
Vol. 40, No. 11 ACTA AUTOMATICA SINICA November, 2014

Average Consensus in Directed Networks of

Multi-agents with Uncertain Time-varying Delays
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Abstract This paper investigates the average consensus problem in directed networks of multi-agent systems with uncertain
time-varying delays. Fixed and switching topologies that are kept weakly connected and balanced are firstly analyzed. The original
system is then transformed into a reduced dimension model. Based on Jensen′s inequality and reciprocally convex approach, sufficient
conditions for average consensus are further presented. Specially, a less conservative upper bound of time-varying communication
delays is derived in comparison with the existing results. Numerical examples confirm the effectiveness of the proposed method.
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The distributed cooperative control of multi-agent sys-
tems has attracted significant amount of interest from the
academics and industry due to its various advantages such
as lower operational costs, less system requirements, higher
robustness, and stronger adaptivity. Some recent theoreti-
cal results and progresses are mainly reviewed[1], which are
classified into four directions including consensus, forma-
tion control, optimization, and estimation.

We will focus here on the first direction (i.e., consensus).
Consensus and the like (synchronization, rendezvous) refer
to the group behavior that all of the agents asymptotically
reach a certain common agreement through a distributed
protocol, which is one of the most important issues of dis-
tributed multi-agent coordination. It is ubiquitous in na-
ture such as the fish swimming, the birds migration, the
bees and ants swarm collective behavior[2]. In control en-
gineering fields such as distributed control of multiple ve-
hicles, and cooperation of networked multi-robots, some
consensus theories and algorithms have been studied[3−7].

The consensus of multi-agent systems crucially depends
on network, topology and delay, where the network may
be undirected or directed graph, the topology may be fixed
or switching topology, and the delay may be constant or
time varying. In fact, under the real network environ-
ment, due to the finiteness of signal transmission speed,
communication time delay is inevitably introduced. It is
well known that time delay may degrade the system per-
formance or even cause the system instability. Therefore,
some researches have reported on the consensus analysis of
multi-agent systems with time delay to investigate its effect
on system performance and stability. These results can be
roughly classified into two categories according to whether
the system is discrete-time or continuous-time.

For discrete-time systems, the works focus on the con-
sensus problems for low-dimensional and high-dimensional
multi-agent systems with time-varying delays. The state
consensus problems for low-dimensional multi-agent sys-
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tems with changing communication topologies and
bounded time-varying communication delays are studied[8],
where only instantaneous state information of every agent
can be used and some sufficient conditions for state consen-
sus of system are presented. However, for some agents, the
state consensus cannot be guaranteed generally, if only de-
layed information of themselves can be provided. Using not
only its own instantaneous state information of every agent
but also its neighbors′ instantaneous state information[9],
the consensus problems for discrete-time multi-agent sys-
tems with time-varying delays and switching interaction
topologies are developed. For low-dimensional multi-agent
systems, some researchers have investigated the consensus
problems from other aspects in recent works[10−12]. For ex-
ample, a new unified framework is established to deal with
the consensus in directed network of discrete-time delayed
multi-agent systems with fixed topology[11]. The consensus
problem for discrete-time high-dimensional linear systems
with or without delays is also researched[13].

For continuous-time systems, the consensus problems
for second-order multi-agent systems have been researched
in the recent years[14−20], where the quantized consen-
sus, mean square average-consensus and impulsive con-
sensus are investigated respectively[16−18]. For the first
order multi-agent systems, some researchers consider
the undirected graph with fixed topology or switching
topology[21−24]. Theoretical framework for posing and solv-
ing consensus problem of undirected networks with fixed
topology of strongly connected and balanced digraphs with
communication time-delays is presented[21], and it is shown
that the maximum time-delay is inversely proportional to
the largest eigenvalue of the network topology or the max-
imum degree of the nodes of the network. In a directed
graph with fixed topology or switching topology, the aver-
age consensus problem for system with constant and time-
varying delays is studied in [25], and an upper bound of
time-varying communication delay is obtained. Similar re-
sults can be found in [26−29], but H∞ consensus prob-
lems in directed networks of agents with fixed and switch-
ing topologies are investigated[26] and the recent research
of noisy links with times delay is presented[28]. Moreover,
the average consensus problem is considered[29], where the
system with switching topology and constant time delay is
only considered. The consensus problem with dynamically
changing topologies and nonuniform time-varying delays is
researched, where one case of intermittent communication
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and data packet dropout is also considered[30]. These re-
searchers focus on the directed graph with fixed topology
or switching topology. In recent works, some researchers
have investigated the consensus problems from various
perspectives[31−34]. For example, the observer-based con-
sensus of networked multi-agent systems with time-varying
delays in a sampling setting is investigated[31]. System con-
sensus problem in three cases is analyzed[33], where the sys-
tem with fixed topology contains both communication and
input time delays in each case. An observer-based control
strategy for networked multi-agent systems with constant
communication delay and stochastic switching topology is
proposed[34]. However, how to get the formulation between
maximum time-delay and the network topology for a di-
rected graph with fixed topology or switching topology is
still an open issue.

