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Partial Stability Approach to Consensus Problem of

Linear Multi-agent Systems
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Abstract A linear transformation is proposed to deal with the consensus problem of high-order linear multi-agent systems (LMASs).
In virtue of the linear transformation, the consensus problem is equivalently translated into a partial stability problem. We discuss
three issues of the LMASs under a generalized linear protocol: 1) to find criteria of consensus convergence; 2) to calculate consensus
function; 3) to design gain matrices in the linear consensus protocol. Precisely, we provide a necessary and sufficient criterion of
consensus convergence in terms of Hurwitz stability of a matrix and give an analytical expression of the consensus function. In
addition, we set up a relation between the gain matrices in the protocol and the convergence time and consensus accuracy of the
agents, and then design the gain matrices with respect to a pre-specified convergence time and a required consensus accuracy.
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In recent years, the consensus problem is well recognized
as a fundamental problem in the cooperation control of
multi-agent systems and thus has caught a lot of atten-
tion of the researchers from various communities. The in-
terest in this problem is motivated by a huge variety of
applications, e.g., work load balance in parallel computer
networks[1], coverage control[2], clock synchronization[3],
consensus filtering and estimation in sensor networks[4−5],
rendezvous and formation of various moving objects such
as underwater vehicles[6], aircraft[7−8], satellites[9], mo-
bile robots[10], intelligent vehicles in automated highway
systems[11], etc. For a nice overview of recent results on
these topics, please refer to [12−14] and the references
therein.

A multi-agent system is composed of multiple interact-
ing dynamic objects. To model this class of systems, one
needs to consider three essential elements: 1) a model de-
scribing dynamics of the agents; 2) a communication topol-
ogy (graph or network) describing communication structure
between the agents; 3) a protocol (control input) describ-
ing how the agents interact with each other according to a
given communication topology. The dynamical models de-
scribing states (some information variables) of the agents
are often represented by differential or difference equations.
These models are distinguished as various cases, such as
continuous-time or discrete-time, linear or nonlinear, low-
order or high-order, certain or uncertain, etc. The commu-
nication topologies also include such cases as undirected
or directed, fixed or switched and so on. The protocols of
the agents are constructed depending on the states of the
agent itself and its “neighboring” agents and thus they are
typically local or decentralized controls. The protocols are
classified as such cases as linear or nonlinear, in absence or
presence of communication delay and so on.

Roughly speaking, solving the consensus problem of a
multi-agent system is to construct a communication topol-
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ogy and a protocol with respect to the communication
topology such that all the agents achieve a common state of
the interesting variables. According to the requirements of
the common state, the consensus problems are sorted into
as leaderless or leader-following consensus, state or output
consensus and so on.

Different combinations of aforementioned cases result in
various complex settings of the consensus problem. Lots
of researches have been done and abundant results have
been obtained. However, the aim of this paper consists in
trying to provide a novel uniform approach for the study of
the consensus problem. In order to give prominence to our
idea, we do not entangle ourself with the complex settings
but rather backtrack to one of the simplest cases, i.e., the
continuous-time, leaderless and certain linear multi-agent
systems with fixed communication topology and in absence
of communication delay. Hence, below we will limit ourself
to summarize some results only on this simple case.

The initial research on the simple case was dedicated
to the protocol construction and the convergence criterion
of the first-order or single-integrator linear leaderless sys-
tems. Olfati-Saber et al.[15] first realized the importance of
the relation between the consensus problem and the graph
Laplacian expressing the communication topology, where
all the gains in a linear protocol were set to be 1. Then the
authors in [16−18] showed that the agents achieve global
consensus if and only if the associated graph has a directed
spanning tree. Average consensus was defined in [19] and it
was shown that average consensus is achieved if the graph
is both strongly connected and balanced. Wu et al.[18] fur-
ther proved that if the graph is strongly connected but not
balanced, the average consensus problem is still solved by
using multi-rate integrators.

The next study was extended to the second-order or
double-integrator linear leaderless systems, which was non-
trivial as shown in the literature. Ren et al.[20] proposed
a protocol consisting of both weighted position and veloc-
ity differences between the agent itself and its “neighbors”
and proved that the directed spanning tree is still necessary
for the consensus convergence but not sufficient any more
except adding a condition on the velocity weights. Xie et
al.[21] proposed another protocol consisting of velocity feed-
back of the agent itself and weighted position difference be-
tween the agent and its “neighbors” and proved that, if the
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graph is connected and the initial velocity of each agent is
zero, the agents can achieve global average-consensus for
any negative gain in the velocity feedback. More cases and
corresponding consensus protocols on the double-integrator
system were discussed in [22]. Yu et al.[23] gave a necessary
and sufficient consensus criterion.

The extension from low order systems to high order sys-
tems is not a trivial issue. de Castro et al.[24] provided
necessary and sufficient consensus conditions for high-order
linear multi-agents via linear matrix inequality. Ren et
al.[25] studied a special high-order model, which can be re-
garded as a special controllability canonical form. Wang et
al.[26] considered a high-order model with fewer structural
limitations and presented a sufficient condition for consen-
sus convergence under the assumption of undirected graph.
Xiao et al.[27] studied a general high-order model and pro-
vided some necessary and sufficient criteria. Munz et al.[28]

proposed a high order differential equation model of the
agents and provided a Nyquist consensus criterion. Xi et
al.[29] proposed a space decomposition method to study the
high order systems.

More complex settings of the consensus problem have
been researched, including the case with time-delays in
the protocol[30−44], which may arise due to congestion of
communication channels, asymmetry of interactions, finite
transmission speed, etc., and the case with the switching
information topology[19−20, 32−33, 39, 42, 45], which often ap-
pears due to various factors such as disturbances or commu-
nication range limit. The other interesting topics are con-
cerned with consensus convergence speed[19, 46−49], finite-
time consensus problems[4, 50−52], consensus of nonlin-
ear systems[53], consensus of discrete-time systems[54−55],
sampled-data based average consensus[56] and the parallel-
developing leader-following consensus problem. We omit
many (maybe important) papers and detailed reviews of
these cases because of our research limitation of the simple
case mentioned above.

In the paper, we consider the linear multi-agent systems
(LMASs) in a general form, but limit the setting of con-
sensus problem to the simplest case mentioned above. For
this simplest case, we propose a generalized linear protocol
and address three aspects of the problem: 1) to find crite-
ria of consensus convergence; 2) to calculate the consensus
function; 3) to design the gain matrices in the consensus
protocol.

Our contributions are summarized as follows. Firstly,
we propose a proper linear transformation to equivalently
transform the consensus problem into a stability problem
with respect to partial variables (partial stability for short)
of the transformed system. Secondly, we derive a necessary
and sufficient criterion of consensus convergence in terms of
matrix Hurwitz stability and give an analytical expression
of the consensus function. Furthermore, applying the gen-
eral result to the single/double-integrator linear systems,
respectively, we get easier testing necessary and sufficient
criteria and give analytical formulae of the consensus val-
ues/functions as well. Applying the results to the average
consensus problem, we improve the existing results as well.
Thirdly, for the general LMAS, we propose a design pro-
cedure of the gain matrices in the protocol with respect
to a prespecified convergence time and a required consen-
sus accuracy. The design approach is based on a proposed
concept of ε-consensus and the application of linear matrix
inequalities (LMIs).

We point out that various more complex settings of the

consensus problem could be solved by using our linear-
transformation-based partial stability approach more spon-
taneously and effectively, although this paper focuses on the
simplest case mentioned above. In fact, we have further
solved these problems for discrete-time/continuous linear
multi-agent systems with switching communication topolo-
gies and without/with time-delay[54, 57] and finished some
studies on state consensus of heterogeneous linear multi-
agent systems, output consensus problem of high-order lin-
ear multi-agent systems and so on.

The rest of the paper is organized as follows. In Section 1
we introduce a description of the consensus problem of the
general LMAS and give a consensus definition in terms of
an invariant set. Then we propose a linear transformation
to set up a bridge between the consensus problem and the
partial stability problem. In Section 2, we apply the pro-
posed approach to deal with the consensus problem of gen-
eral LMAS. In Section 3, we discuss the relation between
the gain matrices in the protocol and the convergence time
of the agents for the linear systems. Section 4 presents some
simulation examples, and Section 5 concludes this paper.

