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Robust Delay-dependent H∞H∞H∞ Consensus Control for

Multi-agent Systems with Input Delays

LI Zhen-Xing1 JI Hai-Bo1

Abstract This paper investigates the consensus control for multi-agent systems subject to external disturbances, input delays
and model uncertainties of networks. By defining an appropriate controlled output, we transform this question into a robust H∞

control problem. Then, we give two criteria to judge the consensusability of closed-loop multi-agent systems and present a cone-
complementary linearization algorithm to get the state feedback controller′s parameters. Finally, numerical examples are given to
show the effectiveness of the proposed consensus protocols.
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During the last decade, the distributed cooperative con-
trol of multi-agent systems has attracted the attention
of many researchers from different disciplines[1−9]. This
is partly due to its broad applications in different ar-
eas, for example, the formation[1], filtering[2], flocking and
coordination[3−4], rendezvous problems[5−6] and so forth.
In those fields, one of the most important and fundamen-
tal issues is consensus control of multi-agent systems which
was initially studied for self-driven particles by Vicsek et
al.[7]. By using algebraic theory and control theory, Jabd-
abaie et al.[8] gave an theoretical explanation to Vicsek′s
model, and this stirred the excitement of the research on
cooperative control in the control community. With the
help of abstract system, Tang and Hong[9] used distributed
hierarchical control to study the coordination problem of
multi-agent systems.

In real systems, time delay phenomena concerning the
systems input are often the sources of unconsensusability;
this is in general due to the limited communication capacity
of systems. Olfati-Saber and Murray[10] studied the consen-
sus problem for first-order multi-agent systems with switch-
ing topologies and time-delays. Lin et al.[11] extended the
system model proposed in [10] to second-order multi-agent
systems. Xiao and Wang[12] studied the consensus prob-
lems for discrete-time multi-agent systems with changing
communications topologies and bounded time-varying com-
munication delays. Yang and Jia[13] studied the consensus
control for linear multi-agent systems with external dis-
turbances and input delays. In real control systems, most
of the state information exchanged among agents is ana-
log signal, and there maybe exists signal attenuation dur-
ing transmission. The operational amplifying circuits will
solve this problem, but the amplification factor is affected
by the values of resistances and the factor of amplifiers
which are not exact values. This kind of uncertainties of
communication channel gain is another source of uncon-
sensusability. Zhang and Tian[14] studied the consensus
problem for discrete-time linear multi-agent systems with
random lossy network and pointed out that the parameters
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of communication channel would affect the consensusabil-
ity of multi-agent systems. Mo et al.[15] and Lin et al.[16]

studied the consensus problem for multi-agent systems with
model uncertainties of networks and input delays.

In this article, we studied the consensus problem for
multi-agent systems with linear dynamics, external distur-
bances, input delays and model uncertainties of networks.
Mo et al.[15] gave two theorems to verify that the asymp-
totic synchronization can be reached with desired H∞ per-
formance. Lin et al.[16] studied the consensus problem for
first-order multi-agent systems with external disturbances,
model uncertaint of networks and input delays. By using
a different method to deal with the uncertainties of Lapla-
cian, we transform the consensus problem into a robust
H∞ control problem. Two criteria are given to judge the
consensus of multi-agent systems in the form of matrix in-
equalities and an iterative algorithm is given to obtain the
state feedback controller. We use the cone-complementary
linearization algorithm to cope with the nonlinear matrix
inequalities.

1 Problem statement

1.1 Graph theory

In this paper, we use undirected weighted graph G =
(V, E ,A), where V = {v1, v2, · · · , vn} is the set of nodes,
E ⊆ V × V is the set of undirected edges and A =
[aij ] ∈ Rn×n is a symmetric adjacency matrix with weight-
ing factors aij ≥ 0 to describe the interaction topology
of the multi-agent systems with n agents. An edge of
graph G denoted by pair (vj , vi) represents a communi-
cation channel between vj and vi, and (vj , vi) ∈ E if
and only if (vi, vj) ∈ E . The neighborhood of node vi

is denoted by Ni = {vj ∈ V|(vi, vj) ∈ E}. For any
vi, vj ∈ V, aij = aji ≥ 0, and aij > 0 if and only if
(vi, vj) ∈ E . The Laplacian of a weighted graph G is de-
fined as L = D − A, where D = diag{d1, d2, · · · , dn} is a
diagonal matrix with di =

∑n

j=1 aij . A sequence of edges
(v1, v2), (v2, v3), · · · , (vk−1, vk) is called a path from node
v1 to node vk. Graph G is called a connected graph if for
any vi, vj ∈ V, there exists a path from vi to vj . Since
the Laplacian of an undirected graph is a real symmetric
matrix, all its eigenvalues are real numbers.