In this paper, the average consensus problem for
continuous-time multi-agent systems in a directed network
with uncertain time-varying delays is studied. We analyze
fixed and switching topologies that are kept weakly con-
nected and balanced. Firstly, based on a reduced dimension
model, a Lyapunov-Krasovskii functional with uncertain
time-varying delays is constructed. Then, using Jensen′s
inequality and reciprocally convex approach, sufficient con-
ditions for average consensus are obtained by a linear ma-
trix inequality (LMI) set, and all the agents achieve the
average consensus asymptotically. The main contribution
of this paper is that the average consensus of multi-agent
systems in the network is presented and a less conserva-
tive upper bound of time-varying communication delay is
derived in comparison with the recent results.

The paper is organized as follows. Section 1 gives some
preliminaries of graph theory. The average consensus prob-
lem is formulated in Section 2. Section 3 presents the main
results of the paper. Simulation results are described in
Section 4, followed by conclusions in Section 5.

1 Preliminaries of graph theory

Let G(V, E, A) be a directed graph of order n, where the
set of nodes V = {v1, · · · , vn}, the set of edges E ⊆ V ×V .
An edge of G is denoted by eij = (vi, vj), where vi is the tail
of the edge and vj is the head of the edge. The set of neigh-
bors of node vi is denoted by Ni = {vj ∈ V | (vj , vi) ∈ E}.
The node index of G belongs to a finite index set I =
{1, 2, · · · , n}. A = [aij ] is a weighted adjacency matrix,
where the adjacency elements are positive, i.e., aij > 0,
and aii = 0, if and only of vj ∈ Ni, ∀i ∈ I. The in-degree
and out-degree of vi are defined as

di(vi) =

n∑
j=1

aji , do(vi) =

n∑
j=1

aij

The degree matrix D = [dij ]n×n is a diagonal matrix
with

Dij =





do(vi) =
n∑

j=1

aij , i = j

0, i 6= j

The Laplacian matrix of the graph G is defined as L =
D−A. It is noted that every row sum of L is zero and 1n =
[1, 1, · · · , 1]T ∈ Rn is an eigenvector of L associated with
the eigenvalue λ = 0. This therefore means that rank(L) ≤
n− 1.

To derive the stability criteria, some lemmas and defini-
tions are given firstly.

Lemma 1[21]. If the graph G is strongly connected, then
its Laplacian L satisfies:

1) rank(L) = n− 1;
2) Zero is one eigenvalue of L, and 1n is the correspond-

ing eigenvector, i.e., L1n = 0;
3) The rest n− 1 eigenvalues all have positive real parts.

In particular, if the graph G is undirected, they are all
positive and real.

Definition 1 (Balanced graph[21]). We say the node
vi of a graph G(V, E, A) is balanced if and only if its in-
degree and out-degree are equal, i.e., do(vi) = di(vi). A
graph G(V, E, A) is called balanced if and only if all of its
nodes are balanced. Obviously, any undirected graph is
balanced.

Definition 2 (Balanced matrix[25]). A square matrix
M ∈ Rn×n is said to be a balanced matrix if and only if
1T

nM = 0 and M1n = 0.
Lemma 2[25]. Consider the matrix

A =




n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1




The following statements hold:
1) The eigenvalues of A are n with multiplicity n − 1,

and 0 with multiplicity 1. The vectors 1T
n and 1n are left

and the right eigenvectors of A associated with the zero
eigenvalue, respectively.