Notations. The following notations are used through-
out the paper. Superscript T denotes the transpose of a
matrix. Rn and Rn×m stand for the real vector space with
dimension n and real matrix space of size n × m, respec-
tively. I and 0 mean the identity matrix and zero matrix
with compatible dimensions, respectively. Wherever the
dimensions of the matrices are not mentioned, they are as-
sumed to be of compatible dimensions.

1 Problem description and its relation
to partial asymptotic stability

In this section, we formally describe the consensus prob-
lem of the following LMAS

ẋxxi = Axxxi + Buuui, i = 1, · · · , N (1)

where xxxi ∈ Rn is the state, uuui ∈ Rm is the input required
to design, and A and B are the matrices of appropriate
dimensions.

The control input ui will be constructed by using state
xxxi of agent i itself and the relative state xxxj − xxxi between
agent i and the neighboring agent j ∈ Ni, where Ni denotes
the index set of neighbors of the agent i. By saying agent j
is a neighbor of agent i, we mean that agent j can send its
information via communication to agent i. We call set {Ni :
i = 1, · · · , N} a communication topology of the LMAS (1).

For a given communication topology {Ni : i =
1, · · · , N}, we design a consensus protocol as follows

uuui = Kxxxi +
∑

j∈Ni

Wij(xxxj − xxxi) (2)

where K and Wij are the gain matrices required to design.
The first term in the protocol of (2) with matrix K is

a state feedback of agent i itself and its role consists in
changing the final consensus dynamics expressed by the
consensus function. The second term with matrices Wij are
relative state feedbacks between agent i and its neighbors
j ∈ Ni and their role is to cooperate with the agents for
achieving consensus.

Submitting protocol (2) into LMAS (1), we get the equa-
tion for the stacked state xxx = [xxxT

1 · · · xxxT
N ]T

ẋxx = (IN ⊗ (A + BK)− (IN ⊗B)LW )xxx (3)
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where LW = [Lij ] is a weighted block Laplacian with N2

blocks Lij , i, j = 1, · · · , N defined as

Lij =





N∑
k=1,k 6=i

Wik, j = i

−Wij , j 6= i, j ∈ Ni

0, j 6= i, , j /∈ Ni

(4)

We use subspace Ξ = {1N ⊗ ξξξ : ξξξ ∈ Rn} of the state
space RNn to give the consensus definition of the multi-
agent system (1), where ⊗ denotes the Kronecker product
of matrices/vectors, and 1N ∈ RN is the vector with all its
components being 1.

Definition 1. Under the given communication topol-
ogy {Ni : i = 1, · · · , N}, the LMAS (1) is called to achieve
global consensus via the protocol of (2) if set Ξ is an in-
variant and globally asymptotically stable set of system (3),
i.e., if it satisfies the following properties:

1) Invariance: for any initial state xxx(0) ∈ ΞΞΞ, the trajec-
tory xxx(t;xxx(0)) starting from xxx(0) will always remain in set
Ξ during the evolution;

2) Global attractability: for any initial state xxx(0) ∈ RNn,
trajectory xxx(t;xxx(0)) converges to set Ξ as t → +∞;

3) Lyapunov stability: for any ε > 0 there is δ > 0
such that any initial state xxx(0) ∈ RNn constrained by
d(xxx(0),ΞΞΞ) < δ implies supt≥0 d(xxx(t;xxx(0)), Ξ) < ε, where
d(xxx, Ξ) := infξξξ∈Ξ ‖xxx−ξξξ‖ denotes the distance from point xxx
to set Ξ.

There is a bit of difference between Definition 1 and the
consensus definition in the existing literature. We give ex-
planations about it. Property 2) means limt→+∞ ‖xxxi −
xxxj‖ = 0 for any i, j ∈ {1, · · · , N}, which just expresses
the consensus meaning in the existing literature. Due to
this reason, we call subspace Ξ the consensus set of the
LMAS (1). On the other hand, similarly to the concept
of Lyapunov stability, for linear dynamic systems, the at-
tractability condition 2) of set Ξ implies its asymptotical
stability. However, as well-known, this conclusion is not
true for nonlinear dynamic systems, so we need to add the
stability condition 3) to attractability to assure the asymp-
totical stability of set Ξ. Finally, the invariant condition
1) is added since the stability definition for a set is often
limited to an invariant set. In fact, the requirements of
the stability and invariance of set Ξ are also natural for the
consensus issue since the states of the agents should remain
either close to or be within the consensus set Ξ if they are
close to or have been in it.

For the given communication topology {Ni : i =
1, · · · , N} and protocol (2), we are concerned with two ba-
sic issues: 1) to find criteria of consensus convergence, and
2) to calculate the consensus function/value of the agents
if the LMAS (1) achieves global consensus.

Now we show how to transform equivalently the consen-
sus problem into a partial asymptotic stability problem of
a corresponding system via an appropriate linear transfor-
mation of system (3).

The Nn × Nn linear transformation matrix P is con-
structed as follows:

P :=

[
P̃

1T
N ⊗ In

]
, P̃ =




P1

...
PN−1


 (5)

where In is the identity matrix of rank n and Pi =[
pi1 . . . piN

]
are n × Nn block matrices with n × n

blocks pij , i = 1, · · · , N − 1, j = 1, · · · , N , satisfying the
following two conditions:

1) All the row vectors in each of matrices Pi, i =
1, · · · , N − 1, are linearly independent of each other;

2) All the row vectors of Pi are orthogonal to 1T
N ⊗ In,

i.e., Pi(1N ⊗ In) = 0, i = 1, · · · , N − 1.
The inverse of matrix P is of the following form (see the

proof in Appendix).
Lemma 1. The inverse of matrix P defined in (5) is

P−1 :=
[

P̂ N−11N ⊗ In

]

P̂ :=
[

P̄1 . . . P̄N−1

]
(6)

P̄j :=
[

p̄T
1j . . . p̄T

Nj

]T
, j = 1, · · · , N − 1

and the identity (1T
N ⊗ In)P̂ = 0 is met, where p̄ij , i =

1, · · · , N , j = 1, · · · , N − 1 are n × n blocks indefinitely
described.

Using matrix P , we propose the following linear trans-
formation for system (3)

xxx = Pxxx (7)

Thus, system (3) is transformed into the system

˙̄xxx = PMP−1x̄xx (8)

where

M = IN ⊗ (A + BK)− (IN ⊗B)LW (9)

Letting x̄xx = [yyyT zzzT]T, we rewrite system (8) into the form
of two equations

ẏyy = P̃MP̂yyy + P̃M(N−11N ⊗ In)zzz

żzz = (1T
N ⊗ In)MP̂yyy + (1T

N ⊗ In)M(N−11N ⊗ In)zzz (10)

Definition 2[58]. The equilibrium point x̄xx = 0 of sys-
tem (8) is called to be globally asymptotically stable with
respect to the partial variables yyy, or briefly, globally asymp-
totically yyy-stable, if it satisfies the following two conditions:

1) For any ε > 0, there is a number δ > 0 such that, for
the initial state x̄xx(0), which is arbitrarily given but limited
by ‖yyy(0)‖ < δ and zzz(0) ∈ Rn, the perturbed trajectory
x̄xx(t) = [yyyT(t) zzzT(t)]T satisfies supt≥t0

‖yyy(t)‖ < ε;

2) For any initial state x̄xx(0) ∈ RNn, limt→∞ ‖yyy(t)‖ = 0.
The proposed linear transformation is motivated by sev-

eral works in the literature but they are further developed
in the paper. For example, motivated by [24] we use the
asymptotical stability of an invariant set Ξ to define the
consensus. Then the linear transformation P is introduced
to make set PΞ become a basis subspace (e.g. the co-
ordinate axis in the case of one dimension) and thus the
asymptotical stability of set Ξ in Ξ ⊕ Ξ⊥ becomes that of
set PΞ in the transformed space PΞ ⊕ PΞ⊥, where Ξ⊥ is
the orthogonal subspace to Ξ. The latter is just the par-
tial stability[58] of the equilibrium point 0 in PΞ ⊕ PΞ⊥
with respect to the coordinate components in PΞ⊥. As the
bases in the subspace of PΞ⊥, motivated by the error vari-
able method or the contraction theory[59], we often choose
the differences of the standard bases in the original space
Ξ⊥ ⊕ Ξ.

