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A Stochastic Filtering Algorithm

Using Schrödinger Equation

WU Hao-Han1 JIN Fu-Jiang1, 2 LAI Lian-You2

WANG Liang1

Abstract This paper provides a new adaptive algorithm for
single-step prediction by modeling the potential field of a one di-
mension Schrödinger wave equation using neural network. This
new architecture is referred to as the recurrent quantum neural
network (RQNN). The RQNN can filter the signal embedded
with non-stationary noise without any priori knowledge of the
shape of the signal and statistical properties of the noise. We
compared the simulation results of the RQNN with a classical
adaptive stochastic filter-RLS. It is shown that the RQNN is
much more efficient in denoising signals embedded with Gaus-
sian stationary, non-Gaussian stationary and Gaussian non-
stationary noise such as DC, sinusoid, staircase and speech sig-
nals. The RQNN can enhance the signal to noise rate (SNR)
by 20 dB, which is more than 10 dB given by the traditional
technology when it denoising sinusoid signal.
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In modern communication, control and signal processing
fields, the signals are almost always embedded with noises
and the signal is also stochastic[1−4]. So how to estimate
the actual signal is very important. The classical stochastic
filter such as the Wiener filter and Kalman filter cannot es-
timate the actual signal from the non-stationary noises[1−4].
The performance of the traditional adaptive filtering algo-
rithm, such as the LMS, RLS and etc., is also very limited.
We must find other adaptive stochastic filtering algorithm
that can estimate the actual signal much more accurate. As
we already know that the Kalman filter has been proved the
best linear filter[2], we should introduce nonlinear filtering
algorithm. This paper provides a new nonlinear filtering
algorithm by introducing the Schrödinger wave equation
(SWE).

As we all know that the quantum mechanics is the best
physical theory in the micro world for its introducing some
basic assumptions[5], i.e., the discontinuous energy of every-
thing and the Schrödinger wave equation. These assump-
tions could not be proved just by the math until now. In
quantum mechanics, the evolution of a micro object can be
described by the Schrödinger wave equation which is the
same as the Newton′s second law in the macro low speed
world[5]. We also know that electronic signal is the results
of a large number of electron transfers, which is a micro phe-
nomenon, so their stochastic evolution could be described
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by the Schrödinger wave equation. If we can modulate
the potential field of the Schrödinger wave equation prop-
erly, we can describe the evolution of the electronic accu-
rately, then we can describe the signal accurately, which
is the principle of the recurrent quantum neural network
(RQNN)[5]. Now our problem is how to modulate the po-
tential field properly.

Bucy said that every solution to a stochastic filtering
problem involves the computation of a time varying prob-
ability density function (PDF) on the state space of the

observed system[2], which in this paper is the x. In [6],
Dawes gave the original theoretical architecture of the
RQNN which was a parametric avalanche stochastic filter.
In [7−9], Behera et al. improved Dawes′s architecture by
introducing the maximum likelihood estimate (MLE) to it.
In [10−13], it was used in practice. This paper improves
Behera′s neural network with a new one which can insure
the system is always steady to any parameters. This pa-
per uses a recurrent neural network to modulate it and the
weights of the neural network are updated by an unsuper-
vised learning algorithm which is a variant of the classical
Hebbian learning algorithm.

The remainder of the paper is organized into 6 sections.
Section 1 describes the physical meaning of Schrödinger
wave equation and the conceptual framework for the
RQNN. Section 2 describes the principle of the RQNN.
Section 3 describes the numerical implementation of the
whole RQNN system. Section 4 describes how to select the
parameters. Section 5 describes the simulation results and
discussion. Section 6 concludes the paper.

1 Schrödinger wave equation and concep-
tual framework for RQNN

The Schrödinger wave equation[5] is

i~∂ψ(x, t)

∂t
= − ~

2

2m

∂2

∂x2
ψ(x, t) + V (x, t)ψ(x, t) (1)

where 2π~ is the Plank′s constant; i is imaginary unit
√−1;

ψ(x, t) (a vector in the Hilbert space) is the wave function
or probability amplitude function whose square is the prob-
ability density function (PDF) of a quantum object at the
space-time point (x, t); m is the mass of the object and
V (x, t) is the potential energy. Equation (1) is one of the
basic assumptions of quantum mechanics. It describes the
evolution of a quantum object as the Newton′s second law
does in the macro world. Equation (1) also indicates that
the quantum mechanics would never tell the clear posi-
tion of a micro object except the PDF of it, which is the
essence of quantum mechanics. According to (1), the evo-
lution path of wave function can be set up by V (x, t), which
is modulated by a recurrent neural network in this paper.
A conceptive framework of the RQNN is shown in Fig. 1.