2) There exists an orthogonal matrix O such that

OTAO =

[
nIn−1 0(n−1)×1

01×(n−1) 0

]

and O is the matrix of eigenvectors of A. For any balanced
matrix B ∈ Rn×n,

OTBO =

[ ∗ 0(n−1)×1

01×(n−1) 0

]

Remark 1. It is obvious that when the graph G is
strongly connected, its Laplacian L is a balanced matrix.
According to Lemmas 1 and 2, the following equation holds:

UTLU =

[
U1

TLU1 0(n−1)×1

01×(n−1) 0

]
=

[
L̃ 0(n−1)×1

01×(n−1) 0

]

where U = [U1,1n/
√

n] is an orthogonal matrix of eigen-

vectors of L, and U1 ∈ Rn×(n−1) is the first n− 1 columns
of U .

Lemma 3[35]. Let G be a balanced digraph, then G is
strongly connected if and only if G is weakly connected.

Remark 2. The requirement of graph G that we discuss
is strongly connected in the above, but we can obtain that
it should be weakly connected by Lemma 3.

Definition 3[36]. Let Φ1, Φ2, · · · , ΦN : Rm 7→ Rn be a
given finite number of functions such that they have posi-
tive values in an open subset D of Rm. Then, a reciprocally
convex combination of these functions over D is a function
of the form

1

α1
Φ1 +

1

α2
Φ2 + · · ·+ 1

αN
ΦN : D 7→ Rn

where the real numbers αi satisfy αi > 0 and
∑

i αi = 1.
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For a reciprocally convex combination of scalar positive
functions Φi = fi, the following Lemma 4 is obtained.

Lemma 4[36]. Let f1, f2, · · · , fN : Rm 7→ R have posi-
tive values in an open subset D of Rm. Then, the recipro-
cally convex combination of fi over D satisfies

min
{αi|αi>0,

∑
i αi=1}

∑
i

1

αi
fi =

∑
i

fi + max
g

i,j
(t)

∑

i6=j

g
i,j

(t)

s.t.{
g

i,j
: Rm 7→ R, g

j,i
(t)

∆
= g

i,j
(t),

[
fi(t) g

i,j
(t)

g
j,i

(t) fj(t)

]
≥0

}

2 Consensus protocol formulation

Suppose that the network system consists of n agents.
Each agent is regarded as a node in a directed graph G, and
xi(t) ∈ R represents the state of the i-th node. Moreover,
suppose each node is a dynamic agent with dynamics:

ẋi(t) = ui(t)

where ui(t) is the control input (or protocol), i ∈ I =
{1, 2, · · · , n}.

We say the nodes of a network achieve a consensus if and
only if xi = xj for all i 6= j, i, j ∈ I. Particularly, if

lim
t→∞

xi(t) =
1

n

∑
j

xj(0)

we say protocol ui asymptotically solves the average-
consensus problem.

For a fixed topology without communication time-delay,
the consensus protocol is used[21]:

ui(t) =
∑

vj∈Ni

aij(t)(xj(t)− xi(t))

In this paper, we discuss the average-consensus problem
in networks of agents with time-varying delays. The agree-
ment control law[21] is given by

ui(t) =
∑

vj∈Ni

aij(t)(xj(t− τ(t))− xi(t− τ(t))) (1)

where τ(t) is a time-varying delay.
Then multi-agent systems with fixed topology G and un-

certain time-varying communication delays is formulated
by

ẋ(t) = −Lx(t− τ(t)) (2)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T denotes the value of
all nodes, and L is the Laplacian of graph G.

Consider the following multi-agent systems with switch-
ing topology Gk and uncertain time-varying communica-
tion delays

ẋ(t) = −Lkx(t− τk(t)), k = s(t) (3)

where Lk is the Laplacian of graph Gk(Gk ∈ Γn), Γn =
{G = (V, E, A)} is a finite collection of digraphs of order

n that is balanced and weakly connected, s(t) : [0, +∞] →
TΓn = {1, 2, · · · , N} (N ∈ Z+ denotes the total number
of all possible directed graphs) is a switching signal that
determines the communication topology, and τk(t) satisfies
0 ≤ τk1 ≤ τk(t) ≤ τk2, where τk1 and τk2 denote the lower
and upper delay bounds to be determined in this paper.

Moreover, the initial conditions of (3) is assumed to satisfy
φ(t) ≡ x(0) = [x1(0), · · · , xn(0)]T,−τk max ≤ t ≤ 0, with
τk max = max{τk2}.

