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Cooperative Iterative Learning Control of Linear

Multi-agent Systems with a Dynamic Leader under

Directed Topologies
PENG Zhou-Hua1 WANG Dan1 WANG Hao1 WANG Wei1

Abstract This paper considers the cooperative tracking of linear multi-agent systems with a dynamic leader whose input informa-
tion is unavailable to any followers. Cooperative iterative learning controllers, based on the relative state information of neighboring
agents, are proposed for tracking the dynamic leader over directed communication topologies. Stability and convergence of the
proposed controllers are established using Lyapunov-Krasovskii functionals. Furthermore, this result is extended to the output
feedback case where only the output information of each agent can be obtained. A local observer is constructed to estimate the
unmeasurable states. Then, cooperative iterative learning controllers, based on the relative observed states of neighboring agents,
are devised. For both cases, it is shown that the multi-agent systems whose communication topologies contain a spanning tree can
reach synchronization with the dynamic leader, and meanwhile identify the unknown input of the dynamic leader using distributed
iterative learning laws. An illustrative example is provided to verify the proposed control schemes.
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In recent years, compelling attention has been paid to
cooperative control of multi-agent systems due to its po-
tential application in numerous engineering areas includ-
ing unmanned vehicles, manipulators, sensor networks, etc.
Along this line of research, consensus as a fundamental con-
trol problem is of great importance due to that it is closely
related to formation. The key of the consensus is to de-
sign a distributed control law based on local interactions
with neighbors such that the agents agree on some value
of interest[1−3]. Numerous results on the consensus control
have been obtained; see [4−13] and the references therein.
In general, these consensus protocols are falling neatly into
two categories, namely, leaderless consensus and leader-
follower consensus. In literature, the leader-follower con-
sensus is also called as consensus tracking[10], distributed
tracking[13], or cooperative tracking[12, 14].

During the past few years, cooperative tracking of multi-
agent systems has been widely studied from different per-
spectives. In [8], a neighbor-based tracking controller to-
gether with a neighbor-based state observer is proposed for
each agent to track a dynamic leader. In [9], consensus
protocols are developed for first-order linear systems with
a time-varying leader dynamics. In [10], robust consensus
tracking controllers are proposed for second-order nonlin-
ear systems for both undirected and directed topologies. In
[11], consensus of multi-agent systems and synchronization
of complex networks are unified in a framework. In [12],
a framework for cooperative tracking of linear multi-agent
systems is proposed, including state feedback, observer and
output feedback. Note that the input is either assumed
to be zero[12], or available to a fraction of followers[9−10],
or known to all followers[8, 11], which may be restrictive in
many circumstances.

Manuscript received June 24, 2013; revised September 6, 2013
Supported by National Natural Science Foundation of China

(61273137, 51209026, 61074017), the Scientific Research Fund
of Liaoning Provincial Education Department (L2013202), and
the Fundamental Research Funds for the Central Universities
(3132013037, 3132014047, 3132014321)
Recommended by Associate Editor CHEN Jie
1. School of Marine Engineering, Dalian Maritime University,

Dalian 116026, China

To deal with the unknown input of the leader, several
methods can be applied[13−21]. In [14−18], neural networks
are employed to compensate for the unknown input dy-
namics and unknown individual dynamics. In [19−20], the
unknown input of leader can be rejected by a distributed
output regulation approach. In [13, 21], the unknown in-
put of leader can be handled using the sliding-mode control
approach, which results in a discontinuous controller. Fur-
ther, the undesirable chattering effect caused by the dis-
continuous controllers in the previous works[13, 21] can be
avoided by the proposed continuous controllers in [22].

On the other hand, iterative learning method as an effec-
tive control strategy has been widely explored; see [23] and
the references therein. The main advantage of iterative
learning is using previous information to improve control
performance. In [24], iterative learning adaptive law is de-
veloped to alleviate the constraint of identifying constant
and slowly time-varying parameters. Since the input of the
leader may be time-varying and changing very quickly, it
is very attractive to apply it to the control of multi-agent
systems. However, note that the iterative learning method
proposed in [24] is for centralized identification of system
parameters in single unknown system, and thus cannot be
applied in this case.