Lemma 1[17]. Consider an undirected graph G with
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N nodes and M edges. Under the assumption that labels
are associated with the edges in a graph whose edges are
arbitrarily oriented, the N × M incidence matrix DG is a
matrix with rows and columns indexed by the nodes and
edges of G, such that

[DG ]ij =





−1, if vi is the tail of edge ej

1, if vi is the head of edge ej

0, otherwise

Let W = diag{w1, w2, · · · , wM}, with wi as the weight of
the ith edge of G. Then the Laplacian of G can be given as

L = DGWDT
G

1.2 Problem formulation

Consider the linear multi-agent system of n intercon-
nected agents with the ith agent modelled by the following
dynamic system subject to external disturbances:

ẋxxi(t) = Axxxi(t) + B1uuui(t) + B2ωωωi(t) (1)

with xxxi ∈ Rm as the state of ith subsystem, uuui ∈ Rm1 as
the control input, ωωωi ∈ Rm2 as the external disturbance
that belongs to L2[0,∞). It is assumed that (A, B1) is
stabilised.

The multi-agent system (1) is said to reach consensus
under protocol uuui(t), iff the states of all agents satisfy

lim
t→∞

(xxxi(t) − xxxj(t)) = 0, ∀i, j ∈ {1, 2, · · · , n} (2)

It may be not easy for us to judge the consensus defined in
(2) of multi-agent system (1) under the influence of external
disturbances. We define the following controlled output
function

zzzi(t) = xxxi(t) −
1

n

n∑

j=1

xxxj(t) (3)

to measure the disagreement of xxxi(t) with the average state
value of all agents, i = 1, 2, · · · , n. Note that if zzzi(t) = 0
for any i ∈ {1, 2, · · · , n}, then xxxi(t) − xxxj(t) = 0 holds for
∀i 6= j, that is, the consensus problem of the multi-agent
system is solved. Thus, we can use zzzi(t) to analyse the
consensus behavior of the multi-agent system.

Denote

xxx(t) = [xxxT
1 (t),xxxT

2 (t), · · · ,xxxT
n (t)]T ∈ R

mn

ωωω(t) = [ωωωT
1 (t),ωωωT

2 (t), · · · ,ωωωT
n (t)]T ∈ R

m1n

uuu(t) = [uuuT
1 (t),uuuT

2 (t), · · · ,uuuT
n(t)]T ∈ R

m2n

zzz(t) = [zzzT
1 (t), zzzT

2 (t), · · · , zzzT
n(t)]T ∈ R

mn

Then the combination of the dynamic equation (1) and the
controlled output (3) yields the following system:

ẋxx(t) = (In ⊗ A)xxx(t) + (In ⊗ B1)uuu(t) + (In ⊗ B2)ωωω(t)

zzz(t) = (Lc ⊗ Im)xxx(t)
(4)

where Lc(ij) = n−1
n

, i = j, otherwise, Lc(ij) = − 1
n
.

Since zzz(t) = 0 means (2) holds, we can use H∞ norm
of the close-loop transfer function Tzzzωωω(s) from the external
disturbance ωωω(t) to the controlled output zzz(t), defined as

||Tzzzωωω(s)||∞ = sup
v∈R

σ̄σσ(Tzzzωωω(jv)) = sup
06=ωωω(t)∈L2[0,∞)

||zzz||2
||ωωω||2

(5)

to measure the attenuating ability of the multi-agent sys-
tem against external disturbances. Hence, our objective is
to design a distributed dynamic output feedback uuui(t)(i ∈
{1, 2, · · · , n}) such that ||Tzzzωωω(s)||∞ < γ holds for a given
index γ > 0, or the closed-loop system satisfies the follow-
ing inequality

∫ ∞

0

||zzz||22dt < γ2

∫ ∞

0

||ωωω||22dt, ∀ωωω ∈ L2[0,∞)

By doing this, the consensus problem of the multi-agent
system subject to external disturbances is transformed into
an H∞ control problem.

1.3 Protocol and model

As information is exchanged between every two agents
which are connected by one edge through the communica-
tion channel, we must take time delays of message trans-
mission and model uncertainties of networks into account.
In this sense, the control protocol of ith agent can only use
its neighbour′s lagged states:

uuui(t) =
∑

vj∈Ni

(aij + △aij(t))K[xxxj(t − d) − xxxi(t − d)] (6)

with d ∈ [0, τ ] as the constant time delay, K ∈ Rm1×m

as the state feedback control gain matrix, △aij(t) as the
uncertainty of aij whose absolute value is much smaller
than that of aij and satisfies |△ aij(t)| ≤ ǫ. Here, we
use aij(t) to denote the communication channel gain and
△aij(t) the uncertainties of communication channel gain.

Remark 1. Another control protocol of ith agent is
stated as follows:

uuui(t) =
∑

vj∈Ni

(aij + △aij(t))K[xxxj(t − d) − xxxi(t)] (7)

That means the ith agent can use its own state information
directly without delay, and this kind of protocols have re-
ceived attention in recent years[3, 6, 18]. Those papers stud-
ied consensus problems for first-order and second-order lin-
ear systems, where the time delay affects only the informa-
tion state that is being transmitted. However, the consen-
sus for protocol (7) for a general system with nonuniform
time delays remains unknown.

