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Box-constrained Total-variation Image Restoration with

Automatic Parameter Estimation
HE Chuan1 HU Chang-Hua1 ZHANG Wei1 SHI Biao1

Abstract The box constraints in image restoration have been arousing great attention, since the pixels of a digital image can attain
only a finite number of values in a given dynamic range. This paper studies the box-constrained total-variation (TV) image restoration
problem with automatic regularization parameter estimation. By adopting the variable splitting technique and introducing some
auxiliary variables, the box-constrained TV minimization problem is decomposed into a sequence of subproblems which are easier
to solve. Then the alternating direction method (ADM) is adopted to solve the related subproblems. By means of Morozov′s
discrepancy principle, the regularization parameter can be updated adaptively in a closed form in each iteration. Image restoration
experiments indicate that with our strategies, more accurate solutions are achieved, especially for image with high percentage of
pixel values lying on the boundary of the given dynamic range.
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The past few decades have witnessed the mushroom of
the digital image restoration in a variety of fields[1], in-
cluding remote sensing, astronomy, medical imaging, etc.
Generally speaking, during acquisition and transmission,
digital images are often degraded to be defective or even
unusable, due to the defocusing of the lens system, the
relative motion between the camera and the scene, or the
all-pervasive noise. Recovering an estimate of the original
scene from the degraded observation is the aim of image
restoration.

In general, the degradation of an image can be described
as the following linear system. First, the original image
is convolved by a spatially invariant point spread function
(PSF), and then, the result is contaminated with some type
of noise, e.g., Gaussian, Poisson, gamma or impulse noise.
The Gaussian noise is the most frequently used assumption
and it is reasonable in many situations. With the Gaussian
noise and the spatially invariant PSF assumptions, the im-
age restoration task seems easy to accomplish. But un-
fortunately, even if the PSF is known or can be estimated
exactly, the estimation of the original scene is an ill-posed
linear inverse problem (IPLIP), and the solution is highly
sensitive to the noise existing in the observed image. Thus,
the inverse filtering, which tries to directly restore the orig-
inal image, usually results in an estimate of no usability. To
achieve a satisfactory restoration result, some prior knowl-
edge of the original image is required and this results in the
regularization of the IPLIP.

Among various regularization methods, the total-
variation (TV)[2] regularization is remarkable for its attrac-

tive edge preservation ability[2−3]. However, the classical
TV model has not considered the given dynamic range of
a digital image. Actually, the pixels of a digital image can
attain only a finite number of values (e.g., an 8-bit image
can only have 256 gray levels). Thus if one would like to
restore an image within some dynamic range (e.g., in [0,
255]), the imposition of box constraints becomes necessary.
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So far, a few works in the literature have considered the
box constraints[4−8] and some others have considered eas-
ier positive constraints[9−11] in image restoration. As men-
tioned in [8], the restoration result of the box-constrained
TV-regularized method is better than that of the classical
TV-regularized method, especially when there are many
pixels with valves lying on the boundary of the dynamic
range in the original image.

Besides the box constraints, the estimation of the reg-
ularization parameter, which balances the regularization
term and the data-fidelity term, is essential for successfully
solving the TV restoration problem. It is well known that
the solution of the TV model suffers a lot from its nondiffer-
entiability, and the automatic estimation of the regulariza-
tion parameter will bring in much more extra computation
cost. Therefore, most papers in the literature just consid-
ered a fixed regularization parameter which was selected
in a manual way. However, the automatic estimation of
the regularization parameter is essential, because in many
practical application cases, a wholly automatic way but not
a human-computer interaction way is required.

Up to now, some efforts have been made on the au-
tomatic estimation of the regularization parameter[12−20].
Among these methods, Morozov′s discrepancy principle
is a good choice when the noise level is accessible[12−15].
In order to make use of the existing methods with a
fixed regularization parameter, Blomgren and Chan[16] pro-
posed a modular solver. Afonso et al.[14] achieved the
adaptive restoration of the original image, by embedding
Chambolle′s dual method[21] into the alternating direction
method of multipliers (ADMM). In [15], the primal-dual
model of TV was adopted to restore the blurred image
and the Newton′s inner iteration scheme was applied to
update the regularization parameter. The similar use of
the Newton′s iteration scheme can also be found in [12]
and [13]. Although an automatic estimation of the reg-
ularization parameter is achieved in these methods, they
all involve an inner iteration scheme. Thus, much extra
computing cost is introduced.