Motivated by the above observations, we focus on the
cooperative iterative learning control of linear multi-agent
systems with a dynamic leader whose input is totally
unknown to each agent. The communication topologies
among the followers are assumed to be directed and con-
taining a spanning tree. At first, cooperative iterative
learning controllers, based on the relative state information
of neighboring agents, are proposed. Lyapunov-Krasovskii
functional is used to show the uniform ultimate bounded-
ness of closed-loop network signals. Then, this result is
extended to the output feedback case, and a local observer
is constructed to estimate the unmeasurable states. Based
on the relative observed states of neighboring agents, co-
operative observer-based iterative learning controllers are
devised. A key feature of the proposed controllers allows
for tracking the dynamic leader over directed communica-
tion graphs without the knowledge of the input.
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The comparisons with existing works are listed as fol-
lows. In contrast to the works[8−13], the input of the leader
is not required to be zero, or available to any followers.
Compared with the distributed tracking controllers devel-
oped in [13, 21], the proposed iterative learning controllers
are able to capture the input of the leader, instead of cap-
turing the upper bound of the input. Moreover, the pro-
posed iterative learning control laws are easier to imple-
ment in digital processors due to the fact that algebraic
equations are used for identification of the dynamics of
leader. Unlike the cooperative tracking controllers devel-
oped for undirected graphs[13, 21−22], the communication
topologies among agents considered here are directed. Fi-
nally, it is worth mentioning that the developed protocols
are different from the iterative learning controllers proposed
in [25−26] in the sense that the control laws are updated
in a discrete time form without adaptive terms.

The paper is organized as follows. Section 1 introduces
some preliminaries and states the problem formulation.
Section 2 presents the state feedback design and stabil-
ity analysis. Section 3 extends the preceding results to the
output feedback case. Section 4 provides an example to
illustrate the theoretical results. Section 5 concludes this
article.

1 Preliminaries and problem formula-
tion

1.1 Preliminaries

Consider a network of system consisting of N follower
agents and one leader. If each follower is considered as a
node, the neighbor relationship among the followers can be
described by a graph G = {V, E}, where V = {n1, · · · , nN}
is a node set and E = {(ni, nj) ∈ V×V} is an edge set with
the element (ni, nj) that describes the communication from
the node i to the node j. The neighbor set of the node i
is denoted by Ni = {j|(nj , ni) ∈ E}. Define an adjacency
matrix A = [aij ] ∈ RN×N with aij = 1, if (nj , ni) ∈ E and
aij = 0, otherwise. Define an in-degree matrix as a diagonal
matrix D = diag{di} ∈ RN×N with di =

∑
j∈Ni

aij for

node i. The Laplacian matrix associated with the graph G
is defined as L = D−A. A directed path in the graph is an
ordered sequence of nodes such that any two consecutive
nodes in the sequence are an edge of the graph. A digraph
has a spanning tree, if there is a node called as the root,
such that there is a directed path from the root to every
other node in the graph. Finally, define a leader adjacency
matrix as A0 = diag{a10, · · · , aN0}, where ai0 > 0 if and
only if the ith agent has access to the leader information;
otherwise, ai0 = 0. Let H = L +A0.

Lemma 1[14]. Suppose the graph G has a directed span-
ning tree, and let the root agent has access to the leader.
Define

q = [q1, · · · , qN ]T = H−11

T = diag{pi} = diag{1/qi}, i = 1, · · · , N

G = TH + HTT (1)

Then, T and G are positive definite.
Throughout the paper, the Euclidean norm and trace are

denoted by || · || and tr{·}, respectively. A diagonal matrix
is represented by diag{b1, · · · , bN} with bi being the ith
diagonal element. An identity matrix of dimension N is
denoted by IN . The Kronecker product is denoted by ⊗.

1.2 Problem formulation

Consider a class of multi-agent systems consisting of N
followers and one leader. The dynamics of the ith follower
is governed by a linear system

{
ẋi(t) = Axi(t) + Bui(t)
yi(t) = Cxi(t), i = 1, · · · , N

(2)

where xi = [xi1(t), · · · , xin(t)]T ∈ Rn is the system state;
ui(t) ∈ Rm is the control input; yi(t) ∈ Rp is the out-
put state; A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are known
matrices.