Remark 3. Considering a hybrid system with a
continuous-state x ∈ Rn and a discrete-state Gk ∈ Γn

[21],
the average consensus problem in a directed network of
multi-agent systems with switching topology and time-
varying communication delays has been investigated.
When any digraph Gk is strongly or weakly connected
and balanced, a common Lyapunov-Krasovskii functional
can be found to solve the system average consensus prob-
lem with uncertain time-varying delays. For each time-
changing Lk, there exists a maximum allowable delay
τk max. To satisfy for all the possible communication topolo-
gies Gk, the maximum allowable delay should be τmax =
min{τk max}.

3 Main results

Theorem 1. For system (3), average consensus
can be achieved if there exist positive definite matrices
P̃ , Q̃1, Q̃2, R̃1, R̃2 ∈ R(n−1)×(n−1) and matrix S̃2 with
(n− 1) dimensions, such that

[
R̃2 S̃T

2

S̃2 R̃2

]
≥ 0 (4)




Π11 ∗ ∗ ∗ ∗ ∗
Π21 Π22 ∗ ∗ ∗ ∗
Π31 Π32 Π33 ∗ ∗ ∗
0 Π42 Π43 Π44 ∗ ∗
0 Π52 0 0 Π55 ∗
0 Π62 0 0 0 Π66




< 0 (5)

where Π11 = Q̃1 + Q̃2 − R̃1, Π21 = −L̃T
k P̃ , Π22 = −2R̃2 +

S̃2 + S̃T
2 , Π31 = R̃1, Π32 = R̃2 − S̃T

2 , Π33 = −Q̃1 − R̃1 −
R̃2, Π42 = R̃2 − S̃2, Π43 = S̃2, Π44 = −Q̃2 − R̃2, Π52 =
−τk1R̃1L̃, Π55 = −R̃1, Π62 = (τk2−τk1)R̃2L̃k, Π66 = −R̃2,

L̃k = UT
1 LkU1, U1 ∈ Rn×(n−1) is the first n− 1 columns of

U , and U is an orthogonal matrix of eigenvectors of Lk.
Proof. According to the directed balanced graph with

switching topology, we have 1T
nLk = 0. It indicates that

∑
i

ẋi(t) =
∑

i

ui(t) = 0

Further, it is known that α = Ave(x(t)) is an invariant

quantity, and x(t) can be decomposed as[21]

x(t) = α1n + δ(t) (6)

where δ(t) ∈ Rn satisfies
∑
i

δi(t) = 0.

Next, using (6), system (3) can be re-written as

δ̇(t) = −Lkδ(t− τk(t)),

0 ≤ τk1 ≤ τk(t) ≤ τk2 (7)

According to Remark 1, (7) becomes

UTδ̇(t) = −UTLkUUTδ(t− τk(t)) =

−
[

L̃k 0(n−1)×1

01×(n−1) 0

]
UTδ(t− τk(t))

Considering that
∑
i

δi(t− τk(t)) = 0,
∑
i

δ̇i(t) = 0, we
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have

UTδ̇(t) = [∗, · · · , ∗, 0]T = [
˙̃
δ
T

(t), 0]T

UTδ(t− τk(t)) = [δ̃T(t− τk(t), 0]T

Therefore, system (7) is equivalent to

˙̃
δ(t) = −L̃k δ̃(t− τk(t)),

0 ≤ τk1 ≤ τk(t) ≤ τk2 (8)

where the vector δ̃ is an (n−1)-dimensional subspace called

the disagreement eigenspace of Lk, L̃k ∈ R(n−1)×(n−1) and
rank(L̃k) = n− 1.

Then, it is known that if lim
t→∞

‖δ̃(t)‖ = 0, then

lim
t→∞

‖δ(t)‖ = 0[27].

Considering system (8), a Lyapunov-Krasovskii function
is constructed as

V (t) = δ̃T(t)P̃ δ̃(t)+
∫ t

t−τk1

δ̃T(α)Q̃1δ̃(α)dα+

∫ t

t−τk2

δ̃T(α)Q̃2δ̃(α)dα+

τk1

∫ 0

−τk1

∫ t

t+α

˙̃
δ
T

(β)R̃1
˙̃
δ(β)dβdα+

(τk2 − τk1)

∫ −τk1

−τk2

∫ t

t+α

˙̃
δ
T

(β)R̃2
˙̃
δ(β)dβdα (9)

where P̃ , Q̃1, Q̃2, R̃1, R̃2 ∈ R(n−1)×(n−1) are positive defi-
nite matrices and S̃2 ∈ R(n−1)×(n−1).