Substituting protocol (6) into system (4) yields the fol-
lowing system:

ẋxx(t) = (In ⊗ A)xxx(t) + (L̃(t) ⊗ B1K)xxx(t − d)+

(In ⊗ B2)ωωω(t)

zzz(t) = (Lc ⊗ Im)xxx(t)

(8)

where L̃ = L + △L(t) is the Laplacian of graph G.
Let x̄xx(t) = 1

n

∑n

i=1 xxxi(t), and δδδi(t) = xxxi(t) − x̄xx(t), i =

1, 2, · · · , n. Since Lc111n = 0 and L̃(t)111n = 0, we transform
system (8) into the following form:

δ̇δδ(t) = (Lc ⊗ A)δδδ(t) + (LcL̃(t) ⊗ B1K)δδδ(t − d)+

(Lc ⊗ B2)ωωω(t)

zzz(t) = (Lc ⊗ Im)δδδ(t)

(9)

where δδδ(t) = [δδδT
1 (t), δδδT

2 (t), · · · , δδδT
n (t)]T. By introducing the

new variable δδδ(t), we transform the consensus of multi-
agent system (8) into examining the stability of the new
system (9).
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According to Lemma 2[11], there exists an orthogonal
matrix U = [U1, U2] ∈ Rn×n(U2 = 111n/

√
n) such that

UTLcU =

[
In−1 0n−1

∗ 0

]
:= L̄c

and

UTL̃(t)U =

[
L1(t) 0n−1

∗ 0

]
:= L̄g(t)

where L1(t) is semi-positive definite and has the same

nonzero eigenvalues as L̃(t). Pre-multiplying the equation
(9) by UT ⊗ Im, we get

˙̄δδδ(t) = (L̄c ⊗ A)δ̄δδ(t) + (L̄cL̄g(t) ⊗ B1K)δ̄δδ(t − d)+

(L̄c ⊗ B2)ω̄ωω(t)

z̄zz(t) = (L̄c ⊗ Im)δ̄δδ(t)

(10)

where δ̄δδ(t) = (UT ⊗ Im)δδδ(t), ω̄ωω(t) = (UT ⊗ Im)ωωω(t), z̄zz(t) =
(UT ⊗ Im)zzz(t). Since the last rows of matrices L̄c and
L̄cL̄g(t) are both 000T

n , we get the following reduced-order
system from (10):

˙̄δδδ1(t) = (In−1 ⊗ A)δ̄δδ
1
(t) + (L1(t) ⊗ B1K)δ̄δδ

1
(t − d)+

(In−1 ⊗ B2)ω̄ωω
1(t)

z̄zz1(t) = (In−1 ⊗ Im)δ̄δδ
1
(t)

(11)

with δ̄δδ
1
(t) = (UT

1 ⊗ Im)δδδ(t), and ω̄ωω1(t) = (UT
1 ⊗ Im)ωωω(t),

and z̄zz1(t) = (UT
1 ⊗ Im)zzz(t). It is easy to prove that system

(10) is equivalent to the reduced-order system (11) in terms
of H∞ performance, that is, ||Tz̄zzω̄ωω(s)||∞ = ||Tz̄zz1ω̄ωω1(s)||∞.

Since U is an orthogonal matrix, the transformation be-
tween (9) and (10) is an orthogonal one. According to the
definition of H∞ norm defined in (5), we can easily prove
that ||Tzzzωωω(s)||∞ = ||Tz̄zzω̄ωω(s)||∞ = ||Tz̄zz1ω̄ωω1(s)||∞. Moreover,
from the orthogonal transformation δ̄δδ(t) = (UT ⊗ Im)δδδ(t),

we know that δ̄δδ
1
(t) = 000 results in δδδ(t) = 000, which guar-

antees the consensus of multi-agent system (8). Thus, we
can study the robust H∞ consensus behaviour of the multi-
agent system (8) by analysising the robust H∞ performance
of the reduced-order system (11).

2 Main results

In this section, we give consensus criteria for the robust
H∞ consensus. Before doing this, we will give a lemma
which is useful for the robust H∞ consensus analysis.

Lemma 2. Let λ̃1(t) ≤ λ̃2(t) ≤ · · · ≤ λ̃n(t) and

λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L̃ and L
in an ascending order, respectively. Under the assump-
tion that the undirected graph G is connected, we obtain
0 = λ̃1(t) < λ̃2(t) ≤ · · · ≤ λ̃n(t), 0 = λ1 < λ2 ≤ · · · ≤ λn

and λi − ǫλG ≤ λ̃i(t) ≤ λi + ǫλG with λG = ||DGDT
G ||2.

Proof. By the Lemma of 2.4 in [6], under the assump-
tion that graph G is connected, it is easy to obtain

0 = λ̃1(t) < λ̃2(t) ≤ · · · ≤ λ̃n(t)

0 = λ1 < λ2 ≤ · · · ≤ λn

According to Lemma 1, the Laplacian of undirected
graph G can be given as

L̃(t) = DGW̃ (t)DT
G =

DG(W + △W (t))DT
G =

L + △L(t)

where △W (t) = diag{△w1(t),△w2(t), · · · ,△wM (t)} with
|△wi(t)| ≤ ǫ, ∀i ∈ {1, 2, · · · , M}. As |△wi(t)| ≤ ǫ, we get

−ǫDGDT
G ≤ DG △ W (t)DT

G ≤ ǫDGDT
G

that is

|| △ L(t)||2 ≤ ǫ||DGDT
G ||2 = ǫλG

We provide a brief constructive proof for the rest proof
of the lemma. We assume that for simplicity, L has n
different eigenvalues which satisfy ǫ < µ

