + α2

)
τe2ετ ]+

c1α2e
ετ := c3

The definition V (t) = eεtxxx(t)T(t) = eεt |xxx(t)|2 now shows
that

E |xxx(t)|2 ≤ c3e
−εt (12)

for all t ≥ τ and hence that

lim
t→∞

sup
1

t
ln

(
E |xxx(t)|2) ≤ −ε (13)

and the trivial solution of (2) is thus exponentially stable
in mean square.

In the same way, the trivial solution of (2) can also be
shown to be almost surely exponentially stable. In fact,

E

(
sup

kτ≤t≤(k+1)τ

|xxx(t)|2
)
≤

3E |xxx(kτ)|2 + 3E
∣∣∣
∫ (k+1)τ

kτ
f (t,xxx(t),xxx(t− τ))dt

∣∣∣
2

+

3E
∣∣∣
∫ (k+1)τ

kτ
g (t,xxx(t),xxx(t− τ))dwww(t)

∣∣∣
2

≤
3E |xxx(kτ)|2 + 3

∫ (k+1)τ

kτ

[(
2τθ2

2 + α1

)
E |xxx(t)|2+(

2τθ2
3 + α2

)
E |xxx(t− τ)|2] dt ≤

3c3

[
e−εkτ +

(
2τθ2

2 + α1

) ∫ (k+1)τ

kτ
e−εtdt +

(
2τθ2

3 + α2

) ∫ (k+1)τ

kτ
e−ε(t−τ)dt

]
≤ c4e

−εkτ

for each k = 2, 3, · · · and for some

c4 = 3c3

[
1 +

(
2τθ2

2 + α1

) (
1− e−ετ

)

ε
+

(
2τθ2

3 + α2

)
(eετ − 1)

ε

]

Let η ∈ (0, ε) be arbitrary; Chebyshev′s inequality gives

P

(
sup

kτ≤t≤(k+1)τ

|xxx(t)| ≥ e(η−ε)kτ/2

)
≤

e(ε−η)kτE

(
sup

kτ≤t≤(k+1)τ

|xxx(t)|2
)

:= bk ≤ c4e
−ηkτ

from which it follows that
∑

bk < ∞. The Borel-Cantelli
lemma then guarantees that

sup
kτ≤t≤(k+1)τ

|xxx(t)| ≤ c4e
−(ε−η)kτ/2

holds for all but finitely many k and hence that

1

t
ln |xxx(t)| ≤ −ε− η

2
, a.s.

for kτ ≤ t ≤ (k + 1)τ when k is large enough and so

lim
t→∞

sup
1

t
ln |x(t)| ≤ − ε

2
, a.s.

in the limit as η → 0. The trivial solution of (2) is thus
almost surely exponentially stable. ¤

3 Formation control protocols

In this section, we present the precise control protocols
for three particular formations: time-invariant formations
(Corollary 1), time-varying formations (Corollary 2) and
time-varying formations for trajectory tracking (Theorem
3). In order to simplify this problem, in the following, one
will firstly give the results of time-varying consensus, under
which the three formations can be subsequently derived.

3.1 Time-varying consensus

The simplest formation is the time-varying consen-
sus problem in which we assume that f0 = f1 =
f2 = · · · = f` with ḟ0 = a0 for some formation ve-
locity a0 and ` = N . A multi-agent system is said
to have attained consensus in mean square and consen-
sus almost surely if limt→∞ sup 1

t
ln E |xi − f0|2 < 0 and

limt→∞ sup 1
t
ln |xi − f0| < 0 respectively for all i =

1, 2, · · · , N and every agent is able to attain velocity a0

because every agent is a leader in this case. Any discrep-
ancies between the specified formation information and the
agents′ actual states, however, are only detectable to the
leaders of the leaders who are also responsible for pinning
the other leaders to attain the expected formation. More
precisely, the information available to the ith agent with
respect to its neighbors is

yij = aij [h (xj(t− τ))− h (xi(t− τ))]

(j ∈ Ni) for some time delay τ > 0, connection weight aij

between agents i and j and continuous function h : R → R
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is strictly increasing. Without loss of generality, we assume
h(0) = 0. The state deviations available to the ith agent is

zi = bi[h (xi(t))− h(f0(t))]

for some bi ≥ 0 (bi > 0 if and only if agent i is the leader
of the leaders′ set).