Fig. 1 Conceptual framework of the RQNN
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In Fig. 1, y(t) is the input signal or the observed signal

which is polluted by unknown noise.
∧
y(t) is the estimated

signal by the MLE algorithm. y(t) − ∧
y(t) is the error sig-

nal which modulates the potential field for the Schrödinger
wave equation. The range of the observed signal is defined
as the observation space Oy. The space variable x in (1)
is an arbitrary element of Oy but y(t) is just a certain ele-
ment of Oy at a certain time t. In this paper, an imaginary
quantum object is placed in Oy and the state of the object
is described by wave function ψ (x, t) which is controlled by
V (x, t). Further describing of the RQNN will be done in
the next section.

2 Theoretical analysis
The detailed schematic diagram is shown in Fig. 2

Fig. 2 Schematic diagram for RQNN in detail

In Fig. 2, y(t) is the observed signal embedded with un-
known noise with a statistically zero mean; f(x, t) is a vari-
ance variable Gaussian kernel function modulated by y(t)
and e(t), which is expressed as

f(x, t) = exp

(−(1 + α1 · e(t)2)(y(t)− x)2

2σ2

)
(2)

This means that the center of the kernel function will move
with the changing of the observed signal, which is very
important to tracking the actual signal embedded in the
observed signal. At the same time, the variance of f(x, t)
would change along with the changing of e(t), which could
solve the contradiction between the stability and accuracy
of the filter. We use the neural network to adjust the shape
of the potential field again.

V (x, t) = ςW (x, t)f(x, t)− α2 · ρ(x, t) (3)

If we regard f(x, t) as the input quantity and 1+(e(t))2 as
the output quantity of the neural network, a variant of the
Hebbian learning algorithm[10−13] can be used to update
the weight of the network dynamically as

∂W (x, t)

∂t
= −βdW (x, t) + βf(x, t)(1 + (e(t))2) (4)

where

e(t) = y(t)− ∧
y(t) (5)

∧
y(t) = arg max

x
ρ(x, t) (6)

In (4), β is the learning rate and βd is the de-learning

rate[14−15]. Use de-learning to forget the previous infor-
mation, as the input signal is not stationary. The values of
the weights W (x, t) may keep growing indefinitely without

de-learning, which may cause the unstablility of the sys-
tem. Both the Kernel function and the neural network are
used to provide Schrödinger wave equation with a suitable
potential field. Especially, the kernel function makes it sure
that the wave packet would not pirate, that is to say, the
quantum object moves like a particle or the soliton char-
acteristic is very good. The network increases the tracking
capability of the RQNN dynamically. Of cause they in-
teract each other any time anywhere. The function of the
potential field in the Schrödinger wave equation is to drive
the wave function to the most suitable location which is the
lowest place in energy of the potential field[5]. Fortunately,
it cannot be finished instantaneously, that is to say, it is a
process of evolution which in fact is the most natural way
of evolution of the actual signal from the physical point
of view. It does not change too fast from the mathematic
point of view. So the noise, which has too little contact
with itself or changes too fast[1−4], would be filtered with-
out too much loss of the actual signal which is strongly
correlated and won′t change too fast. In other words, the
Schrödinger wave equation is a related extractor. This is
the reason why the RQNN can be a stochastic filter. At
last the RQNN provides us a new way to estimate the PDF
of the noise if we modulate the potential field in a more
proper way. After we get the wave equation, we can get
the PDF.

3 Numerical implementation of the whole
RQNN system

Section 2 explained the principle of RQNN. As the
RQNN must use a digital computer to solve all the equa-
tions introduced in section 2, we have to give the numerical
implementation of the RQNN. The discrete framework of
the RQNN is shown in Fig. 3.

Fig. 3 Discrete framework of RQNN

In a discrete system, the arguments should be expressed
as

t =n · dt, n = 0, 1, 2, · · ·
x =min(x) + k∆x k = 0, 1, 2, · · · , N − 1

XXX =[min(x) + ∆x, min(x) + 2∆x, · · · ,

min(x) + (N − 1)∆x]T

where dt is the sampling interval. The discrete kernel func-
tion is a vector of dimension N .

fff(XXX, n) = exp(−(1 + α1e(n)2)(XXX − y(n)).2/2σ2) (7)

Where the “.2” means each element of a matrix square.
Then the potential field function should be

VVV (n + 1) = WWW (n + 1). · fff(XXX, n)− α2ρρρ(n) (8)
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where

WWW (n + 1) = (1 + βd∆t)WWW (n) + βfff(XXX, n)(1 + e(n)2) (9)

e(n) = y(n)− ∧
y(t) (10)