The leader is governed by a dynamic system

ẋ0(t) = Ax0(t) + Br(t) (3)

where x0 ∈ Rn is the leader state. r(t) ∈ Rm is an un-
known bounded input and may vary quickly in practice.
For any initial conditions, assume that the solution x0 ex-
ists for all t ≥ 0.

The control objective of this paper is to design a dis-
tributed control law ui for each agent (2) to track the leader
(3), i.e., xi(t) → x0(t) as t →∞.

Before designing the controllers, the following assump-
tions are needed.

Assumption 1. The pair (A, B) is stabilizable.
Assumption 2. The pair (A, C) is detectable.
Assumption 3. The time-varying input r(t) is bounded

by ‖r(t)‖ ≤ rM with rM being a positive constant.

2 State feedback

2.1 Controller design

In [12], it has been shown that synchronization to the
leader (3) with r(t) = 0 can be achieved under directed
communication topologies. However, this synchronization
controller may not work efficiently if the leader′s input is a
time-varying trajectory. Motivated by the above observa-
tion, a distributed adaptive controller is proposed as follows

ui(t) = cKei(t) + νi(t) (4)

where c ∈ R is a coupling gain to be specified later; K ∈
Rm×n is a feedback matrix with

K = −BTP (5)

where P is the unique positive definite solution to the fol-
lowing Riccati equation

ATP + PA + Q− PBBTP = 0 (6)

where Q ∈ Rn×n is positive definite; ei(t) is a local tracking
error defined by

ei(t) =

N∑
j=1

aij [xi(t)− xj(t)] + ai0[xi(t)− x0(t)] (7)

where aij are defined in Section 1.1. νi(t) is used to identify
the unknown time-varying input r(t) that is updated as

νi(t) = κi1νi(t− τ)− κ2pi(di + ai0)B
TPei(t) (8)

where τ ∈ R is a positive updating interval. κi1 ∈ Rm×m

and κ2 ∈ R satisfy 0 < κT
i1κi1 < αIm with 0 < α < 1, and

κ2 > 0, respectively. pi is defined in (1).
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Define a global tracking error δi(t) = xi(t)−x0(t), whose
time derivative along (2), (3) and (4) is given by

δ̇i(t) = Aδi(t) + B[cKei(t) + νi(t)− r(t)] (9)

Define the input estimation error r̃i(t) = νi(t) − r(t), and
it follows that

δ̇i(t) = Aδi(t) + B[cKei(t) + r̃i(t)] (10)

Let δ(t) = [δT
1 (t), · · · , δT

N (t)]T, ν(t) = [νT
1 (t), · · · , νT

N (t)]T,
r̃(t) = [r̃T

1 (t), · · · , r̃T
N (t)]T, e(t) = [eT

1 (t), · · · , eT
N (t)]T.

Then, the N subsystems of (10) resulting from the fact
e(t) = (H ⊗ In)δ(t) are

ė(t) = (IN ⊗A + cH ⊗BK)e(t) + (H ⊗B)r̃(t) (11)

2.2 Stability analysis

Theorem 1. Consider the multi-agent systems with the
followers (2) and the dynamic leader (3) under Assumptions
1 and 3. The communication topologies among the follow-
ers are directed graphs containing a spanning tree, and let
the root agent have access to the leader. Select the control
law (4) with the adaptive law (8) and the coupling strength
c satisfying

c ≥ 1

mini=1,··· ,N (qigi)
(12)

where gi is the ith eigenvalue of Q. Then, the global track-
ing error δi(t) and the input estimation error r̃i(t) are uni-
formly ultimately bounded.

Proof. We first define{
ρi(t) = r(t)− κi1r(t− τ)
ρ̂i(t) = νi(t)− κi1νi(t− τ)

(13)

where ‖ρi(t)‖ ≤ ρiM with ρiM = (1+ ‖κi1‖)rM . The input
estimation error r̃i can be written as

r̃i(t) = κi1r̃i(t− τ) + ρ̂i(t)− ρi(t) (14)

Let ρ(t) = [ρT
1 (t), · · · , ρT

N (t)]T, ρ̂(t) = [ρ̂T
1 (t), · · · , ρ̂T

N (t)]T,
κ1 = diag{κ11, · · · , κN1}, and then

r̃(t) = κ1r̃(t− τ) + ρ̂(t)− ρ(t) (15)