Note that yij describes the information states deviations
between agent i and its neighbor j ∈ Ni estimated by agent
i at time t, and τ is the delays generated during the estima-
tion process. However, for agent i with bi > 0 (the leader
of the leaders′ set), there is no delay in zi since the control
input is available directly to such a leader.

Let the noise perturbation intensity be

φij = σij [h (xj(t− τ))− h (xi(t− τ))]

and ψi = ρi[h (xi(t))−h (f0(t))] for some constants σij such
that σij > 0 for j ∈ Ni, σij = 0 for j /∈ Ni (j 6= i) and
σii =

∑
j∈Ni

σij . ρi ≥ 0 for some ρi > 0 when bi > 0.
Then the noise-perturbed time-varying consensus protocol
can be designed as

ui = a0 +
∑

j∈Ni

yij − zi +


 ∑

j∈Ni

φij − ψi


www (14)

for some one-dimensional Brownian motion w(t) with (one-
dimensional) white noise ẇ, as defined in Section 2.

Here, as a given control input, it is assumed that the
formation velocity a0 is available to all the agents located
in the leaders′ set (which actually contains a very little
number of the whole formation agents). Nevertheless, it is
not available to any follower agent, which can be seen in
three formation protocols (see (18)).

This protocol is superior to many of the currently ex-
isting ones because it uses a nonlinear control strategy
that inevitably models real-world formation control prob-
lems better than the linear ones[11, 15]. Actually, in some
cases, state xi of the ith agent may be unobservable due to
the signal conversion and the transmission of measurement
data through physical devices. Our proposed protocol, fur-
thermore, accounts also for the unavoidable noise effects
that arise from the transmission of information between the
neighbors[25−27]. Finally, since most of the existing results
on delayed systems usually propose the formation track-
ing consensus conditions which are time-delay independent,
which may be more conservative than those of time-delay
dependent consensus conditions. Hence, this paper aims to
deduce the time-delay dependent consensus conditions for
the multi-agent systems formation under noise disturbance
and give the corresponding upper bound of the communi-
cation delay, which is more challengeable and meaningful
to open out the intrinsic relationships between the asym-
metric communication delays and the consensus ability of
multi-agent systems.

We write system (1), under the control protocol (14), in
the form of an Ito stochastic delay differential equation

dxi =


a0 +

∑
j∈Ni

yij − zi


 dt +


 ∑

j∈Ni

φij − ψi


 dwww (15)

and we have the following result.

Theorem 2. If h ∈ NCF (∆, α, β), τ < τ∗ =√
θ2
1(α1+α2)2+(θ2

2+θ2
3)(γ−α1−α2)2−θ1(α1+α2)

4θ1(θ2
2+θ2

3)
, where α1, α2,

θ1, θ2, θ3 and γ are some positive constants related to some
system parameters, and digraph G contains a spanning di-
rected tree with the root node located in leaders′ group,
then all the agents of system (15) will attain consensus al-
most surely.

Proof. Taking ei = xi − f0, we have the error system

dei = { ∑
j∈Ni

aij [h (xj (t− τ))− h (xi (t− τ))]−
bi [h (xi (t))− h (f0 (t))]}dt+

{ ∑
j∈Ni

σij [h (xj (t− τ))− h (xi (t− τ))]−
ρi [h (xi (t))− h (f0 (t))]}dw

(16)

which can be written as

deee(t) = {(A−D) [HHH (xxx(t− τ))−HHH (f0(t− τ)⊗ IN )] −
B [HHH (xxx(t))−HHH (f0(t)⊗ IN )]}dt+

{(Aσ −Dσ) [HHH (xxx(t− τ))−HHH (f0(t− τ)⊗ IN )] −
Bσ [HHH (xxx(t))−HHH (f0(t)⊗ IN )]

}
dwww

where A = (aij)N×N , D = diag{d1, d2, · · · , dN}, B =
diag{b1, b2, · · · , bN}, eee = [e1, · · · , eN ]T, xxx = [x1, · · · , xN ]T,
Aσ = (σij)N×N , Dσ = diag{σ11, · · · , σNN}, Bσ =
diag{ρ11, · · · , ρNN}, HHH(e) = [h(e1), · · · , h(eN )]T.