Where “.·” means multiplying elements of two matrices in
the same position. Then we can get ψψψ(n+1) by Schrödinger
wave equation which will be discussed later. Then we could
get the PDF

ρρρ(n + 1) = |ψψψ(n + 1)| .2 (11)

Use maximum likelihood estimation (MLE) to estimate the
actual signal as

∧
y(n + 1) = (arg max

1≤i≤N
ρρρ(n + 1)i) ·∆x + min(x) (12)

Where ρρρ(n + 1)i is the ith member of vector ρρρ(n + 1) and

we should insure that
∑N−1

i=1 ρρρ(n + 1)i∆x = 1. Now let us
concentrate on the numerical form of the Schrödinger wave
equation (SWE). As the actual processor does not have
plural handling capability and the Schrödinger wave equa-
tion is a complex equation, we should transform it into the
form of a real number equation. Assume the jth member
of vector ψψψ(n) is ψn

j = ψ realnj +iψ imagn
j . Then the SWE

could be realized as

i~
ψn+1

j − ψn
j

∆t
= −~2 ψn

j+1 − 2ψn
j + ψn

j−1

2m (∆x)2
+ V n

j ψn
j , (13)

ψn
1 = ψn

N = 0, j = 1, 2, · · · , N

Here we regard ∆t as a new parameter which is different
from dt generally. The form of real number equation is

ψ realn+1
j = ψ realnj−

∆t~
2m (∆x)2

(ψ imagn
j+1 − 2ψ imagn

j +

ψ imagn
j−1) +

∆t

~
V n

j ψ imagn
j (14)

ψ imagn+1
j = ψ imagn

j +

∆t~
2m (∆x)2

(ψ realnj+1 − 2ψ realnj +

ψ realnj−1)− ∆t

~
V n

j ψ realnj (15)

According to Taylor series, the order of the truncation error
is (O((∆t)2)+O((∆x)2)) in (13). As any digital calculator
has the finite word length effect, the rounding error would
be accumulated. The error accumulation may make the
results beyond recognition, which is so called unstable. If
∆x and ∆t obey a proper condition to vanish the initial
error as time goes on, equation (13) converges to equation
(1). The properly condition is the so called stable condition
and it has already been proved in [16]. It is

2~∆t

m(∆x)2
+

V (x, t)∆t

~
≤ 2 (16)

Thanks to the de-learning rate βd, the item V (x,t)∆t
~ can be

ignored. Thus, (16) can be simplified as ~∆t
m(∆x)2

≤ 1
4
.

4 How to select parameters

Although the RQNN architecture proposed in this paper
is not easy to be unstable to the parameters, the values of
parameters are also very important to the performance of
it. Here we add another new parameter γ to adjust the
conflict between tracking performance and smooth perfor-
mance. The new one is defined as the iteration time for
each single observed signal. The others have been intro-
duce in the above sections such as β, βd, ∆t, m and ς. We
use the traversal method to find the proper γ first, then we
use generation algorithm (GA) to find the others. As the
word length limit of the digital computer, the mass of the
quantum object m and the Plank’s constant 2π~ have been
enlarged in this paper.

5 Simulation results and discussion

In this section, we will compare the performance of
RQNN adaptive filtering algorithm with a traditional linear
adaptive algorithm, RLS. We will test them in both station-
ary and non-stationary noise environments. The observed
signal is always

y(t) = ya(t) + n(t) (17)

Where ya(t) is the actual signal and n(t) is the noise signal
in all the simulation cases.

5.1 DC signal denoising

Here we set up the noise with stationary and non-
stationary high Gaussian noise n(t). In the stationary case,
the SNRs are 20 dB, 6 dB and 0 dB, respectively. The op-
timal values of the parameters are dt = 0.001, ∆t =
0.001, β = 0.57, m = 0.327, ς = 0.859, βd =
0.671, γ = 1, α1 = 1.794, α2 = −1.253, ~ = 1.0, ∆x =
0.1, min(x) = −20, N = 400.

The actual DC signal is ya(t) = 2, 0 ≤ t ≤ 20 s. The
results for the RQNN and RLS to filter the signal whose
SNR is 6 dB with stationary noise are shown in Figs. 4 and
5, respectively.

Fig. 4 RQNN filtering results for 6 dB DC signal (“a”

represents the raw signal, “b” represents the estimated signal

by RQNN, “c” represents the actual signal.)
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Fig. 5 RLS filtering result for 6 dB DC signal (“a” represents

the raw signal, “b” represents the estimated signal by RLS, “c”

represents the actual signal.)