2λG
, where µ =

max{|λi −λj | |∀i 6= j}. Since L is a real symmetric matrix,
there exists an orthogonal matrix U satisfying UTLU = Ξ
with Ξ = diag{λ1, λ2, · · · , λn}. Pre- and post-multiplying

the matrix L̃(t) by UT and U , respectively, we get

UTL̃(t)U = UT(L + △L(t))U = Ξ + UT △L(t)U

By the Corollary of 6.3.4 in [19], the eigenvalues of L̃(t) are
contained in the discs:

{z ∈ C : |z − λi| ≤ || △ L(t)||2 ≤ ǫλG} , i = 1, · · · , n

Since µ = max{|λi − λj | |∀i 6= j} and the eigenvalues are
continuous functions of the entries of the matrix, there do
not exist two discs intersecting each other and each disc
containing an eigenvalue of L̃(t). Because the eigenvalues

of L and L̃(t) are real numbers, the discs on the complex
plane can be reduced to real intervals:

λi − ǫλG ≤ λ̃i(t) ≤ λi + ǫλG , i = 1, · · · , n

This completes the proof. �

Remark 2. The symmetric property of Laplacian ma-
trix of a connected undirected graph guarantees that its
nonzero eigenvalues are positive real numbers. However,
for the connected directed graph, all nonzero eigenvalues
of the Laplacian matrix are complex numbers with positve
real part. We can use Lemma 2 to deal with the uncer-
tainties of Laplacian matrix and transform the consensus
problem into the robust H∞ control problem of n − 1 sub-
systems.

Lemma 3. Assume that the interaction graph G
is connected. System (11) is asymptotically stable and
||Tz̄zz1ω̄ωω1(s)||∞ < γ, if the following n − 1 subsystems

˙̃
δδδi(t) = Aδ̃δδi(t) + (λi + µi(t))B1Kδ̃δδi(t − d) + B2ω̃ωωi(t)

z̃zzi(t) = δ̃δδi(t), i = 2, 3, · · · , n

(12)

are simultaneously asymptotically stable and satisfy the
H∞ performance index γ, where δ̃δδi(t), ω̃ωωi(t), and z̃zzi(t), will
be determined later. λi are the positive eigenvalues of L,
µi(t) ∈ (−ǫλG , ǫλG).

Proof. By Lemma 2, under the assumption that the
undirected graph G is connected, matrix L1(t) is pos-
itive definite. There exists a unitary matrix V (t) ∈
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R(n−1)×(n−1) such that V T(t)L1(t)V (t) = Λ(t) :=
diag{λ̃2(t), · · · , λ̃n(t)}, where λ̃i(t) can be rewritten as
λi + µi(t). Denote

δ̃δδ(t) = (V (t) ⊗ Im)δ̄δδ
1
(t) := [δ̃δδ

T

2 (t), · · · , δ̃δδ
T

n(t)]T

ω̃ωω(t) = (V (t) ⊗ Im)ω̄ωω1(t) := [ω̃ωωT
2 (t), · · · , ω̃ωωT

n(t)]T

z̃zz(t) = (V (t) ⊗ Im)z̄zz1(t) := [z̃zzT
2 (t), · · · , z̃zzT

n (t)]T

with δ̃δδi(t) ∈ Rm, ω̃ωωi(t) ∈ Rm2 , z̃zzi(t) ∈ Rm (i = 2, · · · , n).
The following proof steps are similar to that of Lemma 3.1
in [13], and we omit it. �

For simplicity, we firstly assume that the uncertainties
of aij equal zero, i.e., △aij(t) = 0, which indicates λi =
λ̃i(t), and we use λi to replace λ̃i(t) in Theorem 1. More
complicated situation will be given later.

Theorem 1. Assume that the undirected graph G is
connected. Given nonnegative constants τ and γ, the feed-
back control gain K = LX−1 globally asymptotically sta-
bilizes the closed-loop system (12) with an H∞ disturbance
attenuation level of γ, if there exist positive definite matri-
ces X, P̄12, P̄22, Z̄11, Z̄12, Z̄22, Z̄1, Q, T and matrices L,
N1, N2, N3, N4 with appropriate dimensions such that the
following matrix inequalities are satisfied for i = 2, · · · , n:

Σi =



Ωi0 ΞT

i1 ΞT
i2

∗ −T 0

∗ ∗ −XT−1X


 < 0 (13)

[
X P̄12

∗ P̄22

]
> 0,

[
Z̄11 Z̄12

∗ Z̄22 − Z̄1

]
> 0 (14)

where

Ξi1 = [AX λiB1L B2 0 0 0 0 0]

Ξi2 = [0 0 0 P̄12 τ Z̄T
12 τ Z̄22 0 0]