It follows that the error dynamics of δ(t) with (15) is

ė(t) = (IN ⊗A + cH ⊗BK)e(t) + (H ⊗B)[κ1r̃(t− τ)+

ρ̂(t)− ρ(t)] (16)

Consider the Lyapunov-Krasovskii functional

V1 = eT(t)(T ⊗ P )e(t) + β

(∫ t

t−τ

r̃T(s)r̃(s)ds

)
(17)

whose time derivative along (15) and (16) is given by

V̇1 = eT(t)[T ⊗ (PA + ATP ) + cG⊗ PBK]e(t)+

2eT(t)(TH ⊗ PB)[κ1r̃(t− τ) + ρ̂(t)− ρ(t)]+

β[−µr̃T(t)r̃(t) + ηr̃T(t)r̃(t)−
r̃T(t− τ)r̃(t− τ)] (18)

where η = 1+µ and β > 0. Expanding r̃T(t)r̃(t) from (15)
gives

r̃T(t)r̃(t) = r̃T(t− τ)κT
1 κ1r̃(t− τ) + ρT(t)ρ(t)+

ρ̂T(t)ρ̂(t)− 2r̃T(t− τ)κT
1 ρ(t)+

2ρ̂T(t)κ1r̃(t− τ)− 2ρ̂T(t)ρ(t)

which leads to

V̇1 = eT(t)[T ⊗ (PA + ATP ) + cG⊗ PBK]e(t)+

2eT(t)(T (A0+D−A)⊗ PB)[κ1r̃(t−τ)+ρ̂(t)−ρ(t)]+

β[−µr̃T(t)r̃(t)− r̃T(t− τ)r̃(t− τ) + ηρT(t)ρ(t)+

ηr̃T(t− τ)κT
1 κ1r̃(t− τ) + ηρ̂T(t)ρ̂(t)−

2ηr̃T(t− τ)κT
1 ρ(t)− 2ηρ̂T(t)ρ(t)+

2ηρ̂T(t)κ1r̃(t− τ)] (19)

Using (8) and (13) and letting κ2 = 1/(βη), it follows that

V̇1 = eT(t)[T ⊗ (PA + ATP ) + cG⊗ PBK]e(t)−
2eT(t)(TA⊗ PB)r̃(t)− βηρ̂T(t)ρ̂(t)+

β[−µr̃T(t)r̃(t)− r̃T(t− τ)r̃(t− τ)+

ηr̃T(t− τ)κT
1 κ1r̃(t− τ) + ηρT(t)ρ(t)−

2ηr̃T(t− τ)κT
1 ρ(t)] (20)

From Young′s inequality, one has

−2ηr̃T (t− τ)κT
1 ρ(t) ≤ γr̃T(t− τ)κT

1 κ1r̃(t− τ)+

η2ρT(t)ρ(t)/γ (21)

where γ > 0.
Substituting (21) into (20) yields

V̇1 ≤ eT(t)[T ⊗ (PA + ATP ) + cG⊗ PBK]e(t)−
2eT(t)(TA⊗ PB)r̃(t)− βµr̃T(t)r̃(t)+

β(η + η2/γ)ρT(t)ρ(t)− β[r̃T(t− τ)[INm−
(γ + η)κT

1 κ1]r̃(t− τ)] (22)

where INm represents an identity matrix of dimension N ×
m.

By Lemma 1, we know G is positive definite. Then, let U
be a unitary matrix such that UTGU = diag{g1, · · · , gN}.
Introduce a state transformation ε(t) = (UT⊗ In)e(t) with
ε = [εT1 , · · · , εTN ]T, and thus

V̇1 ≤
N∑

i=1

εTi [ξi(PA + ATP − cqigiPBBTP )]εi−

2eT(t)(TA⊗ PB)r̃(t)− βµr̃T(t)r̃(t)+

β(η + η2/γ)ρT(t)ρ(t)− β[r̃T(t− τ)[INm−
(γ + η)κT

1 κ1]r̃(t− τ)] (23)

Recalling (6) and (12) and using the fact ‖δ‖ = ‖ε‖, one
has

V̇1 ≤− min
i=1,··· ,N

(ξi)λmin(Q)‖e(t)‖2+

2‖e(t)‖‖TA‖‖PB‖‖r̃(t)‖ − βµr̃T(t)r̃(t)−
β{r̃T(t− τ)[INm − (γ + η)κT

1 κ1]r̃(t− τ)}+
β(η + η2/γ)ρT(t)ρ(t)