The derivative of (9) with respect to t is

V̇ (t) = 2δ̃T(t)P̃
˙̃
δ(t) + δ̃T(t)Q̃1δ̃(t)−

δ̃T(t− τk1)Q̃1δ̃(t− τk1) + δ̃T(t)Q̃2δ̃(t)−

δ̃T(t− τk2)Q̃2δ̃(t− τk2) + τ2
k1

˙̃
δ
T

(t)R̃1
˙̃
δ(t)−

τk1

∫ t

t−τk1

˙̃
δ
T

(α)R̃1
˙̃
δ(α)dα+

(τk2 − τk1)
2 ˙̃
δ
T

(t)R̃2
˙̃
δ(t)−

(τk2 − τk1)

∫ t−τk1

t−τk2

˙̃
δ
T

(α)R̃2
˙̃
δ(α)dα (10)

Define

χ(t) := [δ̃T(t), δ̃T(t− τk(t)), δ̃T(t− τk1), δ̃T(t− τk2)]
T

e1 :=
[

I 0 0 0
]T

, e2 :=
[

0 I 0 0
]T

,

e3 :=
[

0 0 I 0
]T

, e4 :=
[

0 0 0 I
]T

and

e5 := (−L̃ke2
T)T, where I ∈ RRR(n−1)×(n−1) is an unit matrix

and 0 ∈ RRR(n−1)×(n−1) is a zero matrix..
To handle the integral items in (10), using Jensen′s

inequality[37] yields,

τk1

∫ t

t−τk1

˙̃
δT(α)R̃1

˙̃
δ(α)dα ≥

τk1 × 1

τk1

n∑

l=1

˙̃
δT(ε)∆tiR̃1

n∑

l=1

˙̃
δ(ε)∆ti =

(
δ̃(t)− δ̃(t− τk1)

)T

R̃1

(
δ̃(t)− δ̃(t− τk1)

)
=

χT(t)(e1 − e3)R̃1(e1 − e3)
Tχ(t) (11)

(τk2 − τk1)

∫ t−τk1

t−τk2

˙̃
δT(α)R̃2

˙̃
δ(α)dα =

(τk2 − τk1)

∫ t−τk1

t−τk(t)

˙̃
δT(α)R̃2

˙̃
δ(α)dα+

(τk2 − τk1)

∫ t−τk(t)

t−τk2

˙̃
δT(α)R̃2

˙̃
δ(α)dα ≥

(τk2 − τk1)

τk(t)− τk1
χT(t)(e3 − e2)R̃2(e3 − e2)

Tχ(t)+

(τk2 − τk1)

τk2 − τk(t)
χT(t)(e2 − e4)R̃2(e2 − e4)

Tχ(t) (12)

Using Lemma 4 to (12) yields

(τk2 − τk1)

∫ t−τk1

t−τk2

˙̃
δ
T

(α)R̃2
˙̃
δ(α)dα ≥ χ(t)TΛ1χ(t) (13)

where Λ1 =

[
(e3 − e2)

T

(e2 − e4)
T

]T [
R̃2 S̃T

2

S̃2 R̃2

] [
(e3 − e2)

T

(e2 − e4)
T

]
,

and

[
R̃2 S̃T

2

S̃2 R̃2

]
≥ 0.

Substituting (11), (13) into (10) yields

V̇ (t) ≤ χT[e5P̃ eT
1 + e1P̃ eT

5 + e1Q̃1e
T
1 − e3Q̃1e

T
3 + e1Q̃2e

T
1−

e4Q̃2e
T
4 + τ2

k1e5R̃1e
T
5 + (τk2 − τk1)

2e5R̃2e
T
5−

(e1 − e3)R̃1(e1 − e3)
T − Λ1 ]χ(t)

According to Lyapunov stability theory, if V̇ (t) < 0, the
system (8) is asymptotically stable. So we have

e5P̃ eT
1 + e1P̃ eT

5 + e1Q̃1e
T
1 − e3Q̃1e

T
3 + e1Q̃2e

T
1−

e4Q̃2e
T
4 + τ2

k1e5R̃1e
T
5 + (τk2 − τk1)

2e5R̃2e
T
5−

(e1 − e3)R̃1(e1 − e3)
T−

[
(e3 − e2)