Ωi0 =




Ω̂i11 Ω̂i12 Ω̂i13 Ω̂i14 Ω̂i15 Ω̂i16 τN̄T
1 X

∗ Ω̂i22 Ω̂i23 Ω̂i24 0 0 τN̄T
2 0

∗ ∗ Ω̂i33 0 0 0 τN̄T
3 0

∗ ∗ ∗ Ω̂i44 0 0 τN̄T
4 0

∗ ∗ ∗ ∗ Ω̂i55 Ω̂i56 0 0

∗ ∗ ∗ ∗ ∗ Ω̂i66 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω̂i77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I




with Ω̂i11 = AX +XAT + P̄12 + P̄T
12 − Z̄22 + Q̄+ Z̄1 + N̄1 +

N̄T
1 , Ω̂i12 = λiB1L − P̄12 + Z̄22 − Z̄1 − N̄T

1 + N̄2, Ω̂i13 =
B2 + N̄3, Ω̂i14 = P̄22 − Z̄T

12 + N̄4, Ω̂i15 = τ Z̄11, Ω̂i16 =
τ Z̄12, Ω̂i22 = −Z̄22−Q̄+Z̄1−N̄2−N̄T

2 , Ω̂i23 = −N̄3, Ω̂i24 =
−P̄22 + Z̄T

12 − N̄4, Ω̂i33 = −γ2I, Ω̂i44 = −Z̄11, Ω̂i55 =
−Z̄11, Ω̂i56 = −Z̄12, Ω̂i66 = −Z̄22, Ω̂i77 = −τ Z̄1.

Proof. Define the following Lyapunov-Krasovskii func-
tion for (12)

Vi(δ̃δδi, t) =

3∑

j=1

Vij(t)

where

Vi1(t) = ηηηT
i (t)Pηηηi(t)

Vi2(t) = d

∫ 0

−d

∫ t

t+θ

ζζζT
i (s)Zζζζi(s)dsdθ

Vi3(t) =

∫ t

t−d

δ̃δδ
T

i (s)Qδ̃δδi(s)ds

with symmetric positive-definite matrices Z =

[
Z11 Z12

∗ Z22

]
,

P , Q and ηηηT
i (t) = [δ̃δδ

T

i (t),
∫ t

t−d
δ̃δδ
T

i (s)ds], ζζζT
i (s) =

[δ̃δδ
T

i (s),
˙̃
δδδT

i (s)].

The time derivative of Vi(δ̃δδi(t), t) along the state trajec-
tory of (12) is

V̇i(δ̃δδi(t), t) =

3∑

j=1

V̇i(t) (15)

Let us define a new vector variable as

χχχi(t) :=

[
δ̃δδ
T

i (t), δ̃δδ
T

i (t − d), ω̃ωωT
i (t),

∫ t

t−d

δ̃δδ
T

i (s)ds

]T

(16)

Then, we define

Γ1 :=

[
I 0 0 0

0 0 0 I

]
, Γi2 :=

[
A λiB1K B2 0

I −I 0 0

]

which allows us to write ηηηi(t) = Γ1χχχi(t) and η̇ηηi(t) =
Γi2χχχi(t). Hence, we get

V̇i1(t) = 2ηηηT
i Pη̇ηηi(t) = χχχT

i (t)Ωi1χχχi(t) (17)

with Ωi1 := ΓT
1 PΓi2 + ΓT

i2PΓ1.
The time derivative of Vi2(t) is

V̇i2(t) = d2ζζζT
i (t)Zζζζi(t) − d

∫ t

t−d

ζζζT
i (s)Zζζζi(s)ds

According to Jensen integral inequality, we obtain

− d

∫ t

t−d

ζζζT
i (s)Zζζζi(s)ds ≤

−
(∫ t

t−d

ζζζi(s)ds

)T

Z

(∫ t

t−d

ζζζi(s)ds

) (18)

Thus, using (18), we get

V̇i2(t) ≤ d2ζζζT
i (t)Zζζζi(t)−∫ t

t−d

ζζζT
i (s)ds

[
Z11 Z12

∗ Z22 − Z1

] ∫ t

t−d

ζζζT
i (s)ds−

(∫ t

t−d

˙̃
δδδi(s)ds

)T

Z1

(∫ t

t−d

˙̃
δδδi(s)ds

)

Define

Γi3 :=

[
I 0 0 0

A λiB1K B2 0

]
, Γ4 :=

[
0 0 0 I

I −I 0 0

]

We can denote ζζζi(t) = Γi3χχχi(t) and
∫ t

t−d
ζζζi(s)ds = Γ4χχχi(t).

Note that d ∈ [0, τ ], we get

V̇i2(t) ≤ χχχT
i (t)Ωi2χχχi(t) (19)
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with Ωi2 := τ 2ΓT
i3ZΓi3 − ΓT

4

[
Z11 Z12

∗ Z22 − Z1

]
Γ4.