Letting z1(t) = [‖e(t)‖, ‖r̃(t)‖, ‖r̃(t− τ)‖]T, we have

V̇1 ≤− zT
1 (t)S1z1(t) + $1 (24)
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where




S1 =




mini=1,··· ,N (ξi)λmin(Q) ζ 0
ζ βµ 0
0 0 ς




$1 = β(η + η2/γ)ρ2
M

with α = 1/(γ + η), ζ = ‖TA‖‖PB‖, ρM =√∑N
i=1 ρ2

iM , ς = βλmin(INm − α−1κT
1 κ1). Select βµ >

ζ2/(mini=1,··· ,N (ξi)λmin(Q)) such that S1 is positive def-
inite, and then define a compact set

Ωz1 = {z1(t)|‖z1(t)‖ ≤ ε1} (25)

where ε1 =
√

$1/λmin(S1). Note that ‖z1(t)‖ > ε1 ren-

ders V̇1(t) < 0. Therefore, the tracking error ‖e(t)‖ and
the estimate error ‖r̃(t)‖ are uniformly ultimately bounded.
Since ‖δ(t)‖ ≤ ‖e(t)‖/~(H) where ~(H) denotes the min-

imal singular value of H [14], it follows that δ(t) is uni-
formly ultimately bounded, implying that δi(t) and r̃(t)

are bounded[27].

3 Output feedback

In the previous section, the proposed controller entails
that all states of each agent can be obtained by each agent.
However, some states cannot be available for the feedback
control in many instances. Therefore, the control objective
of this section is to develop a distributed control law ui(t)
to track the leader under directed topologies, only using
the output information of yi(t).

3.1 Controller design

At first, consider a local state observer

{
˙̂xi(t) = Ax̂i(t) + Bui(t) + F [yi(t)− ŷi(t)]
ŷi(t) = Cx̂i(t)

(26)

where F ∈ Rn×p is a feedback gain matrix to be designed
such that A − FC is Hurwitz. Then, a distributed con-
troller based on the observed states of neighboring agents
is proposed as follows

ui(t) = cKêi(t) + νi(t) (27)

where c, K are defined the same as (4); P is the unique
positive definite solution to the Riccati equation (6); êi(t)
is defined as

êi(t) =

N∑
j=1

aij [x̂i(t)− x̂j(t)] + ai0[x̂i(t)− x0(t)] (28)

νi(t) is updated by

νi(t) = κi1νi(t− τ)− κ2pi(di + ai0)B
TP êi(t) (29)

where κi1, κ2, and τ are defined the same as (8).
Denote an estimated error x̃i(t) = xi(t) − x̂i(t), whose

dynamics can be written as

˙̃xi(t) = Aex̃i(t) (30)

where Ae = A − FC. Let x̃ = [x̃T
1 , · · · , x̃T

N ]T, then the N
subsystems of (30) is written as

˙̃x(t) = (IN ⊗Ae)x̃(t) (31)

Define an estimated state tracking error δ̃i(t) = x̂i(t) −
x0(t), whose time derivative along (3) and (27) is

˙̃
δi(t) = Aδ̃i(t) + cBKêi(t) + B[νi(t)− r(t)] + FCx̃i(t)

(32)

Let δ̃(t) = [δ̃T
1 (t), · · · , δ̃T

N (t)]T, x̃(t) = [x̃T
1 (t), · · · ,

x̃T
N (t)]T, and then the dynamics of δ̃(t) can be expressed

by

˙̂e(t) =(IN ⊗A + cH ⊗BK)ê(t)+

(H ⊗ FC)x̃(t) + (H ⊗B)r̃(t) (33)

3.2 Stability analysis

Theorem 2. Consider the multi-agent systems with the
followers (2) and the leader (3) under Assumptions 1∼ 3.
The communication topologies among the followers are di-
rected graphs containing a spanning tree, and let the root
agent have access to the leader. Select the control law (27)
with the coupling strength c satisfying (12) and the adap-
tive law (26), together with the state observer (29). Then,

the estimated state tracking error δ̃i(t), the global tracking
error δi(t), and the input estimate error r̃i(t) are uniformly
ultimately bounded.