Now we are in the position to state a key lemma to ex-
press the relation of the consensus problem to the asymp-
totical y-stability problem (see the proof in Appendix).

Lemma 2. Under the given communication topology
{Ni : i = 1, · · · , N}, the LMAS (1) achieves global con-
sensus via protocol (2) if and only if the equilibrium point
x̄xx = 0 of system (8) is globally asymptotically yyy-stable.
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If the global consensus is achieved, the consensus func-
tion/value can be calculated by the relation ξξξ(t;xxx(0)) =

N−1zzz(t) = N−1 ∑N
i=1 xxxi(t).

We will see that the results obtained in the paper is in
fact independent of the choice of matrix P . So in practice,
matrix P in (5) is often taken in the following typical form

P =

[
P̃0

1T
N

]
⊗ In, P̃0 =




eee1 − eee2

...
eeeN−1 − eeeN


 (11)

where eeeT
i ∈ RN , i = 1, · · · , N are the standard bases with

1 in the ith row and 0 in all the other rows. In other words,
we take the error variables x̄xxi = xxxi−xxxi+1, i = 1, · · · , N −1
of the original state variables xxxi, i = 1, · · · , N as the first
N−1 new states and the last one is taken as x̄xxN =

∑N
i=1 xxxi.

In this special case, we can exactly calculate the inverse
matrix as follows:

P−1 =
[

P̂0 N−11N

]⊗ In

P̂0 =
1

N




N − 1 N − 2 . . . 1
−1 N − 2 . . . 1
...

...
. . .

...
−1 −2 . . . 1
−1 −2 . . . −(N − 1)




(12)

In the following discussion, we will use this special linear
transformation matrix.

Now we state some notations and several lemmas for
the sake of future discussion. As shown in the literature,
the communication topology N = {Ni : i = 1, · · · , N}
can be presented via a digraph. In fact, letting a ver-
tex set V represent the agents, and a directed edge set
E ⊆ V × V represent the communication topology N in
the way (j, i) ∈ E ⇔ j ∈ Ni, one gets a digraph G = (V, E)
of the LMAS (1). The communication topology N is also
described by the adjacency matrix A = [aij ]N×N of the
digraph G, whose entries are defined as aii = 0, aij = 1
if j ∈ Ni, otherwise aij = 0. The corresponding stan-
dard Laplacian L = [lij ] is defined as L = D − A, where
D = diag{d1, · · · , dN} is the in-degree matrix with entries
di =

∑
k∈Ni

aik. In addition, given the communication

topology N and a weighted matrix W = [wij ]N×N with
positive entries wij , we also define the weighted in-degree
matrix Dw = diag{∑k∈N1

w1k, · · · ,
∑

k∈NN
wNk} and the

weighted adjacency matrix Aw = A◦W by Hadamard prod-
uct ◦ of matrices. Hence the corresponding weighted Lapla-
cian is Lw = Dw−Aw. We use L(N ) to denote the set of all
the weighted Laplacians with respect to the communication
topology N . One can consider set L(N ) as an equivalent
class of the standard Laplacian L with respect to N . The
following lemma is well-known (see the proof in Appendix).

Lemma 3. The following statements are equivalent to
each other for set L(N ):

1) The digraph G = (V, E) admits a directed spanning
tree, i.e., a directed tree covering all the vertices of the
digraph;

2) Every Lw ∈ L(N ) has a simple zero eigenvalue;
3) For every Lw ∈ L(N ), rank Lw = N − 1;

4) For every Lw ∈ L(N ), matrix −P̃0LwP̂0 is Hurwitz.
From Lemma 3, we see that any weighted Laplacian Lw

satisfies one of the conditions if and only if so does the

standard Laplacian L. The stability condition of −P̃0LP̂0

is the easiest to test, especially for the case of high dimen-
sional systems and large number of agents. For example,

the Lyapunov equation or Lyapunov inequality as well as
Routh criterion can be applied to test the Hurwitz stability

of matrix −P̃0LP̂0. Therefore, we use the stability condi-

tion of −P̃0LP̂0 to express our results as possible.

2 Criteria of consensus convergence
and consensus functions

Now we deal with the consensus problem of the LMAS
(1) by using the asymptotical partial stability result for
linear systems, and then educe new results on the consensus
of the single/double-integrator systems. We also discuss
the average consensus problem.

We can verify the matrices in (10) are of the following
forms (see the proof in Appendix).

Lemma 4. The following identities are correct:

P̃M(N−11N ⊗ In) = 0

(1T
N ⊗ In)MP̂ = −(1T

N ⊗B)LW P̂

(1T
N ⊗ In)M(N−11N ⊗ In) = A + BK

Thus system (10) becomes

ẏyy = P̃MP̂yyy (13)

żzz = (A + BK)zzz − (1T
N ⊗B)LW P̂yyy

Using Lemma 2 we get the following theorem (see the
proof in Appendix).

Theorem 1. Under the given communication topology
{Ni : i = 1, · · · , N}, the LMAS (1) achieves global con-

sensus via protocol (2) if and only if the matrix P̃MP̂ in
(13) is Hurwitz stable. Moreover, the consensus function is
expressed by

ξξξ(t;xxx(0)) = N−1e(A+BK)t
(
1T

N ⊗ In− (14)
∫ t

0

e−(A+BK)τ (1T
N ⊗B)LW P̂ eP̃MP̂τ P̃dτ

)
xxx(0)

To test the Hurwitz stability of matrix P̃MP̂ , one can
apply well-known Routh criterion, Lyapunov equation or
Lyapunov inequality.

A special case of protocol (2) is as follows[27,29]

uuui = Kxxxi + W
∑

j∈Ni

wij(xxxj − xxxi) (15)

where K and W are the matrices of appropriate dimensions
and wij > 0 are scalar weights. In this case, the matrix M
in (9) becomes M = IN ⊗ (A + BK)−Lw ⊗BW , and thus

P̃MP̂ = IN ⊗ (A + BK)− P̃0LwP̂0 ⊗BW (16)

where Lw is the weighted Laplacian with weights wij . From
Theorem 1, one can get the results obtained in [29].

Corollary 1. Under the given communication topol-
ogy {Ni : i = 1, · · · , N}, the LMAS (1) achieves global
consensus via protocol (15) if and only if all the matrices
A + B(K − λiW ), i = 1, · · · , N − 1 are Hurwitz, where

λi, i = 1, · · · , N − 1 are the eigenvalues of matrix P̃0LwP̂0.
Moreover, the consensus function is expressed by

ξξξ(t;xxx(0)) = (ηηηT ⊗ e(A+BK)t)xxx(0) (17)

where ηηη is the left eigenvector of the Laplacian Lw with
respect to the zero eigenvalue and satisfies ηηηT1N = 1.
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Now we apply the result of Theorem 1 to the single-
integrator multi-agent systems. When A = 0 and B = In,
the LMAS (1) becomes

ẋxxi = uuui, xxxi ∈ Rn, i = 1, · · · , N (18)

which is called a single-integrator multi-agent system. We
consider the special case of protocol (15)

uuui =
∑

j∈Ni

wij(xxxj − xxxi), i = 1, · · · , N (19)

By substituting protocol (19) into system (18) and repre-
senting them into the vector form, we get the system

ẋxx = −(Lw ⊗ In)xxx (20)

Thus the corresponding transformed system (13) becomes

ẏyy = −(P̃0LwP̂0 ⊗ In)yyy

żzz = −(1T
NLwP̂0 ⊗ In)yyy (21)

From Theorem 1, we get the following corollary (see the
proof in Appendix).

Corollary 2. Under the given communication topol-
ogy {Ni : i = 1, · · · , N}, the single-integrator multi-agent
system (18) achieves global consensus via protocol (19) if

and only if −P̃0LP̂0 is Hurwitz stable, where L is the stan-
dard Laplacian with respect to the communication topol-
ogy. Moreover, the consensus value is

ξξξ(xxx(0)) = N−1{(1T
N − 1T

NLwP̂0(P̃0LwP̂0)
−1P̃0)⊗ In}xxx(0)

(22)

As seen in Corollary 2, the criterion of consensus conver-

gence uses a term of Hurwitz stability of matrix −P̃0LP̂0 in
stead of that of graph theory, which is helpful to especially
verify large scale agent systems. In fact, in addition to
the direct calculation of the matrix eigenvalues, we can ap-
ply those approaches such as Routh criterion or Lyapunov
equation/ineuqality. Another contribution of Corollary 2
is the analytical expression of the consensus value.