Define Γ5 := [I 0 0 0], Γ6 := [0 I 0 0] and

Ωi3 := ΓT
5 QΓ5 − ΓT

6 QΓ6

We can rewrite δ̃δδi(t) = Γ5χχχi(t), δ̃δδi(t−d) = Γ6χχχi(t) and get

V̇i3(t) = χχχT
i (t)Ωi3χχχi(t) (20)

Using equation
∫ t

t−d

˙̃
δδδi(s)ds = δ̃δδi(t) − δ̃δδi(t − d), we can

construct the following null equation:

2χχχT
i (t)NT

[
Γ7χχχi(t) −

∫ t

t−d

˙̃
δδδi(s)ds

]
= 0 (21)

with N := [N1 N2 N3 N4] and Γ7 := [I −I 0 0]. Completing
(21) to squares results in

0 ≤ χχχT
i (t)Ωi4χχχi(t) +

(∫ t

t−d

˙̃
δδδi(s)ds

)T

Z1

(∫ t

t−d

˙̃
δδδi(s)ds

)

(22)

where Ωi4 := NTΓ7 + ΓT
7 N + τNTZ−1

1 N . Adding (22) to

V̇i(δ̃δδi(t), t) and substituting V̇ij(t), j = 1, 2, 3 computed in
(17), (19) and (20) yields

V̇i(δ̃δδi(t), t) + z̃zzT
i (t)z̃zzi(t) − γ2ω̃ωωT

i (t)ω̃ωωi(t) ≤ χχχT
i (t)Ωiχχχi(t)

(23)

where Ωi = (
∑4

j=1 Ωij) + ΓT
5 Γ5 − γ2ΓT

8 Γ8 with Γ8 :=
[0 0 I 0] and is explicitly calculated as

Ωi =




Ωi11 Ωi12 Ωi13 Ωi14

∗ Ωi22 Ωi23 Ωi24

∗ ∗ Ωi33 Ωi34

∗ ∗ ∗ Ωi44


 < 0 (24)

where Ωi11 = P11A + ATP11 + P12 + PT
12 + τ 2(Z11 +

Z12A + ATZT
12 + ATZ22) + Z1 + N1 + NT

1 + τNT
1 Z−1

1 N1 −
Z22 + Q + I, Ωi12 = λiP11B1K − P12 + τ 2(λiZ12B1K +
λiA

TZ22B1K)+Z22−Z1−NT
1 +N2 +τNT

1 Z−1
1 N2, Ωi13 =

P11B2 + τ 2(Z12B2 +ATZ22B2)+N3 + τNT
1 Z−1

1 N3, Ωi14 =
ATP12 + P22 − ZT

12 + NT
4 + τNT

1 Z−1
1 N4, Ωi22 =

τ 2λ2
i K

TBT
1 Z22B1K − Z22 − Q + Z1 − N2 − NT

2 +
τNT

2 Z−1
1 N2, Ωi23 = τ 2λiK

TBT
1 Z22B2 − N3 +

τNT
2 Z−1

1 N3, Ωi24 = λiK
TBT

1 P12 − P22 + ZT
12 −

N4 + τNT
2 Z−1

1 N4, Ωi33 = τ 2BT
2 Z22B2 − γ2I +

τNT
3 Z−1

1 N3, Ωi34 = BT
2 P12 + τNT

3 Z−1
1 N4, Ωi44 =

τNT
4 Z−1

1 N4 − Z11.

If Ωi < 0, then V̇i(δ̃δδi(t), t) + z̃zzT
i (t)z̃zzi(t)− γ2ω̃ωωT

i (t)ω̃ωωi(t) ≤
χχχT

i (t)Ωiχχχi(t) < 0. When ω̃ωωi(t) ≡ 0, ∀t ≥ 0, V̇i(δ̃δδi(t), t) still
holds and guarantees that system (12) with no disturbance
is globally asymptotically stable. Hence, the initial state is
supposed to be zero-valued, under which we consider the
cost function

JiT =

∫ T

0

[z̃zzT
i (t)z̃zzi(t) − γ2ω̃ωωT

i (t)ω̃ωωi(t) + V̇i(δ̃δδi(t), t)]dt−

Vi(δ̃δδi(T ), T ) + Vi(0, 0) ≤
∫ T

0

χχχT
i (t)Ωiχχχi(t)dt < 0

that is,
∫ T

0
||z̃zzi(t)||2dt < γ2

∫ T

0
||ω̃ωωi(t)||2dt. Let T → ∞, we

get ||z̃zzi||2 < γ||ω̃ωωi||2, ∀ω̃ωωi(t) ∈ L2[0,∞). Applying Schur
complement formula to Ωi < 0 in (24), we get Ω̄i < 0




Ω̄i11 Ω̄i12 Ω̄i13 Ω̄i14 Ω̄i15 Ω̄i16 τNT
1 I

∗ Ω̄i22 Ω̄i23 Ω̄i24 Ω̄i25 Ω̄i26 τNT
2 0

∗ ∗ Ω̄i33 Ω̄i34 Ω̄i35 Ω̄i36 τNT
3 0

∗ ∗ ∗ Ω̄i44 0 0 τNT
4 0

∗ ∗ ∗ ∗ Ω̄i55 Ω̄i56 0 0

∗ ∗ ∗ ∗ ∗ Ω̄i66 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω̄i77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I




(25)

with Ω̄i11 = P11A + ATP11 + P12 + PT
12 − Z22 + Q + Z1 +

N1 + NT
1 , Ω̄i12 = λiP11B1K − P12 + Z22 − Z1 − NT

1 +
N2, Ω̄i13 = P11B2 + N3, Ω̄i14 = ATP12 + P22 − ZT

12 +
NT

4 , Ω̄i15 = τZ11+τATZT
12, Ω̄i16 = τZ12+τATZ22, Ω̄i22 =

−Z22 − Q + Z1 − N2 − NT
2 , Ω̄i23 = −N3, Ω̄i24 =

Ωi24 − τNT
2 Z−1

1 N4, Ω̄i25 = τλiK
TBT

1 ZT
12, Ω̄i26 =

τλiK
TBT

1 Z22, Ω̄i33 = −γ2I, Ω̄i34 = BT
2 P12, Ω̄i35 =

τBT
2 ZT

12, Ω̄i36 = τB2Z22, Ω̄i44 = −Z11, Ω̄i55 =
−Z11, Ω̄i56 = −Z12, Ω̄i66 = −Z22, Ω̄i77 = −τZ1.