T

(e2 − e4)
T

]T [
R̃2 S̃T

2

S̃2 R̃2

] [
(e3 − e2)

T

(e2 − e4)
T

]
=




Π11 ∗ ∗ ∗
Π21 Π22 ∗ ∗
Π31 Π32 Π33 ∗
0 Π42 Π43 Π44


 +

τ2
k1e5R̃1e

T
5 + (τk2 − τk1)

2e5R̃2e
T
5 < 0 (14)

Finally, using Schur complement, (14) is equivalent to
(5). ¤

Remark 4. Since switching topology is employed in
system (3), i.e., Lk is time-varying, the LMI (5) should
hold for all the possible communication topologies.

Remark 5. In Theorem 1, Jensen′s inequality and re-
ciprocally convex approach are used to deal with the dou-
ble integral terms of the Lyapunov-Krasovskii functional
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in (9), which significantly reduces the conservativeness of
the stability conditions in comparison with the methods in
[25, 27]. When the switching topology that is kept strongly
or weakly connected and balanced, a less conservative up-
per bound of time-varying communication delays can be
obtained by using Theorem 1, thus the proposed method is
more general. This will lay a solid foundation for the fur-
ther development of multi-agent systems with time-delay.

Remark 6. It is well known that any undirected graph
is balanced. Therefore, the proposed method can be ap-
plied to undirected topology with communication time-
varying delays. Moreover, the proposed method can be ex-
tended to continuous-time and discrete-time dynamic net-
works with fixed topology, which is balanced and weakly
connected.

How to get the maximum delay bounds is given as follow:
Step 1. Set τk1 = τ0, τk2 = τ0 and step size h = h0,

where τ0 and h0 are specified constants and small enough.
Step 2. Based on LMI approach, the feasible solutions

that satisfy the matrix inequalities (4) and (5) are searched.
If the feasible solutions can be found, then set τk2 = τk2 +
h and return to Step 2. Otherwise, stop and τk2 is the
maximum delay bound.

The following Theorem 2 gives sufficient conditions in
terms of LMIs for system (2) with fixed topology.

Theorem 2. Consider a directed network of agents with
uncertain time-varying communication delays τ(t) satisfy-
ing 0 ≤ τ1 ≤ τ(t) ≤ τ2, where τ1 and τ2 are constants to
be determined. Assume the network has a balanced and
weakly connected graph. Then, system (2) asymptotically
solves average consensus problem if there exist positive defi-
nite matrixes P̃ , Q̃1, Q̃2, R̃1, R̃2 ∈ R(n−1)×(n−1) and matrix
S̃2 with (n− 1) dimensions, such that

[
R̃2 S̃T

2

S̃2 R̃2

]
≥ 0 (15)




Π11 ∗ ∗ ∗ ∗ ∗
Π21 Π22 ∗ ∗ ∗ ∗
Π31 Π32 Π33 ∗ ∗ ∗
0 Π42 Π43 Π44 ∗ ∗
0 Π52 0 0 Π55 ∗
0 Π62 0 0 0 Π66




< 0 (16)

where Π11 = Q̃1 + Q̃2 − R̃1, Π21 = −L̃TP̃ , Π22 = −2R̃2 +
S̃2 + S̃T

2 , Π31 = R̃1, Π32 = R̃2− S̃T
2 , Π33 = −Q̃1− R̃1− R̃2,

Π42 = R̃2−S̃2, Π43 = S̃2, Π44 = −Q̃2−R̃2, Π52 = −τ1R̃1L̃,
Π55 = −R̃1, Π62 = (τ2− τ1)R̃2L̃, Π66 = −R̃2, L̃ = UT

1 LU1,

U1 ∈ Rn×(n−1) is the first n− 1 columns of U , and U is an
orthogonal matrix of eigenvectors of L.

Proof. The network topology G is balanced and weakly
connected, and x(t) can be decomposed as[21] x(t) = α1n +
δ(t). Then system (2) is equivalent to the following n − 1
dimensional system:

δ̇(t) = −Lδ(t− τ(t)), 0 ≤ τ1 ≤ τ(t) ≤ τ2

The Lyapunov function V (t) in (9) does not depend on
the network topology. Thus, V (t) is also a valid Lyapunov
function for the stability analysis of the system (2). The
following proof is similar to that of Theorem 1 and omitted
here. ¤

Similarly, how to get the maximum delay bounds is also
given:

Step 1. Set τ1 = τ0, τ2 = τ0 and step size h = h0, where
τ0 and h0 are specified constants and small enough.