The multi-agent system is called achieving average
consensus[19], if the consensus value is the average of the
initial states of all the agents, i.e., ξξξ = N−1 ∑N

i=1 xxxi(0).
From Corollary 2, it follows that the single-integrator

multi-agent system (18) achieves global average con-
sensus via protocol (19) if furthermore one requires

1T
NLwP̂0(P̃0LwP̂0)

−1P̃0 = 0, i.e., 1T
NLwP̂0 = 0.

Corollary 3. Under the given communication topology
{Ni : i = 1, · · · , N}, the single-integrator multi-agent sys-
tem (18) achieves global average consensus via protocol (19)

if and only if −P̃0LP̂0 is Hurwitz stable and 1T
NLwP̂0 = 0.

If the weighted Laplacian Lw is symmetric, i.e., the graph
with respect to the communication topology {Ni : i =
1, · · · , N} is undirected and wij = wji, one has 1T

NLw = 0
and thus the second condition in Corollary 3 is naturally
satisfied.

Now we apply the result of Theorem 1 to the double-
integrator multi-agent systems. When the matrices in (1)
are

A =

[
0 1
0 0

]
⊗ In, B =

[
0
1

]
⊗ In (23)

the LMAS (1) is called a double-integrator one

ẋxxi = Axxxi + Buuui, i = 1, · · · , N (24)

where xxxi = [rrrT
i vvvT

i ]T ∈ R2n is the state, and uuui ∈ Rn is the
input required to design.

Assume that under the communication topology {Ni :
i = 1, · · · , N} the consensus protocol is designed as follows

uuui =
∑

j∈Ni

Wij(xxxj − xxxi) =
∑

j∈Ni

{aij(rrrj − rrri) + bij(vvvj − vvvi)}

(25)

where Wij = [aij bij ]⊗ In. Substituting (25) into (24) and
writing the closed system into the vector form we get

ẋxx = Mxxx (26)

where

M = (IN⊗
[

0 1
0 0

]
−La⊗

[
0 0
1 0

]
−Lb⊗

[
0 0
0 1

]
)⊗In

La and Lb are the Laplacians with respect to weights aij

and bij , respectively.
The corresponding transformed system (13) becomes

ẏyy = (Ā⊗ In)yyy, żzz = Azzz + (C̄ ⊗ In)yyy (27)

where

Ā = IN−1 ⊗
[

0 1
0 0

]
− P̃0LaP̂0 ⊗

[
0 0
1 0

]
−

P̃0LbP̂0 ⊗
[

0 0
0 1

]
(28)

C̄ = −1T
NLaP̂0 ⊗

[
0 0
1 0

]
− 1T

NLbP̂0 ⊗
[

0 0
0 1

]

From Theorem 1 we get the following corollary (see the
proof in Appendix).

Corollary 4. Under the given communication topology
{Ni : i = 1, · · · , n}, the double-integrator multi-agent sys-
tem (24) achieves global consensus via protocol (25) if and
only if Ā in (28) is Hurwitz stable. Moreover, the consensus
function is

ξξξ(t;xxx(0)) =
1

N

[
1 t
0 1

] {(
1T

N ⊗ I2 − C̄Ā−1P̃0−
[

0 1
0 0

]
C̄Ā−2P̃0

)
⊗ In

}
xxx(0) (29)

One can see that in (29) the placement component of the
consensus function is a linear function of time t

N−1[1 0]
{(

1T
N ⊗ I2 − C̄Ā−1P̃0−

[
0 1
0 0

]
C̄Ā−2P̃0

)
⊗ In

}
xxx(0)+ (30)

N−1[0 1]
{(

1T
N ⊗ I2 − C̄Ā−1P̃0

)
⊗ In

}
xxx(0) · t

and the velocity component is a constant vector

N−1[0 1]
{(

1T
N ⊗ I2 − C̄Ā−1P̃0

)
⊗ In

}
xxx(0) (31)

In [20−21, 23], it was assumed that bij = γaij in protocol
(25), and thus (28) becomes

Ā = IN−1 ⊗
[

0 1
0 0

]
− P̃0LaP̂0 ⊗

[
0 0
1 γ

]

C̄ = −1T
NLaP̂0 ⊗

[
0 0
1 γ

]
(32)
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The following result was obtained in [23] but it can be
deduced directly from Corollary 4 (see the proof in Ap-
pendix).

Corollary 5. Under the given communication topology
{Ni : i = 1, · · · , N}, the double-integrator multi-agent sys-
tem (24) achieves global consensus via protocol (25) with

bij = γaij if and only if −P̃0LP̂0 is Hurwitz stable and γ
satisfies

γ > max
i=1,··· ,N−1

Im(µi)√
Re(µi)((Re(µi))2 + (Im(µi))2)

(33)

where µi, i = 1, · · · , N − 1, are the eigenvalues of P̃0LaP̂0,
and Re(·) and Im(·) denote the real and imaginary parts,
respectively.

The condition (33) means that after weights aij in (25)
are chosen arbitrarily, one only needs to choose bij to be
γ times grater than aij with an enough large γ such that
(33) holds.

For the double-integral multi-agent system (24) we can
similarly define the concept of velocity average consensus
when the velocity component in (31) is the average of the
initial velocities of the agents. From Corollary 4, it is easy
to derive the following result.

Corollary 6. Under the given communication topol-
ogy {Ni : i = 1, · · · , N}, the double-integrator multi-agent
system (24) achieves global velocity average consensus via
protocol (25) if and only if Ā in (28) is Hurwitz stable and
[0 1]C̄ = 0.

If the weighted Laplacians La and Lb are symmetric,
i.e., the graph with respect to the communication topology
{Ni : i = 1, · · · , N} is undirected, aij = aji and bij = bji,
then C̄ = 0, thus the second condition in Corollary 6 is
naturally satisfied.

3 Gain matrix design with specified
convergence time

In this section, we consider the design problem of the
gain matrices in the consensus protocol with respect to a
specified consensus convergence time.

Definition 3. Given a small positive number ε and a
consensus convergence time T , the LMAS (1) is called to
achieve global ε-consensus at time T via protocol (2) under
the communication topology {Ni : i = 1, · · · , N} if for any
initial state xxx(0) = [xxxT

1 (0) · · · xxxT
N (0)]T, there exists a

function ξξξ(t;xxx(0)) ∈ Rn related with the initial state such
that the state trajectory xxxi(t;xxxi(0)) of agent i starting from
the initial state xxxi(0) satisfies ‖xxxi(t;xxxi(0))−ξξξ(t;xxx(0))‖ ≤ ε
for any t ≥ T, i = 1, · · · , N .

The global ε-consensus is also related with the partial
stability. Since for the given initial states of the agents if
‖xxx(t) − 1N ⊗ ξξξ(t)‖ ≤ ε then ‖xxxi(t) − ξξξ(t)‖ ≤ ε, we can
enhance the error requirement by using the former in stead
of the latter. On the other hand, the enhanced inequality
‖xxx(t) − 1N ⊗ ξξξ(t)‖ ≤ ε is equivalent to ‖P−1[yyyT 0]T‖ ≤ ε
in terms of the linear transformation Pxxx = x̄xx = [yyyT zzzT]T

and the relation ξξξ = N−1zzz. Furthermore, if ‖yyy‖ ≤ ‖P‖ε,
then ‖P−1[yyyT 0]T‖ ≤ ε and thus ‖xxxi(t) − ξξξ(t)‖ ≤ ε. That
is, we transform the gain design problem of system (1) and
(2) with the specified consensus convergence time T into
the yyy-stabilization problem of system (8).

We have the following theorem (see the proof in Ap-
pendix).