From Figs. 4 and 5 we can see that the accuracy of RQNN
adaptive filtering is much better, but the RQNN needs more
time to find the actual signal which will be explained in
the end of this section. For a more accurate comparison
between the performances of the two filtering algorithms,
we give the output signal to noise rate (SNR) directly for
the input SNR 0 dB, 6 dB and 20 dB, respectively. The
output SNRs in filtering the DC signal by RQNN and RLS
are shown in Table 1.

Table 1 Performance comparison for DC signal in

stationary environment

Input SNR RLS SNR RQNN SNR

0 dB 10.06 dB 44.1445 dB

6 dB 19.9625 dB 47.7262 dB

20 dB 33.68 dB 62.8978 dB

It is very clear that the performance of the RQNN is
much better than that of the traditional adaptive algo-
rithm. Now let us compare their performances in the non-
stationary noise environment. Figs. 6 and 7 display the
results of RQNN and RLS in filtering DC signal which is
embedded with non-stationary signal. The input SNR is 6
dB.

Fig. 6 RQNN for non-stationary noise (“a” represents the raw

signal, “b” represents the estimated signal by RQNN, “c”

represents the actual signal.)

Fig. 7 RLS for non-stationary case (“a” represents the raw

signal, “b” represents the estimated signal by RLS, “c”

represents the actual signal.)

The output SNRs of the two filtering algorithms are
shown in Table 2.

Table 2 Performance comparison for DC signal in

non-stationary environment

Input SNR RLS SNR RQNN SNR

7.4011 dB 21.0653 dB 48.0523 dB

From Fig. 6, Fig. 7 and Table 2, we can see that the re-
sults of RQNN are not only more accurate but also much
more smooth than the results of RLS. Compare Fig. 6 with
Fig. 4, we can see that the non-stationary noise environ-
ment has little effect on the result of RQNN, that is, RQNN
has better adaptability.

5.2 Sinusoid signal denoising

The original sinusoid signal is

ya(t) = 2 sin(2π × 20× t), 0 ≤ t ≤ 0.4 s (18)

The values of parameters of RQNN are dt = 0.0001, ∆t =
0.001, β = 0.57, m = 0.327, ς = 0.859, βd =
0.671, γ = 43, α1 = 1.794, α2 = −1.253, ~ =
1.0, ∆x = 0.1, min(x) = −20, N = 400.

The number of points along the x-axis is taken as N =
400. The SNR of the input signal is 6 dB. The result is
shown in Figs. 8 and 9.

Fig. 8 RQNN for sinusoid signal (“a” represents the raw

signal, “b” represents the estimated signal by RQNN, “c”

represents the actual signal.)
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Fig. 9 RLS for sinusoid signal (“a” represents the raw signal,

“b” represents the estimated signal by RLS, “c” represents the

actual signal.)

The SNRs are shown in Table 3.

Table 3 Performance comparison for sinusoid signal

Input SNR RLS SNR RQNN SNR

6 dB 16.2746 dB 28.4722 dB

To see the accuracy of the RQNN from another angle, we
plot the power spectral densities (PSDs) of the actual sig-
nal, observed signal and estimated signal, respectively in
Fig. 10.

Fig. 10 The PSD comparision ((a) The PSD of actual signal;

(b) The PSD of observed signal; (c) The PSD of estimated

signal)

From Fig. 10, we see that not only the PSD of the esti-
mated signal is very similar to the PSD of the actual signal
but also a lot of noise is attenuated. That is to say, the fil-
tering result is very accurate. A non-stationary noise case
is shown in Fig. 11 and Fig. 12.

The output SNRs of the two filtering algorithms are
shown in Table 4.

From Fig. 8, Fig. 9, Fig. 11, Fig. 12 and Table 4, we can
also see that the conclusion obtained in the DC signal case
is also suitable to the sinusoid signal case. That is to say,
RQNN has better adaptability.

Fig. 11 RQNN filtering sinusoid signal in non-stationary noise

(“a” represents the raw signal, “b” represents the estimated

signal by RQNN, “c” represents the actual signal.)

Fig. 12 RLS filtering sinusoid signal in non-stationary noise

(“a” represents the raw signal, “b” represents the estimated

signal by RLS, “c” represents the actual signal.)