Obviously, according to the definitions of function h and
www(t), it is easy to verify that the stochastic differential delay
equation (16) is well defined and satisfies the conditions
proposed for equation (2). Thus the Ito formula can be
used hereinafter.

Let L = D − A and Lσ = Dσ − Aσ. Then L is the
Laplacian matrix associated with digraph G and Lσ has the
same properties as L. We now prove that L+B is positive
stable. Since G contains a directed spanning tree with the
root node located in leaders′ group (assume r = 1), L can
be written in the Frobenius normal form[32] as

L =

[
L11 0

L21 L22

]

for some one-dimensional zero matrix L11 that corresponds
to the root vertex r = 1 and a nonsingular matrix L22

whose eigenvalues have positive real parts (by Lemma 2 in
[17]). B = diag{B1, B2} is then a block diagonal matrix
with B1 = b1 > 0 and B2 = diag{b2, · · · , bN} and so L+B
is positive stable because b1 > 0 and L11 + B1 is positive
stable. Let (L + B)s = [(L + B) + (L + B)T]

/
2 and (L +

B)a = [(L + B)− (L + B)T]
/
2. It is easy to see that (L +

B)s is symmetric and positive definite and that (L+B)a is
anti-symmetric. It thus follows (from matrix analysis[19])
that [(L + B)a]T[(L + B)a] is symmetric with nonnegative
eigenvalues and so

2eeeT(t) (A−D −B) [HHH (xxx(t))−HHH (f0(t)⊗ IN )] =

−2∆eeeT(t) (L + B)s eee(t)− 2eeeT(t) (L + B)s×
[HHH (xxx(t))−HHH (f0(t)⊗ IN )−∆eee(t)]−
2eeeT(t) (L + B)a [HHH (xxx(t))−HHH (f0(t)⊗ IN )] ≤
−2(∆ + α)λmin ((L + B)s) |eee(t)|2 +(

(1/µ) λmax

(−[(L + B)a]2
)

+ µ(∆ + β)2
) |eee(t)|2 ≤

−γ |eee(t)|2
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for some positive scalars µ and

γ = 2(∆ + α)λmin ((L + B)s)− µ(∆ + β)2−
(1/µ) λmax

(−[(L + B)a]2
)

> 0

and all (t, e) ∈ R+ ×RN . Furthermore, we have

|(A−D −B) [HHH (xxx(t))−HHH (f0(t)⊗ IN )] −
{(A−D) [HHH (xxx(t− τ))−HHH (f0(t− τ)⊗ IN )] −
B [HHH (xxx(t))−HHH (f0(t)⊗ IN )]

}∣∣ ≤
‖A−D‖ |(∆ + β) (xxx(t)− xxx(t− τ)) +

(∆ + β) (f0(t− τ)⊗ IN − f0(t)⊗ IN )| ≤
‖A−D‖ (∆ + β) |(xxx(t)− f0(t)⊗ IN ) −
(xxx(t− τ)− f0(t− τ)⊗ IN )| ≤
‖A−D‖ (∆ + β) |eee(t)− eee(t− τ)|

and

|{(A−D) [HHH (xxx(t− τ))−HHH (f0(t− τ)⊗ IN )] −
B [HHH (xxx(t))−HHH (f0(t)⊗ IN )]