Let U = diag{X, X, I,X, X, X, X, I} where X := P−1
11 .

Pre and post-multiplying matrix Ω̄i by U , i.e Ω̂i = UΩ̄iU <
0, and employing the variable changes (· ) := X(· )X except
for variable N3 for which we define it as N̄3 := XN3, we
get




Ω̂i11 Ω̂i12 Ω̂i13 Ω̃i14 Ω̃i15 Ω̃i16 τN̄T
1 X

∗ Ω̂i22 Ω̂i23 Ω̃i24 Ω̃i25 Ω̃i26 τN̄T
2 0

∗ ∗ Ω̂i33 Ω̃i34 Ω̃i35 Ω̃i36 τN̄T
3 0

∗ ∗ ∗ Ω̂i44 0 0 τN̄T
4 0

∗ ∗ ∗ ∗ Ω̂i55 Ω̂i56 0 0

∗ ∗ ∗ ∗ ∗ Ω̂i66 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω̂i77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I




(26)

where Ω̃i14 = Ω̂i14 + XATX−1P̄12, Ω̃i15 =
Ω̂i15+τXATX−1Z̄T

12, Ω̃i16 = Ω̂i16+τXATX−1Z̄22, Ω̃i24 =
Ω̂i24 + λiL

TBT
1 X−1P̄12, Ω̃i25 = τλiL

TBT
1 X−1Z̄T

12, Ω̃i26 =
τλiL

TBT
1 X−1Z̄22, Ω̃i34 = BT

2 X−1P̄12, Ω̃i35 =
τBT

2 X−1Z̄T
12, Ω̃i36 = τB2X

−1Z̄22 , with L := KX.
Note that Ω̂i can be decomposed into

Ω̂i = Ωi0 + ΞT
i1X

−1Ξi2 + ΞT
i2X

−1Ξi1

and for any positive definite matrix T , we have the following
inequality

ΞT
i1X

−1Ξi2 + ΞT
i2X

−1Ξi1 ≤
ΞT

i1T
−1Ξi1 + ΞT

i2(XT−1X)−1Ξi2

Substituting the above inequality into Ω̂i and applying
Schur complement formula leads to (13). �

Due to the existence of nonlinear entry −XT−1X, the
matrix inequality conditions (13) are not LMIs. In order
to obtain the feedback gain K, we employ the so-called
cone-complementary linearization algorithm[20−21] . First,
we define a new positive definite matrix W such that W ≤
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XT−1X and replace inequality conditions (13) with


Ωi0 ΞT

i1 ΞT
i2

∗ −T 0

∗ ∗ −W


 < 0 (27)

and
[
W̄ X̄

∗ T̄

]
≥ 0,

[
W̄ I

∗ W

]
≥ 0,

[
X̄ I

∗ X

]
≥ 0,

[
T̄ I

∗ T

]
≥ 0

(28)

where W̄ , X̄ and T̄ are positive definite matrices with ap-
propriate dimensions. Then the feedback gain matrix can
be obtained by the following linearized algorithm[20−21] :

1) Choose a large initial value for γ and small
one for τ such that there exists a solution set
{X̄0, X0, W̄0, W0, T̄0, T0} to LMI conditions in (14), (27),
(28), and set k = 0.

2) Solve the following LMI optimization problem for the
variables

{X̄, X, W̄ , W, T̄ , T}
min tr(W̄kW +X̄kX+T̄kT +W̄Wk+X̄Xk+T̄ Tk)

s.t. LMIs(14), (27), (28)

and set: X̄k+1 := X̄ , Xk+1 := X, W̄k+1 := W̄ , Wk+1 := W ,
T̄T := T̄ , Tk+1 := T .

3) If W ≤ XT−1X, then set γ0 = γ, τ0 = τ and return to
step 1) after decreasing γ and increasing τ to some extent.
Otherwise, set k = k + 1 and go to step 2) and repeat
the procedure for a prescribed number of iterations, until
finding W, X, T satisfying W ≤ XT−1X. If there exist no
such matrices, then exit.

Remark 3. The main results in Theorem 1, matrix in-
equalities (13) and (14) rely on the non-zero eigenvalues
λi of Laplacian matrix L. That means we must verify the
matrix inequality for every non-zero eigenvalue of Lapla-
cian matrix. However, the cone-complementary lineariza-
tion algorithm will save us from the tedious works. The
application of cone-complementary linearization algorithm
coverts the matrix inequalities (13) and (14) which contain
the nonlinear entries to LMIs (14), (27) and (28). Due to
the convex property of LMIs, only two groups LMIs related
to the smallest positve eigenvalue λ2 and largest eigenvalue
λn need to be verified. And this still works for matrix in-
equalities (29) and (30).