Theorem 2. Given a small positive number ε and a
consensus convergence time T , under the given communica-
tion topology {Ni : i = 1, · · · , N}, the LMAS (1) achieves

global ε-consensus at time T via protocol (2) if the matrices
K and Wij in protocol (2) are designed such that K and
LW satisfy the following LMI

P̃ (IN ⊗ (A + BK)− (IN ⊗B)LW )P̂+

P̂T(IN ⊗ (A + BK)− (IN ⊗B)LW )TP̃T ≤
− ηI(N−1)n (34)

where η = η(ε, T, xxx(0)) is an arbitrary positive number
satisfying

η ≥ T−1 ln(‖xxx(0)‖2ε−2) (35)

and xxx(0) = [xxxT
1 (0) · · · xxxT

N (0)]T are arbitrary initial states.
If we consider protocol (15), the corresponding yyy-

stability problem of system (8) becomes the stability prob-

lem of ẏyy = P̃MP̂yyy, where P̃MP̂ is given in (16). The
corresponding LMI (34) becomes

IN−1 ⊗ (A + BK + AT + KTBT)− P̃0LwP̂0 ⊗BW−
(P̃0LwP̂0)

T ⊗ (BW )T ≤ −ηI(N−1)n

Furthermore, for the single-integrator system (18) with
protocol (19), where A = 0, B = In, K = 0, LW = Lw⊗In,
LMI (34) becomes

P̃0LwP̂0 + (P̃0LwP̂0)
T ≥ ηIN−1 (36)

Corollary 7. Given a small positive number ε and a
consensus convergence time T , under the given communi-
cation topology {Ni : i = 1, · · · , N}, the single-integrator
multi-agent system (18) achieves global ε-consensus at time
T via protocol (19) if the weighted Laplacian Lw is designed

such that all the eigenvalues of P̃0LwP̂0 + (P̃0LwP̂0)
T are

not less than η, where η = η(ε, T, xxx(0)) is an arbitrary
positive number satisfying (35).

For the double-integrator system (24) with protocol (25),
where A, B are given in (23), we have K = 0 and LW =
La ⊗ [In 0] + Lb[0 In] and thus LMI (34) becomes

(L̄a + L̄T
a ) + (L̄b + L̄T

b ) ≥ IN−1 ⊗
[

η 1
1 η

]
(37)

where

L̄a = P̃0LaP̂0 ⊗
[

0 0
1 0

]
, L̄b = P̃0LbP̂0 ⊗

[
0 0
0 1

]

(38)

Corollary 8. Given a small positive number ε and a
consensus convergence time T , under the given communi-
cation topology {Ni : i = 1, · · · , N}, the double-integrator
multi-agent system (24) achieves global ε-consensus at time
T via protocol (25) if the weighted Laplacians La and Lb are
designed such that all the eigenvalues of L̄a + L̄T

a + L̄b + L̄T
b

are not less than η + 1, where η = η(ε, T, xxx(0)) is an
arbitrary positive number satisfying (35).

The positive number η above in fact represents the re-
quired convergence velocity of the state with respect to the
specified consensus time T and the consensus accuracy ε.
One can see that it is relative to the initial state xxx(0), con-
sensus accuracy ε and consensus time T . The smaller the
consensus time T is, the higher the accuracy ε is, and the
more dispersive the initial states xxxi(0) are, the faster con-
vergence velocity η is required.

As mentioned in Section 1 the gain matrices K and Wij

in protocol (2) have different roles and they can be chosen
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mutually independently. In fact, one can first choose K ac-
cording to the requirement of the final consensus dynamics
expressed in the consensus function and then choose Wij

by LMI (34) for a given convergence speed η.

4 Numerical examples

In this section, we consider the consensus verification and
consensus design problems of a multi-agent system consist-
ing of 6 agents.

Example 1. Let the matrices in LMAS (1) be

A =



−1 0 0
0 0 0.5
0 −0.5 0


 , B =




1
0
1


 (39)

Assume that the communication topology {Ni : i =
1, · · · , 6} is given as

N1 = {3}, N2 = N3 = {1}, N4 = {2}, N5 = N6 = {3}
(40)

and the gain matrices in protocol (2) are taken as

K = [0 0 0]

W13 = [4 6 5], W21 = [22 20 23], W31 = [18 17 19]

W42 = [18 16 17], W53 = [20 22 23], W63 = [24 23 25]

Then the eigenvalues of matrix P̃MP̂ in Theorem 1
are −49.2613, −46.2348, −45.2733, −43.2162, −35.2948,
−0.3526 ± 0.4868i, −0.3919 ± 0.4716i, −0.3826 ± 0.4762i,
and −0.3634 ± 0.4646i, −0.3694 ± 0.4732i. This means

that matrix P̃MP̂ is Hurwitz stable. Thus, by The-
orem 1, under the communication topology (40), the
6-agent system with matrices (39) achieves global con-
sensus. Figs. 1 (a) ∼ (c) show the state trajectories of
the three components starting from the initial states
[−7,−3,−2], [−2, 0, 1], [0,−1, 2], [3, 6, 2], [4,−4, 5], and [−6,
0, −5], respectively. The corresponding consensus function
can be calculated by (14).

Example 2. Now we consider a double integrator 6-
agent system (24) with n = 1 under the communication
topology

N1 = {2, 3}, N2 = {1, 4}, N3 = {1, 5, 6}
N4 = {2}, N5 = N6 = {3} (41)

Assume that aij = 1, i = 1, · · · , 6, j ∈ Ni and bij =
γaij with γ = 2 in protocol (25). One can verify
the conditions in Corollary 6 are satisfied. In fact, the
Laplacian La is symmetric and the eigenvalues of ma-
trix Ā in (32) are −7.8948,−5.4495,−2.2813,−0.3249 ±
0.4683i,−0.6403,−0.5505,−0.5338,−1.0000, and −1.0000.

This implies that the double integrator 6 agent system
achieves global velocity average consensus. For the ini-
tial placements 0, 2, 5, 6, 7, 9, and the initial velocities
0.2, 0.4, 0.6, 0.8, 1.0, 1.2, Figs. 2 (a) and (b) show the place-
ment and velocity trajectories, respectively. The velocity
consensus value is 0.7 and the placement consensus function
is 4.833 + 0.7t.

(a) Trajectories of xi1

(b) Trajectories of xi2

(c) Trajectories of xi3

Fig. 1 State trajectories of the components of the 6-agents

Example 3. Now we consider the design problem of
the gain matrices in the protocol for the single/double-
integrator 6-agent system with the communication topol-
ogy in (40), respectively. In both cases, we take the con-
vergence time T = 10 and the required error accuracy
ε = 0.05.

In the single-integrator 6-agent system, for the initial
states 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, we calculate by (35) the least
convergence velocity η = 0.7283 and use LMI (36) to get
weights w13 = 0.4598, w21 = 1.2765, w31 = 1.0662, w42 =
1.1628, w53 = 1.4551, and w63 = 1.4993. Thus the single-
integrator 6-agent system achieves ε-consensus with the
consensus value 0.3205. Fig. 3 shows the state trajectories
of the 6 agents.

In the double-integrator 6-agent system, for the initial
placements 0, 0.2, 0.5, 0.6, 0.7, 0.9 and the initial velocities
0.2, 0.4, 0.6, 0.8, 1.0, 1.2, we calculate by (35) the least con-
vergence velocity η = 0.7712 and use LMI (37) to get
weights w13 = 0.2445, w21 = 1.0910, w31 = 0.8937, w42 =
0.8531, w53 = 1.1696, and w63 = 1.1970. Thus the double-
integrator 6-agent system achieves ε-consensus with the
velocity consensus value 0.2859 and placement consensus
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function 0.2859t + 0.1079. Figs. 4 (a) and (b) show the
placement and velocity trajectories of the 6 agents, respec-
tively.

(a) Trajectories of placements

(b) Trajectories of velocities

Fig. 2 State trajectories for the communication topology (41)

Fig. 3 State trajectories of the single-integrator
6-agent system

5 Conclusion

In the paper, we have set up a bridge between the consen-
sus problem of multi-agent systems and the partial stabil-
ity problem of corresponding dynamic systems via a linear
transformation. By applying the partial stability theory we
have given a necessary and sufficient consensus criterion in
terms of matrix stability and an analytical expression of the
consensus function for general high-order LMASs under a
generalized linear consensus protocol. Then applying the
results to the consensus and average consensus problems
of the single/double-integrator systems, we have improved
the existing results in a natural way. The new criteria in
terms of matrix stability are easier to test when compared

with the existing ones, in particular, for large-scale multi-
agent systems since various stability methods can be ap-
plied, such as linear matrix equation/inequality, Routh cri-
terion and so on. Finally, we dealt with the design problem
of the gain matrices in the protocol. We have proposed an
ε-consensus definition for a required consensus convergence
time and set up a relation between the gain matrices and
the required consensus accuracy ε and the specified consen-
sus convergence time T in terms of linear matrix inequality.