}∣∣ ≤
‖B‖ (∆ + β) |eee(t)|+ ‖A−D‖ (∆ + β) |eee(t− τ)|

and also

tr({(Aσ −Dσ) [HHH (xxx(t− τ))−HHH (f0(t− τ)⊗ IN )] −
Bσ [HHH (xxx(t))−HHH (f0(t)⊗ IN )]

}T×
{(Aσ −Dσ) [HHH (xxx(t− τ))−HHH (f0(t− τ)⊗ IN )] −
Bσ [HHH (xxx(t))−HHH (f0(t)⊗ IN )]

} ≤
(∆ + β)2 [‖Bσ‖ |eee(t)|+ ‖Aσ −Dσ‖ |eee(t− τ)|]2 ≤
2(∆ + β)2

(‖Bσ‖2 |eee(t)|2 + ‖Aσ −Dσ‖2 |eee(t− τ)|2)

It now follows from Theorem 1, by taking τ < τ∗ with
α1 = 2(∆ + β)2 ‖Bσ‖2, α2 = 2(∆ + β)2 ‖Aσ −Dσ‖2, θ1 =
θ3 = (∆+β) ‖A−D‖ and θ2 = (∆+β) ‖B‖, that the triv-
ial solution of equation (16) is almost surely exponentially
stable (in other words, that limt→∞ sup 1

t
ln |xi − f0| < 0

almost surely for i = 1, 2, · · · , N). ¤
3.2 Three different formations

Since time-invariant formations (TIF) and time-varying
formations (TVF) are special cases of time-varying forma-
tions for trajectory tracking (TVFT), in this subsection, we
will firstly discuss the most complexed case (i.e., TVFT;
see Theorem 3), and the other cases can be accordingly
presented (see Corollaries 1 and 2).

At first, we consider TVFT in which the agents are ex-
pected to attain distinct limit states and the expected tra-
jectory of the formation is determined by

ḟc = ϕ(t, fc) (17)

More precisely, our objective is to obtain xi → fi + fc with
ḟi = ai for i ∈ N ` and xi → Wix

` for i ∈ Nf as t → ∞
almost surely in the context of the following assumptions:

1) There is a directed spanning tree rooted at r for some
1 ≤ r ≤ ` in the local interaction topology of the leaders,
whose dynamics are independent of those of their followers;

2) Every leader has access to the global formation in-
formation FFF , which they will send to the followers in due
course;

3) Every follower has access to the local formation infor-
mation W either directly or indirectly from the leaders;

4) Some root agents of the local interaction topology are
allowed to access the reference trajectory.

Technically, Assumption 3) is equivalent to the existence
of a directed spanning tree with root vertices at the leaders
in the (multi-agent) system′s interaction topology.

Referring to the construction idea of protocol (14), we
design the formation control protocol as follows. For each
i ∈ N `, the global formation information with respect to its
neighbors and state deviations that are available to agent
i are

y`
ij = aij [h (xj(t− τ)− fj(t− τ))−

h (xi(t− τ)− fi(t− τ))], j ∈ Ni

and

z`
i = b`

i [h (xi(t)− fi(t))− h (fc(t))]

respectively, for some b`
i ≥ 0 (with b`

i > 0 if agent i is a
leader of the leaders) and the noise disturbances are

φ`
ij = σij [h (xj(t− τ)− fj(t− τ))−

h (xi(t− τ)− fi(t− τ))], j ∈ Ni

and ψ`
i = ρi[h (xi(t)− fi(t))− h (fc(t))]. For each i ∈ Nf ,

however, the local formation information with respect to its
neighbors and state deviations that are available to agent
i are

yf
ij = aij [h(xj(t− τ)− ∑

k∈N`

W k
j xk(t− τ))−

h(xi(t− τ)− ∑
k∈N`

W k
i xk(t− τ))], j ∈ Ni

and

zf
i = bf

i [h(xi(t)−
∑

k∈N`

W k
i xk(t))]

respectively, for some bf
i ≥ 0 (with bf

i > 0 if agent i is a
leader of the followers) and the noise disturbances are

φf
ij = σij [h(xj(t− τ)− ∑

k∈N`

W k
j xk(t− τ))−

h(xi(t− τ)− ∑
k∈N`

W k
i xk(t− τ))]