Table 4 Performance comparison for sinusoid signal in

non-stationary environment

Input SNR RLS SNR RQNN SNR

7.8372 dB 16.6084 dB 26.0483 dB

5.3 Non-Gaussian noise for sinusoid signal denois-
ing

As the RQNN does not need any assumption of statis-
tical properties of noise except the zero mean, it should
perform very well for any zero mean non-Gaussian noise.
Here we use the sinusoid signal embedded with uniformly
distributed noise. The observe signal is

y(t) = ya(t) + n(t), 0 ≤ t ≤ 0.4 s (19)

where

ya(t) = 2 sin(2π × 20× t), 0 ≤ t ≤ 0.4 s (20)

n(t) is the uniform noise signal. The values of parameters
of RQNN are dt = 0.0001, ∆t = 0.001, β = 0.57, m =
0.327, ς = 0.859, βd = 0.671, γ = 43, α1 = 1.794, α2 =
−1.253, ~ = 1.0, ∆x = 0.1, min(x) = −20, N = 400.

The non-Gaussian noise case is shown in Fig. 13.



No. 10 WU Hao-Han et al.: A Stochastic Filtering Algorithm Using Schrödinger Equation 2375

Fig. 13 RQNN filter staircase signal (“a” represents the raw

signal, “b” represents the estimated signal by RQNN, “c”

represents the actual signal.)

The SNR of the raw signal is 7.713 dB and the SNR of
the filtered signal is about 24.5 dB. From Fig. 13, we can
see that the filtered signal is also very smooth. These verify
that the RQNN does not need any assumption of the noise,
which has been detailed in Section 2.

5.4 Staircase signal denoising

As the staircase signal changes very quickly at some spe-
cific point and many stochastic filters such as LMS cannot
track this signal. This part we do not compare the per-
formance of RQNN with RLS in detail, but just show that
the RQNN can also track the staircase signal. The SNR
of the raw signal is set 20 dB. The values of RQNN′s pa-
rameters are dt = 0.001, ∆t = 0.001, β = 0.57, m =
0.327, ς = 0.859, βd = 0.671, γ = 90, α1 = 1.794, α2 =
−1.253, ~ = 1.0, ∆x = 0.1, min(x) = −20, N = 400.

The result of filtering staircase signal is shown in Fig. 14.

Fig. 14 RQNN filter staircase signal (“a” represents the raw

signal, “b” represents the estimated signal by RQNN, “c”

represents the actual signal.)

The output SNR is about 28.304 dB. We can see from
Fig. 14 that its track property is very good if we select
proper parameters.

5.5 Speech signal denoising

The speech signal is quite the same as white noise and
changes very fast. The traditional adaptive filter cannot
work. Let′s select the values of the parameters as follows:
dt = 1.2207e − 04, ∆t = 100 × dt, β = 0.57, m =

0.327, ς = 0.859, βd = 0.671, γ = 1, α1 = 1.794, α2 =
−1.253, ~ = 1.0, ∆x = 0.1, min(x) = −20, N = 400.

The result of filtering speech signal is shown in Fig. 15.

Fig. 15 RQNN filter speech signal (“a” represents the raw

signal, “b” represents the estimated signal by RQNN, “c”

represents the actual signal.)

The output SNR is 1.9442 dB with raw SNR = −0.3 dB.
The result also means that the tracking property of RQNN
is much better than that of any traditional filter. RLS
which has the best tracking property in traditional filters
does not work in the speech signal case with the current
sampling frequency 1/dt. It is necessary to talk about the
new added parameter γ which has already been defined in
section 4. Here we explain the function of it. We can see
from the result of each figure that a big γ means the out-
put signal changes much faster than the lower SNR. In the
filtering field, tracking signal always is the most important
thing. This is the reason why we should find a proper γ
first, then use GA to find other parameters.

6 Conclusion

This paper presents a new architecture for stochastic fil-
tering, in which a one dimensional Schrödinger wave equa-
tion that can abstract the strong relevant parts in the ob-
served signal embedded with weakly correlated noise signal
is introduced to denoise the stationary and non-stationary
weakly correlated noise signal. The potential field of the
Schrödinger wave equation is set up with a variable variance
Gaussian kernel function and a linear neural network whose
weights are updated by a variant form of the Hebbian learn-
ing algorithm. The Gaussian kernel function whose center
changes with the observed signal maintains the moving of
the wave packet and the neural network maintains the soli-
ton property of the wave packet, which is the premise of
the moving of the wave packet and also provides the prob-
ability of noise PDF online estimation. We use the new
architecture of RQNN to denoise the DC signal, sinusoid
signal, staircase signal and speech signal in the stationary
and non-stationary noise environments without the prior
knowledge about the shape of the actual signal or proper-
ties of the noise. The result of the RQNN is much better
both in the accuracy and the adaptivity compared to the
RLS filter. In the future, we hope that the RQNN is not
only a stochastic filter but also a non-stationary noise PDF
estimator.
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