Proof. Consider the following Lyapunov-Krasovskii
functional

V2 = êT(T ⊗ P )ê + β

(∫ t

t−τ

r̃T(s)r̃(s)ds

)
(34)

whose time derivative along (33) can be described by

V̇2 ≤ êT(t)[T ⊗ (PA + ATP ) + 2cG⊗ PBK]ê(t)−
2êT(t)(TA⊗ PB)r̃(t) + β[−µr̃T(t)r̃(t)−
r̃T(t− τ)r̃(t− τ)− 2ηr̃T(t− τ)κT

1 ρ(t)+

ηr̃T(t− τ)κT
1 κ1r̃(t− τ) + ηρT(t)ρ(t)]+

2êT(t)(TH ⊗ PFC)x̃(t) (35)

Using the state transformation ε = (UT ⊗ In)ê, one has

V̇2 ≤−min(ξi)λmin(Q)‖ê(t)‖2 − βµr̃T(t)r̃(t)−
2êT(t)(TA⊗ PB)r̃(t)− β{r̃T(t− τ)[INm−
(γ + η)κT

1 κ1]r̃(t− τ)}+ β(η + η2/γ)ρT(t)ρ(t)+

2êT(t)(TH ⊗ PFC)x̃(t) (36)

Because Ae is Hurwitz, it follows that the system (31) is
asymptotically stable, indicating that ‖x̃(t)‖ ≤ x̃M for all
t > 0, where x̃M is a positive constant that depends on
x̃(0). Then

V̇2 ≤− min
i=1,··· ,N

(ξi)λmin(Q)‖ê(t)‖2 − βµr̃T(t)r̃(t)+

2‖ê(t)‖‖TA‖‖PB‖‖r̃(t)‖ − β{r̃T(t− τ)[INm−
(γ + η)κT

1 κ1]r̃(t− τ)}+ β(η + η2/γ)ρT(t)ρ(t)+

2 max
i=1,··· ,N

(ξi)‖ê(t)‖‖TH‖‖PFC‖x̃M (37)
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and using ‖ê(t)‖ ≤ ‖ê(t)‖2/%+% with % > 0, it follows that

V̇2 ≤− min
i=1,··· ,N

(ξi)λmin(Q)‖ê(t)‖2 − βµr̃T(t)r̃(t)+

2‖ê(t)‖‖TA‖‖PB‖‖r̃(t)‖ − β{r̃T(t− τ)[INm−
(γ + η)κT

1 κ1]r̃(t− τ)}+ β(η + η2/γ)ρT(t)ρ(t)+

max
i=1,··· ,N

(ξi)‖TH‖‖PFC‖x̃M (‖ê(t)‖2/% + %) (38)

Letting z2(t) = [‖ê(t)‖, ‖r̃(t)‖, ‖r̃(t− τ)‖]T, we have

V̇2 ≤− zT
2 (t)S2z2(t) + ε2 (39)

where




S2 =




mini=1,··· ,N (ξi)λmin(Q)− d ζ 0
ζ βµ 0
0 0 ς




ε2 = β(η + η2/γ)ρ2
M+

% maxi=1,··· ,N (ξi)‖TH‖‖PFC‖x̃M

with d = maxi=1,··· ,N (ξi)‖TH‖‖PFC‖x̃M/%. Choose βµ >
ζ2/(mini=1,··· ,N (ξi)λmin(Q) − d) such that S2 is positive
definite. Then, define a compact set

Ωz2 = {z2(t)|‖z2(t)‖ ≤ ε2} (40)

where ε2 =
√

$2/λmin(S2). Note that ‖z2(t)‖ > ε2 renders

V̇2(t) < 0. It follows that ‖ê(t)‖, ‖r̃(t)‖ and ‖r̃(t− τ)‖ are

uniformly ultimately bounded, implying that ‖δ̃‖ is also
bounded.