Step 2. Based on LMI approach, the feasible solu-
tions that satisfy the matrix inequalities (15) and (16) are
searched. If the feasible solutions can be found, then set
τ2 = τ2 + h and return to Step 2. Otherwise, stop and τ2

is the maximum delay bound.

4 Numerical examples

To verify the effectiveness of proposed method, three nu-
merical examples were operated.

Example 1. Consider a directed switching network of
ten agents[27] as shown in Fig. 1, where all digraphs have
0-1 weights. Fig. 2 shows a finite automation state machine
with four states G1, G2, G3, G4. Further, suppose that the
switching signal can switch arbitrarily fast in the four pos-
sible topologies. It is seen obviously from Fig. 1 that they
are all balanced and weakly connected. Set the initial con-
dition α = Ave(x(0)) = 1

n

∑
i xi(0) = 0.

Fig. 1 Four directed graphs

Fig. 2 A finite automation state machine

The maximum allowable delay τmax as shown in Table 1
is derived according to Theorem 1. Further, the maximum
allowable delay of other two methods in [25, 27] are also
listed in Table 1. It is found that the proposed method
is less conservative than other two methods. Fig. 3 shows
the state trajectories of the above network system with
τk = 0.38 s. It is seen obviously that average consensus is
asymptotically achieved.

Table 1 Comparison of maximum allowable delays

Methods τmax

The method in [25] 0.30

The method in [27] 0.31

The proposed method 0.40
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Example 2. Consider a directed graph of six agents[30]

as shown in Fig. 4. Topology G has balanced and weakly
connected digraph with 0-1 weights. Set the initial condi-
tion α = Ave(x(0)) = 0.

For fixed topology G in Fig. 4, using Theorem 2 of the
presented method to solve average consensus problem, the
maximum allowable delay is 0.517. Fig. 5 shows the state
trajectories of the topology G. Using the method in [30],
the allowable upper bound of delay is 0.499 for topology G,
it has shown that the proposed method reduces the con-
servativeness of maximum allowable delay. It confirms the
effectiveness of the proposed method again.

Fig. 3 State trajectories of the network with switching
topology and τk = 0.38

Fig. 4 A directed graph

Fig. 5 State trajectories of the topology G with time-delay
τ2 = 0.505

Remark 7. For a directed graph, the case with un-
certain time-varying delays and fixed topology has been
discussed[30] based on a tree-type transformation approach.
However, from the simulation results of Example 2, the pro-
posed method is more effective. Therefore, the Jensen′s in-
equality and reciprocally convex approach play a key role in
the asymptotic stability analysis of the consensus protocol
in this paper.

Example 3. An undirected network of six agents is
shown in Fig. 6, where the digraph has 0-1 weights. Using

Theorem 2 of the proposed method to solve the average
consensus problem, it can be obtained that the maximum
delay bound is 0.2507. Using the method in [21], this sys-
tem can achieve average consensus asymptotically if and
only if τmax ≤ π/2λmax(L) = 0.2936, where λmax(L) is the
maximum eigenvalue of Laplacian of the undirected graph.
The maximum delay bound based on the method in [25] is
0.1871. It can be shown that the maximum delay bound
by Theorem 2 is very close to its critical value. Thus the
proposed method is suitable for the undirected cases.

Fig. 6 One undirected graph

5 Conclusions

This paper has mainly investigated the average consen-
sus problem in a directed network of multi-agent systems
with fixed/switching topology as well as uncertain time-
varying communication delays. Sufficient conditions for av-
erage consensus are presented, and a less conservative up-
per bound of time-varying communication delays is derived.
In comparison with the existing methods[25, 27, 30], the ob-
tained results of average consensus problem reduce the con-
servativeness of the stability conditions, and the switching
topology is no longer required strongly connected in a di-
rected network, thus the obtained results are more general.
However, due to unreliable information channels and lim-
ited bandwidth, communication between agents may pro-
duce data packet dropout and out-of-order. Therefore,
considering these network-related non-deterministic issues,
how to study the average consensus problem is the fur-
ther work. Moreover, how to save the bandwidth by the
triggered mechanism is another important direction in the
future.
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