(a) Trajectories of placement

(b) Trajectories of velocity

Fig. 4 State trajectories of the double-integrator
6-agent system

The proposed approach has been shown to be powerful
in dealing with the consensus problem, although the study
in this paper focuses on the case of the systems with fixed
communication topology and in absence of time-delay. In
fact, it is not difficult to deal with the various complex
settings mentioned in the introduction, which are the topics
in the future works.

Appendix

Proof of Lemma 1. Assuming that the inverse of P is
P−1 =

[
P̄1 · · · P̄N−1 P̄N

]
with columns P̄i, i = 1, · · · , N ,

we only need to prove the indentity P̄N = N−11N ⊗ In.
Since matrix PT is invertible, each column of P̄N can be

linearly represented by the columns of matrix PT, so matrix
P̄N can be represented by q1 + q2, where each column of
matrix q1 can be linearly represented by the columns of
matrices PT

i , i = 1, 2, · · · , N −1, and q2 by those of matrix
1N⊗In. Left-multiplying P̄N = q1+q2 by qT

1 , gets qT
1 P̄N =

qT
1 q1 + qT

1 q2. Because of PP−1 = INn, one has PiP̄N = 0,
i = 1, · · · , N − 1, which implies qT

1 P̄N = 0. On the other
hand, from the equalities Pi(1N⊗In) = 0, i = 1, · · · , N−1,
one gets Piq2 = 0, i = 1, · · · , N−1, which means qT

1 q2 = 0.
Hence, from the equality qT

1 P̄N = qT
1 q1 + qT

1 q2 one deduces
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qT
1 q1 = 0, i.e., q1 = 0 and thus P̄N = q2. In other words,

one can write P̄N into P̄N = (1N ⊗ In)α, where α is a
matrix of rank n×n. From the identity PP̄ = INn one has
(1N ⊗ In)TP̄N = In, and thus from P̄N = (1N ⊗ In)α one
can get In = Nα, that is, α = N−1In. Finally, one has the
expression P̄N = N−11N ⊗ In. ¤

Proof of Lemma 2. First of all, it is easy to ver-
ify that under the linear transformation, Ξ is invariant
and globally attractive with respect to the system (3) if
and only if PΞ is invariant and globally attractive with
respect to system (8). In fact, it is easy to see Ξ is
an invariant set of (3) if and only if PΞ is an invariant
set of (8). As for the attractability, if there is ξ(t) such
that limt→+∞ ‖xxxi(t) − ξξξ(t)‖ = 0, i = 1, · · · , N , it fol-
lows from xxxi = Pi(xxx − 1N ⊗ ξξξ), i = 1, · · · , N − 1, that
limt→+∞ ‖xxxi(t)‖ = 0, i = 1, · · · , N − 1, and therefore
the necessary is proved. Conversely, in virtue of Lemma
1 one can verify xxxi =

∑N−1
j=1 P ijxxxj +N−1xxxN , i = 1, · · · , N .

So from limt→+∞ ‖xxxi(t)‖ = 0, i = 1, · · · , N − 1, it fol-
lows that limt→+∞ ‖xxxi(t)− ξξξ(t)‖ = 0, i = 1, · · · , N , where
ξξξ(t) = N−1xxxN (t), and thus the sufficiency is verified. Here

one can also see ξξξ(t) = N−1xxxN (t) = N−1 ∑N
i=1 xxxi(t) is just

the consensus function.
Next it is direct to prove that Ξ is stable with respect to

(3) if and only if PΞ is stable with respect to (8).
Finally, one can see that the stability of the invariant set

PΞ with respect to (8) is in fact equivalent to the y-stability
of equilibrium point 0 of (8) because of d(xxx, PΞ) = ‖yyy‖,
where xxx = [yyyT,xxxT

N ]T. ¤
Proof of Lemma 3. For the equivalence of 1) and 2)

we refer to Lemma 2.4 in [13]. The equivalence of 2) and
3) is obvious since all the nonzero eigenvalues of Lw are of

positive real parts. Finally, one can show that P̃0LwP̂0 has
the same nonzero eigenvalues as those of matrix Lw from
the following identity

[
P̃0

1T
N

]
Lw

[
P̂0 N−11N

]
=

[
P̃0LwP̂0 0

1T
NLwP̂0 0

]

Hence 4) is equivalent to 2). ¤
Proof of Lemma 4. Since LW (1N ⊗ In) = 0, P̃ (1N ⊗

In) = 0 and (1T
N ⊗ In)P̂ = 0, we have that

P̃M(1N ⊗ In) =

P̃ (IN ⊗ (A + BK)− (IN ⊗B)LW )(1N ⊗ In) =

P̃ (IN ⊗ (A + BK))(1N ⊗ In) =

P̃ (1N ⊗ In)(A + BK) = 0

(1T
N ⊗ In)MP̂ =

(1T
N ⊗ In)(IN ⊗ (A + BK)− (IN ⊗B)LW )P̂ =

(1T
N ⊗ In)(IN ⊗ (A + BK))P̂−

(1T
N ⊗ In)(IN ⊗B)LW P̂ =

(A + BK)(1T
N ⊗ In)P̂ − (1T

N ⊗ In)(IN ⊗B)LW P̂ =

− (1T
N ⊗B)LW P̂

(1T
N ⊗ In)M(1N ⊗ In) =

(1T
N ⊗ In)(IN ⊗ (A + BK)−

(IN ⊗B)LW )(1N ⊗ In) =

(1T
N ⊗ In)(IN ⊗ (A + BK))(1N ⊗ In) =

(1T
N ⊗ In)(1N ⊗ In)(A + BK) = N(A + BK)

Proof of Theorem 1. The sufficient and necessary
condition is obtained by applying directly Lemma 2 to the
LMAS (1) with protocol (2). We focus the calculation of
the consensus function. From the first equation in (14) we
get

yyy(t) = eP̃MP̂ tyyy(0) = eP̃MP̂ tP̃xxx(0)

Substituting yyy(t) into the second one in (13), we have that

żzz = (A + BK)zzz + 1T
NMP̂ eP̃MP̂ tP̃xxx(0)

and obtain expression (14) of the consensus function by
solving the equation above and in virtue of Lemma 2. ¤

Proof of Corollary 1. First of all, one can easily verify

that Hurwitz stability of P̃MP̂ is equivalent to Hurwitz
stability of all the matrices A+B(K−λiW ), i = 1, · · · , N−
1 by transforming −P̃0LwP̂0 into its Jordan form. We focus
on the calculation of the consensus function. In this special
case, system (8) becomes ẋxx = (IN⊗(A+BK)−Lw⊗BW )xxx.
So for vector ηηη such that ηηηTLw = 0 and ηηηT1N = 1, we have
that

(ηηηT ⊗ In)ẋxx = (A + BK)(ηηηT ⊗ In)xxx

When the consensus is achieved we have that xxx − 1N ⊗
ξξξ(t;xxx(0)) → 0 as t → ∞ and thus the consensus function

is ξξξ(t;xxx(0)) = (ηηηT ⊗ In)xxx = e(A+BK)t(ηηηT ⊗ In)xxx(0), which
can be written into (17). ¤

Proof of Corollary 2. By Lemma 2 the linear multi-
agent system (18) achieves global consensus via proto-
col (19) under the given communication topology {Ni :

i = 1, · · · , N} if and only if −(P̃0LaP̂0 ⊗ In) is Hurwitz,
which, by Lemma 3, is equivalent to Hurwitz stability of

−P̃0LP̂0. Now, we calculate the consensus value. Let

Ā = −(P̃0LaP̂0 ⊗ In) and C̄ = −(1T
NLaP̂0 ⊗ In). From

the first equation in (21) one gets

yyy(ttt) = eĀtyyy(0) = eĀtP̃xxx(0)

and from the second one in (21) one has

zzz(t) =C̄

∫ t

0

yyy(τ)dτ + zzz(0) =

C̄Ā−1(eĀt − I(N−1)n)P̃xxx(0) + zzz(0)