and ψf
i = ρih(xi(t) −

∑
k∈N` W k

i xk(t)). The control pro-
tocol for this case is hence

ui =





ai + ϕ(t, fc) +
∑

j∈Ni

y`
ij−z`

i + (
∑

j∈Ni

φ`
ij−ψ`

i )w,

i ∈ N `

∑
k∈Nl

W k
i uk +

∑
j∈Ni

yf
ij−zf

i + (
∑

j∈Ni

φf
ij−ψf

i )w,

i ∈ Nf

(18)

and system (1) can be written (using control protocol (18))
in the form

dxi =





(
ai + ϕ(t, fc) +

∑
j∈Ni

y`
ij−z`

i

)
dt+

(
∑

j∈Ni

φ`
ij−ψ`

i

)
dw, i ∈ N `

∑
k∈Nl

W k
i dxk +

(
∑

j∈Ni

yf
ij−zf

i

)
dt+

(
∑

j∈Ni

φf
ij−ψf

i

)
dw, i ∈ Nf

(19)
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Theorem 3 (TVFT). If h(·) ∈ NCF (∆, α, β), τ <

τ∗ =

√
θ2
1(α1+α2)2+(θ2

2+θ2
3)(γ−α1−α2)2−θ1(α1+α2)

4θ1(θ2
2+θ2

3)
, where α1,

α2, θ1, θ2, θ3 and γ are some positive constants related to
some system parameters, and digraph G contains a span-
ning directed tree with the root node located in leaders′

group, then system (19) solves the time-varying forma-
tion problem for trajectory tracking almost surely under
assumptions 1)∼ 4).

Proof. Use the change of variables x̄i = xi − fi, ei =
x̄i − fc for i ∈ N ` and x̄i = xi −

∑
k∈N` W k

i xk, ei =

x̄i − 0 for i ∈ Nf to put system (19) into the form of
equation (16). Then Theorem 2 guarantees that ei = xi −
fi − fc tends to zero exponentially almost surely and so
limt→∞ sup 1

t
|xi − (fi + fc)| < 0 almost surely for i ∈ N `

and limt→∞ sup 1
t

∣∣xi(t)−Wix
l
∣∣ < 0 for i ∈ Nf . ¤

Corollary 1 (TIF). If both the global formation in-
formation F and the formation state Fc are time-invariant
(i.e., ḟi = 0 and ḟc = 0) and the conditions of Theorem 3
hold, then system (19) with ai = 0 and ϕ(t, fc) = 0 solves
the time-invariant formation problem almost surely under
assumptions 1)∼ 3).

Corollary 2 (TVF). If the global formation informa-
tion F is time-varying (i.e., ḟi 6= 0 ), the formation state
Fc is time-invariant (i.e., ḟc = 0), and the conditions of
Theorem 3 hold, then system (19) with ϕ(t, fc) = 0 solves
the time-varying formation problem almost surely under
assumptions 1)∼ 3).

4 Numerical example

In this section, we apply the theory of Section 2 to a par-
ticular formation problem with twenty-five agents (seven
leaders and eighteen followers) that are moving in a forma-
tion frame F (as shown in Fig. 1) in a 2-dimensional space
with an anticipated formation that is a hexagon. Agents are
assumed to be equipped with a communication system that
allows them to be in contact with their neighbors instantly
and exchange their state information under a certain noise
disturbance.