Noting that

‖δ(t)‖ = ‖x(t)− x0(t)‖ =

‖x(t)− x̂(t) + x̂(t)− x0(t)‖ ≤
‖x̃(t)‖+ ‖δ̃(t)‖ (41)

it follows that δ(t) is uniformly ultimately bounded, im-

plying that δ̃i(t), δi(t), and r̃i(t) are uniformly ultimately
bounded. ¤

Remark 1. Cooperative tracking of linear multi-agent
systems with a dynamic leader of a bounded unknown in-
put is firstly considered in [13], and later extended to the
output feedback case in [21]. Note that these controllers
are developed for undirected graphs, while the focus of this
paper is on the directed graphs, which take the undirected
graphs as special cases. Moreover, the sliding-mode con-
troller developed in [13] requires the upper bound of the
control input, while the proposed controller does not re-
quire it to be known. Although the above restriction is
relaxed in the second controller in [13] which tries to esti-
mate the upper bound of the control input, the proposed
controller aims to directly estimate the control input itself,
which means that less control effort is needed when the
actual control input is less than the upper bound.

4 An example

In this section, an illustrative example is given to verify
the theoretical results.

Example. Synchronization of autopilots
Consider a network of autopilots whose dynamics can be

described by a linear Nomoto model, which is given by

{
ψ̇i = ωi

ω̇i = − 1
T ωi + K

T δi
(42)

where ψi is the heading; ωi is the yaw rate; δi is the actuator
angle. The time constant T and gain K are given by

T =
Iiz −N ˙iω

−Niω
,K = −Niδ

Niω
(43)

where Iiz is the moment of inertia in yaw axis; N ˙iω, Niω, Niδ

are hydrodynamic coefficients which can be estimated from
trials in calm water. For more details on the linear Nomoto
model, the readers are referred to [28]. In this example,
K, T are taken as K = 0.25, T = 100. Let xi = [ψi, ωi]

T

and choose δi = ui − ψi − 396ωi; then the model (42) can
be rewritten as (2) with

A =

[
0 1

−0.0025 −0.1

]
, B =

[
0

0.0025

]
(44)

Let the input be r = 0.5 sin(0.1t) and none of the followers
has access to the input of the leader. The information ex-
change topology is given by Fig. 1, with the node 0 being
the leader. In simulation, the distributed controller given
in Theorem 1 is adopted. Letting Q = diag(0.1, 0.1) and
solving the Riccati equation (6) yields

P =

[
1.9787 19.5235
19.5235 382.3346

]
, K =

[−0.0488 −0.9558
]

(45)

and the other control parameters are chosen as κi1 = 0.998,
κ2 = 100.

Simulation results are shown in Figs. 2 and 3. Fig. 2
shows that the state of each agent synchronizes with the
leader. Fig. 3 indicates that unknown control input of the
leader can be identified accurately.

Fig. 1 Communication graph

Fig. 2 Follower node states (solid line), leader node state
(dotted line)
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Fig. 3 Leader input estimation (solid line), leader input
(dotted line)

In order to verify the performance of the proposed output
feedback control, the controllers given in Theorem 2 are
applied to the network. The feedback gain matrix F is
designed as F = [20, 99]T such that λ(Ae) = {−10,−10}.

Simulation results are shown in Figs. 4 and 5. Fig. 4
shows that the state of each agent synchronizes to the
leader, despite the fact that only the output information
ψi can be obtained. Fig. 5 demonstrates the state estimate
errors approach zero.

Fig. 4 Follower node states (solid line), leader node state
(dotted line)

5 Conclusions

This paper has considered the cooperative tracking of
linear multi-agent systems with a dynamic leader under di-
rected communication topologies under the condition that
the input of the leader is unavailable to any followers. At
first, cooperative iterative learning controllers have been
proposed based on the relative state information of the
neighboring agents. Then, this result was further extended
to the output feedback case where only partial states can
be measured. Cooperative output feedback iterative learn-
ing controllers were devised based on a local observer. For
both cases, the stability of the overall multi-agent systems
has been established using Lyapunov-Krasovskii function-
als. Compared with existing results, the main advantage of

the proposed control designs allow for tracking the dynamic
leader without the knowledge of the input, and mean-
while identifying the unknown input of the leader using
distributed iterative learning laws. Moreover, the proposed
iterative learning control laws are easier to implement in
digital processors due to the fact that algebraic equations
are used for identification of leader dynamics. An example
has demonstrated the efficacy of the proposed approaches.
Further works include an extension to the cooperative iter-
ative learning control of nonlinear multi-agent systems.

Fig. 5 Estimated errors of the states
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