Thus one obtains the following identity

zzz(t) = {C̄Ā−1(eĀt − I(N−1)n))P̃ + 1T
N ⊗ In}xxx(0)

Since Ā is Hurwitz, the consensus function ξξξ(t) = N−1zzz(t)
becomes a constant consensus value N−1{1T

N ⊗ In −
C̄Ā−1P̃}xxx(0), which can be written into (22). ¤

Proof of Corollary 4. The necessary and sufficient
condition of global consensus is obtained directly from The-
orem 1. Now we focus on the calculation of the consensus
function. Let Ã = Ā⊗ In and C̃ = C̄ ⊗ In. It follows from

the first equation of (27) that yyy(t) = eÃtyyy(0). From the
second equation of (27) one gets

zzz(t) =eAtzzz(0) +

∫ t

0

eA(t−τ)C̃yyy(τ)dτ =

eAtzzz(0) + eAt

∫ t

0

e−Aτ C̃eÃτdτyyy(0)
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We calculate the integral as follows

∫ t

0

e−Aτ C̃eÃτdτ =

∫ t

0

e−Aτd(C̃eÃτ )Ã−1 =

(e−AtC̃eÃt − C̃)Ã−1 + AC̃

∫ t

0

eÃτdτÃ−1 =

(e−AtC̃eÃt − C̃)Ã−1 + AC̃(eÃt − I2n(N−1))Ã
−2

Noticing the equality

eAt =

[
1 t
0 1

]
⊗ In

we have that d(eAt)/dt = A. Substituting the integral

above and the initial conditions yyy(0) = (P̃0 ⊗ I2n)xxx(0),
zzz(0) = (1T

N ⊗ I2n)xxx(0) into zzz(t), we get

zzz(t) =eAt
{
1T

N ⊗ I2n +
{
(e−AtC̃eÃt − C̃)Ã−1+

AC̃(eÃt − I2(N−1)n)Ã−2}(P̃0 ⊗ In)
}
xxx(0)

Since Ã is Hurwitz, i.e., limt→+∞ eÃt = 0, the consensus
function becomes

ξξξ(t;xxx(0)) =N−1eAt
{
1T

N ⊗ I2n−
{
C̃Ã−1 + AC̃Ã−2}(P̃0 ⊗ In)

}
xxx(0)

Substituting the expressions of A, eAt, Ã and C̃ into
ξξξ(t;xxx(0)) we get the consensus function (29). ¤

Proof of Corollary 5. Let U be the matrix such

that P̃0LaP̂0 is transformed into its Jordan form J , i.e.,

U−1P̃0LaP̂0U = J . Thus we have

(U ⊗ I2)
−1Ā(U ⊗ I2) = IN−1 ⊗

[
0 1
0 0

]
− J ⊗

[
0 0
1 γ

]

From the identity above one can see that if Ā is Hurwitz,
then J only has the eigenvalues with positive real parts,

or equivalently, −P̃0LP̂0 is Hurwitz in virtue of Lemma 3.
Let µi, i = 1, · · · , N − 1, be all the eigenvalues of matrix

P̃0LaP̂0. Then Ā is Hurwitz if and only if matrices
[

0 1
−µi −γµi

]
, i = 1, · · · , N − 1

are Hurwitz. In other words, the roots of the polynomial
λ2 + γµiλ + µi have negative real parts. Using Lemma 5
we conclude that γ satisfies inequality (33). ¤

Proof of Theorem 2. Choosing a Lyapunov function
V (yyy) = yyyTyyy For the first subsystem in (13), we have that

inequality (34) is equivalent to V̇ (yyy) ≤ −ηyyyTyyy. In other
words, the first subsystem in (13) is asymptotically stable
if (34) is held, which implies the global consensus of the
multi-agent system (1) via protocol (2).

Now we determine the positive number η. We define a
positive number η0 as follows

η0 = −min
yyy

V̇ (yyy)

V (yyy)

From this inequality we get V (yyy) ≤ V (yyy(0))e−η0t for any
t ≥ 0, i.e., ‖yyy‖2 ≤ ‖yyy(0)‖2e−η0t for any t ≥ 0. Thus if
‖yyy(0)‖2e−η0t ≤ ‖P‖2ε2 for any t ≥ T , or more strictly,
if ‖x̄xx(0)‖2e−η0t ≤ ‖P‖2ε2 for any t ≥ T , we have that

‖yyy‖ ≤ ‖P‖ε for any t ≥ T , which implies ‖xxxi(t;xxxi(0)) −
ξξξ(t;xxx(0))‖ ≤ ε for any t ≥ T , i.e., the multi-agent system
(1) achieves global ε -consensus at time T . On the other
hand, the condition ‖x̄xx(0)‖2e−η0t ≤ ‖P‖2ε2 for any t ≥ T
is equivalent to η0 ≥ T−1 ln(‖Pxxx(0)‖2‖P‖−2ε−2). This
inequality can be strengthened further as shown in (35)
with the help of the inequality ‖Pxxx(0)‖ ≤ ‖P‖‖xxx(0)‖. ¤

References

1 Lynch N A. Distributed Algorithms. San Francisco, CA:
Morgan Kaufmann, 1997.

2 Wang B. Coverage Control in Sensor Networks. London:
Springer-Verlag, 2010.

3 Serpedin E, Chaudhari Q M. Synchronization in Wire-
less Sensor Networks: Parameter Estimation, Performance
Benchmarks and Protocols. New York: Cambridge Univer-
sity Press, 2009.

4 Cortés J. Finite-time convergent gradient flows with appli-
cations to network consensus. Automatica, 2006, 42(11):
1993−2000

5 Olfati-Saber R. Distributed Kalman filtering for sensor net-
works. In: Proceedings of the 46th IEEE Conference on Deci-
sion and Control. New Orleals, LA: IEEE, 2007. 5492−5498

6 Stilwell D J, Bishop B E. Platoons of underwater vehicles.
IEEE Control Systems Magazine, 2000, 20(6): 45−52

7 Beard R W, Lawton J, Hadaegh F Y. A feedback architec-
ture for formation control. IEEE Transactions on Control
Systems Technology, 2001, 9(1): 777−790

8 Scharf D P, Hadaegh F Y, Ploen S R. A survey of space-
craft formation flying guidance and control (Part II): control.
In: Proceedings of the 2004 American Control Conference.
Boston, Massachusetts, USA: IEEE, 2004, 4: 2976−2985

9 Kang W, Yeh H H. Co-ordinated attitude control of multi-
satellite systems. International Journal of Robust and Non-
linear Control, 2002, 12(2−3): 185−205

10 Chen Y Q, Wang Z M. Formation control− a review and a
new consideration. In: Proceedings of the 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems.
Edmonton, Alta: IEEE, 2005. 3181−3186

11 Varaiya P. Smart cars on smart roads: problems of con-
trol. IEEE Transactions on Automatic Control, 1993, 38(2):
195−207

12 Mesbahi M, Egerstedt M. Graph Theoretic Methods in Mul-
tiagent Networks. Princeton: Princeton University Press,
2010

13 Ren W, Beard R W. Distributed Consensus in Multi-vehicle
Cooperative Control. London: Springer-Verlag, 2008.

14 Ren W, Cao Y C. Distributed Coordination of Multi-agent
Networks. London: Springer-Verlag, 2011.

15 Olfati-Saber R, Murray R. M. Consensus protocols for net-
works of dynamic agents. In: Proceedings of the 2003 Ameri-
can Control Conference Boston. Massachusetts, USA: IEEE,
2003. 951−956

16 Lin Z Y, Francis B, Maggiore M. Necessary and sufficient
graphical conditions for formation control of unicycles. IEEE
Transactions on Automatic Control, 2005, 50(1): 121−127



No. 11 CHEN Yang-Zhou et al.: Partial Stability Approach to Consensus Problem of Linear Multi-agent Systems 2583

17 Ren W, Beard R W, McLain T W. Coordination variables
and consensus building in multiple vehicle systems. In: Pro-
ceedings of the Block Island Workshop on Cooperative Con-
trol, Springer-Verlag Series: Lecture Notes in Control and
Information Sciences, 2004, 309: 171−188

18 Wu C W. Agreement and consensus problems in groups of
autonomous agents with linear dynamics. In: Proceedings
of IEEE International Symposium on Circuits and Systems.
Kobe: IEEE, 2005. 292−295