Fig. 1 The interaction topology of 25 agents

The leaders are labelled from 1 to 7 and the followers
from 8 to 25 and the weighting factors are all equal (i.e.

all equal to 1). Their initial positions (xi(0), yi(0))T are
randomly selected from the domain of [−5, 5]×[−5, 5]. Take
the system parameter bi = 5 (i = 1, 2, 3, 4) and let the
continuous function be h(xxx) = 2xxx+ 0.04

π
arctan(xxx) with xxx ∈

R2 so that h(·) ∈ NCF (1.97, 0.01, 0.05). The stochastic
disturbance term is g(t,xxx(t),xxx(t−τ)) = σf(t,xxx(t),xxx(t−τ))
with σ = 0.5.




fff1 = fff2 = (0, 0)T, Ri(t) = sig(sin t) sin t

fff i = Ri(t)
(
cos

(
(i−2)π

3

)
, sin

(
(i−2)π

3

))T

, i = 2, · · · , 7

fffc = (2 sin(12t) + 15t, 2 sin(12t) + 15t)T

And the elements of the nonnegative matrix W are




w1
8 = w2

8 = w2
9 = w7

9 = w1
10 = w7

10 = w1
11 = w3

11 = w2
12 =

w3
12 = w1

13 = w2
13 = w1

14 = w4
14 = w3

15 = w4
15 = w1

16 =

w3
16 = w1

17 = w5
17 = w4

18 = w5
18 = w1

19 = w4
19 = w1

20 =

w6
20 = w5

21 = w6
21 = w1

22 = w5
22 = w1

23 = w7
23 = w6

24 =

w7
24 = w1

25 = w6
25 = 1

6

w7
8 =w1

9 =w2
10 =w2

11 = w1
12 = w3

13 = w3
14 = w1

15 = w4
16 =

w4
17 = w1

18 = w5
19 = w5

20 = w1
21 = w6

22 = w6
23 = w1

24 =

w7
25 = 2

3

wj
i = 0, in other cases

Calculations then give ‖A−D‖ = 5.5366, ‖B‖ =
5.0000, λmin ((L + B)s) = 2.4026, λmax

(−[(L + B)a]2
)

=
2.5000, θ1 = θ3 = (∆ + β) ‖A−D‖ = 11.1840, θ2 =
(∆ + β) ‖B‖ = 10.1000, α1 = 2σ2θ2

2 = 51.005, α2 =
2σ2θ2

3 = 62.5405 and

γ = 2(∆ + α)λmin ((L + B)s)− µ(∆ + β)2−
(1/µ) λmax

(−[(L + B)a]2
)

= 3.1267

with µ = 0.7827. Then let the communication delay τ =

0.01 < τ∗ =

√
θ2
1(α1+α2)2+(θ2

2+θ2
3)(γ−α1−α2)2−θ1(α1+α2)

4θ1(θ2
2+θ2

3)
=

0.0810, thus the conditions of Theorems 3 are all satisfied.
Some simulations are then carried out for 1) time-

invariant formation (TIF, Corollary 1) for Ri(t) = 1 and
fffc = (0, 0)T, 2) time-varying formation (TVF, Corollary
2) for fffc = (0, 0)T and 3) time-varying formation for tra-
jectory tracking (TVFT, Theorem 3) for Ri(t) = 1. The
agents′ formation evolutions are shown in both the 2D
plane (in Fig. 2) and 3D space (in Fig. 3). The final for-
mation errors are shown in Fig. 4.

Fig. 2 The agent formation evolutions in three different cases
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Fig. 3 The formation evolutions in 3D space

Fig. 4 The agent formation errors in three different cases

Our recent experimental results show that the proposed
nonlinear formation control protocols can be widely applied
to many real-world engineering systems, such as multi-
machine cooperation in power grid, unmanned aerial ve-
hicles (UAVS), autonomous underwater vehicles (AUVS),
mobile robot systems (MRS) and so on.

5 Conclusion

This paper investigated the nonlinear control for multi-
agent formations with directed graph topologies and time-
delayed coupling in noisy environments. Control strategies
based on the stability theory of stochastic delay differential
equations are obtained for both time-invariant and time-
varying formations as well as for time-varying formations
for trajectory tracking. The results are applied to a simu-
lated 25-agent system. It is noticed that the actual systems
may be second-order, communication coupling time delay
is usually time-varying and the network topology can not
be always invariant. How to extend the results here to the
above situation is still a challenging problem. This will be
our future work.
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