Theorem 2. Assume that the undirected graph G is
connected. Given nonnegative constants τ and γ, the feed-
back control gain K = LX−1 globally asymptotically sta-
bilizes the closed-loop system (12) with an H∞ distrubance
attenuation level of γ, if there exist positive definite matri-
ces X, P̄12, P̄22, Z̄11, Z̄12, Z̄22, Z̄1, Q, T and matrices L, N1,
N2, N3, N4 with appropriate dimensions and scalar σ > 0
such that the following matrix inequalities are satisfied for
i = 2, · · · , n:




Ω̃i0 Ξ̃T
i1 ΞT

i2 ΞT
i3

∗ σǫ2λ2
GB1B

T
1 − T 0 0

∗ ∗ −XT−1X 0

∗ ∗ ∗ −σI


 < 0 (29)

[
X P̄12

∗ P̄22

]
> 0,

[
Z̄11 Z̄12

∗ Z̄22 − Z̄1

]
> 0 (30)

where Ξ̃i1 = [AX +σǫ2λ2
GB1B

T
1 λiB1L B2 0 0 0 0 0], Ξi3 =

[0 L 0 0 0 0 0 0] and Ω̃i0 has same entries as Ωi0 except
Ω̃i11 = Ωi11 + σǫ2λ2

GB1B
T
1 .

Proof. Replacing λi with λi + µi(t) in (13), we rewrite
the matrix inequality conditions (13) as Σi + ΘiΠi +
ΠT

i ΘT
i < 0, where

ΘT
i = [µi(t)B

T
1 0 0 0 0 0 0 0 µi(t)B

T
1 0]

Πi = [0 L 0 0 0 0 0 0 0 0]
(31)

If there exists a σ > 0 such that Σi +σΘiΘ
T
i +σ−1ΠT

i Πi <
0, we will get Σi + ΘiΠi + ΠT

i ΘT
i < 0. Thus using Schur

complement formula on Σi+σΘiΘ
T
i +σ−1ΠT

i Πi < 0 results
in (29). �

3 Numerical examples

In this section, we will give examples to show the effec-
tiveness of our protocols. We consider a network with four
agents, as shown in Fig.1, with the communication chan-
nel gains a12(t) = a21(t) = 1 + ∆1(t), a13(t) = a31(t) =
1 + ∆2(t), a14(t) = a41(t) = 1 + ∆3(t)(|∆i(t)| ≤ 0.1).

Fig. 1 Interaction undirected graph: G

First, we consider the case of the uncertainties of aij(t)
equal 0, i.e. ∆i(t) = 0. Second, we give the results when
∆i(t) 6= 0. In simulations, the H∞ performance index γ is
chosen as 1, and communication delay 0 ≤ d ≤ τ = 0.06.
Consider the open-loop system (1) with

A =

[
0 −1

2 1

]
, B1 =

[
1 0

0 2

]
, B2 =

[
0

1

]
(32)

Table 1 Simulation results

∆i(t) = 0 feasible K=

[
−1.0716 1.0032

−1.0014 −1.0515

]

∆i(t) 6= 0 feasible K=

[
−1.1548 0.8026

−1.1134 −1.7950

]

4 Conclusions

In this paper, we design a state feedback protocol to solve
the consensus control of multi-agent systems with exter-
nal disturbances and model uncertainty on communication
topology. An augmented type Lyapunov-Krasovskii func-
tional is employed, and two consensus criteria in the form
of matrix inequalities are derived which guarantee the con-
sensus of multi-agent systems with input delay under the
H∞ controller. A cone complementary algorithm is used
and the solution of H∞ control problem is solved by using
an iterative algorithm.



2562 ACTA AUTOMATICA SINICA Vol. 40

References

1 Consolini L, Morbidi F, Prattichizzo D, Tosques M. Stabi-
lization of a hierarchical formation of unicycle robots with
velocity and curvature constraints. IEEE Transactions on
Robotics, 2009, 25(5): 1176−1184

2 Wan Yi-Ming, Dong Wei, Ye Hao. Distributed H∞ filter-
ing with consensus strategies in sensor networks: consider-
ing consensus tracking error. Aata Automatica Sinica, 2012,
38(7): 1211−1217 (in Chinese)

3 Olfati-Saber R. Flocking for multi-agent dynamic systems:
algorithms and theory. IEEE Transactions on Automatic
Control, 2006, 51(3): 401−420

4 Min Hai-Bo, Liu Zhi-Guo, Liu Yuan, Wang Shi-Cheng, Yang
Yan-Li. Coordination control of networked Euler-Lagrange
systems with possible switching topology. Aata Automatica
Sinica, 2013, 39(7): 1003−1010 (in Chinese)

5 Pack D J, Delima P, Toussaint G J, York G. Cooperative
control of UAVS for localization of intermittently emitting
mobile targets. IEEE Transactions On Systems, Man, And
Cybernetics, Part B: Cybernetics, 2009, 39(4): 959−970

6 Ren W, Beard R W. Distributed Consensus in Multi-vehicle
Cooperative Control. London: Springer, 2008. 25−53
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