19 Olfati-Saber R, Murray R M. Consensus problems in net-
works of agents with switching topology and time-delays.
IEEE Transactions on Automatic Control, 2004, 49(9):
1520−1533

20 Ren W, Atkins E. Second-order consensus protocols in mul-
tiple vehicle systems with local interactions. In: Proceedings
of AIAA Guidance, Navigation, and Control Conference and
Exhibit. San Francisco, California: AIAA, 2005. 1−13

21 Xie G M, Wang L. Consensus control for a class of networks
of dynamic agents. International Journal of Robust Nonlin-
ear Control, 2007, 17(10−11): 941−959

22 Ren W. On consensus algorithms for double-integrator dy-
namics. IEEE Transactions on Automatic Control, 2008,
53(6): 1503−1509

23 Yu W W, Chen G R, Cao M. Some necessary and sufficient
conditions for second-order consensus in multi-agent dynam-
ical systems. Automatica, 2010, 46(6): 1089−1095

24 de Castro G A, Paganini F. Convex synthesis of controllers
for consensus. In: Proceedings of the 2004 American Control
Conference. Boston, Massachusetts, USA: IEEE, 2004, 6:
4933−4938

25 Ren W, Moore K L, Chen Y. High-order and model refer-
ence consensus algorithms in cooperative control of multi-
vehicle systems. Journal of Dynamic Systems Measurement
and Control, 2007, 129(5): 457−462

26 Wang J H, Cheng D Z, Hu X M. Consensus of multi-agent
linear dynamic systems. Asian Journal of Control, 2008,
10(2): 144−155

27 Xiao F, Wang L. Consensus problems for high-dimensional
multi-agent systems. IET Control Theory and Applications,
2007, 1(3): 830−837

28 Munz U, Papachristodoulou A, Allgower F. Generalized
Nyquist consensus condition for high-order linear multi-
agent systems with communication delays. In: Proceedings
of the Joint 48th IEEE Conference on Decision and Con-
trol and 28th Chinese Control Conference, Shanghai, China:
IEEE, 2009. 4765−4771

29 Xi J X, Cai N, Zhong Y S. Consensus problems for high-
order linear time-invariant swarm systems. Physica A, 2010,
389(24): 5619−5627

30 Bliman P A, Trecate G F. Average consensus problems in
networks of agents with delayed communications. Automat-
ica, 2008, 44(8): 1985−1995

31 Cepeda-Gomez R, Olgac N. Exhaustive stability analysis in
a consensus system with time delay and irregular topologies.
International Journal of Control, 2011, 84(4): 746−757

32 Lin P, Jia Y M. Average consensus in networks of multi-
agents with both switching topology and coupling time-
delay. Physica A: Statistical Mechanics and its Applications,
2008, 387(1): 303−313

33 Lin P, Jia Y M. Consensus of a class of second-order multi-
agent systems with time-delay and jointly-connected topolo-
gies. IEEE Transactions on Automatic Control, 2010, 55(3):
778−784

34 Lee D J, Spong M W. Agreement with non-uniform infor-
mation delays. In: Proceedings of 2006 American Control
Conference. Minneapolis, MN: IEEE, 2006. 756−761

35 Munz U, Papachristodoulou A, Allgower F. Nonlinear multi-
agent system consensus with time-varying delays. In: Pro-
ceedings of 17th IFAC World Congress of the International
Federation of Automatic Control. Seoul, Korea: IFAC, 2008.
1522−1527

36 Meng Z Y, Ren W, Cao Y C, Zheng Y. Leaderless and leader-
following consensus with communication and input delays
under a directed network topology. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, 2011,
41(1): 75−88

37 Moreau L. Stability of continuous-time distributed consen-
sus algorithms. In: Proceedings of 43rd IEEE Conference on
Decision and Control. Atlantis, Paradise Island, Bahamas:
IEEE, 2004, 4: 3998−4003

38 Sun Y G, Wang L, Xie G M. Average consensus in directed
networks of dynamic agents with time-varying delays. In:
Proceedings of 45th IEEE Conference on Decision and Con-
trol. San Diego, CA: IEEE, 2006. 3393−3398

39 Sun Y G, Wang L, Xie G M. Average consensus in net-
works of dynamic agents with switching topologies and mul-
tiple time-varying delays. Systems and Control Letters, 2008,
57(2): 175−183

40 Sun Y G. Average consensus in networks of dynamic agents
with uncertain topologies and time-varying delays. Journal
of the Franklin Institute, 2012, 349(3): 1061−1073

41 Tian Y P, Liu C L. Consensus of multi-agent systems with
diverse input and communication delays. IEEE Transactions
on Automatic Control, 2008, 53(9): 2122−2128

42 Xiao F, Wang L. Asynchronous consensus in continuous-
time multiagent systems with switching topology and time-
varying delays. IEEE Transactions on Automatic Control,
2008, 53(8): 1804−1816

43 Yang W, Bertozzi A L, Wang X F. Stability of a second order
consensus algorithm with time delay. In: Proceedings of the
47th IEEE Conference on Decision and Control. Cancun,
Mexico: IEEE, 2008. 2926−2931

44 Pan H, Nian X H, Gui W H. Synchronization in dynamic
networks with time-varying delay coupling based on linear
feedback controllers. Acta Automatica Sinica, 2010, 36(12):
1766−1772

45 Hong Y G, Gao L X, Cheng D Z, Hu J P. Lyapunov-based
approach to multiagent systems with switching jointly con-
nected interconnection. IEEE Transactions on Automatic
Control, 2007, 52(5): 943−948

46 Jin Z P, Murray R M. Multi-sop relay protocols for fast
consensus seeking. In: Proceedings of 45th IEEE Confer-
ence on Decision and Control. San Diego, CA: IEEE, 2006.
1001−1006

47 Kim Y, Mesbahi M. On maximizing the second small-
est eigenvalue of a state-dependent graph Laplacian. IEEE
Transactions on Automatic Control, 2006, 51(1): 116−120



2584 ACTA AUTOMATICA SINICA Vol. 40

48 Olshevsky A, Tsitsiklis J N. Convergence rates in distributed
consensus and averaging. In: Proceedings of 45th IEEE Con-
ference on Decision and Control. San Diego, CA: IEEE, 2006.
3387−3392

49 Xiao L, Boyd S. Fast linear iterations for distributed aver-
aging. Systems and Control Letters, 2004, 53(1): 65−78

50 Hui Q, Haddad W M, Bhat S P. Finite-time semi-
stability and consensus for nonlinear dynamical networks.
IEEE Transactions on Automatic Control, 2008, 53(8):
1887−1900

51 Jiang F C, Wang L. Finite-time information consensus
for multi-agent systems with fixed and switching topolo-
gies. Physica D: Nonlinear Phenomena, 2009, 238(16):
1550−1560

52 Wang L, Xiao F. Finite-time consensus problems for net-
works of dynamic agents. IEEE Transactions on Automatic
Control, 2010, 55(4): 950−955

53 Chen J, Yu M, Dou L H, Gan M G. A fast averaging synchro-
nization algorithm for clock oscillators in nonlinear dynam-
ical network with arbitrary time-delays. Acta Automatica
Sinica, 2010, 36(6): 873−880

54 Ge Y R, Chen Y Z, Zhang Y X, He Z H. State consensus
analysis and design for high-order discrete-time linear multi-
agent systems. Mathematical Problems in Engineering, 2013,
Article ID 192351, DOI: 10.1155/2013/192351

55 Huang Q Z. Consensus analysis of multi-agent discrete-time
systems. Acta Automatica Sinica, 2012, 38(7): 1127−1133

56 Cheng L, Wang Y P, Hou Z G, Tan M, Cao Z Q. Sampled-
data based average consensus of second-order integral multi-
agent systems: switching topologies and communication
noises. Automatica, 2013, 49(5): 1458−1464

57 Chen Y Z, Zhang Y X, He Z H, Ge Y R. Average dwell-time
conditions of switching information topologies for consensus
of linear multi-agent systems. In: Proceedings of the 32nd
Chinese Control Conference. Xi′an, China: IEEE, 2013.
7115−7120

58 Vorotnikov V I. Partial Stability and Control. Boston Basel
Berlin: Birkhäuser, 1998.
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