In this paper, we propose an algorithm to solve the box-
constrained TV restoration problem with automatic regu-
larization parameter estimation. By resorting to the vari-
able splitting technique, the box-constrained TV-regulari-



No. 8 HE Chuan et al.: Box-constrained Total-variation Image Restoration with · · · 1805

zed problem is decomposed into a sequence of subproblems
that are much easier to solve. Then the alternating direc-
tion method (ADM) is used to solve these subproblems. In
each iteration, the regularization parameter is adaptively
updated in a closed form. In fact, our method can also be
seen as an instance of the ADMM.

Two aspects distinguish our method from the other re-
sults in the literature. On the one hand, in contrast with
[4−8], which addressed the box-constrained TV restora-
tion with a fixed predetermined regularization parameter,
our algorithm achieves the automatic estimation of this pa-
rameter. On the other hand, compared with the meth-
ods which adaptively handle the classical TV restoration
problem with inner iterations[12−15], our algorithm allows
the box constraints and updates the parameter in a closed
form. With no inner iteration, the computation cost of our
algorithm is lower compared with algorithms with inner
iterations.

This paper is organized as follows. In Section 1, the prob-
lem formulation is established. Section 2 offers the deriva-
tion leading to the proposed algorithm and some practi-
cal parameter setting tricks. Numerical experiments for
demonstration are presented in Section 3. Finally, Section 4
summarizes this paper.

1 Problem formulation

We assume that the images used throughout this paper
have an m × n domain, and are denoted as mn vectors
formed by stacking up the image matrix rows. Therefore,
the (i, j)th image pixel becomes the ((i−1)×n+j)th entry
of the vector. Then, the image degradation process can be
modeled as the following discrete linear problem

f = Kuclean + n (1)

where f and uclean are vector presentations of the observed
image and original image, respectively; K is the convolution
operator resulted from the spatially invariant PSF, which
is assumed to be known; n is the vector of Gaussian white
noise with variance σ2.

Denote the Euclidean space Rmn as V , and define Q =
V × V . The ith components of x ∈ V and y ∈ Q are de-

noted as xi ∈ R and yi = (y
(1)
i , y

(2)
i )T ∈ R2, respectively.

Define inner products and Euclidean norms in V and Q as

〈x, x〉V =

mn∑
i

xixi, ‖x‖2 =
√
〈x, x〉V

〈y, y〉Q =

mn∑
i

2∑

k=1

y
(k)
i y

(k)
i , ‖y‖2 =

√
〈y, y〉Q (2)

For each u ∈ V , define Diu = [(D(1)u)i, (D(2)u)i]
T, where

D(1), D(2) ∈ Rmn×mn are mn × mn gradient matrices in
the vertical and horizontal directions. Di ∈ R2×mn is a
tow-row matrix formed by stacking the ith rows of D(1)

and D(2) together. Define the global first-order finite dif-
ference operator as D = [(D(1))T, (D(2))T]T ∈ R2mn×mn

and we consider Du ∈ Q. Besides, we assume the periodic
boundary condition of images in this paper.

With the above notations, the box-constrained TV
restoration problem with a fixed regularization parameter
can be described as follows

min
u

mn∑
i

‖Diu‖2 +
λ

2
‖Ku− f‖22 , s.t. u ∈ Ω (3)

where u denotes the estimate of uclean. Ω = {u ∈ Rmn|p
≤ u ≤ q} with p , q ∈ Rmn

+ is the box constraint imposed
on u and it should be interpreted entry-wise. The first term
in (3) is the TV semi-norm of u, whereas the second term
is the data-fidelity term. λ is the so-called regularization
parameter which plays the role of making a compromise
between the TV regularizer and the data-fidelity term.

The adaptive box-constrained TV restoration problem
considered in this paper can be described as follows

min
u

mn∑
i

‖Diu‖2 s.t. u ∈ {Ω ∩Ψ} (4)

where Ψ = {u ∈ Rmn| ‖Ku− f‖22 ≤ c} is the feasible set
constraint in accordance with Morozov′s discrepancy prin-
ciple, where the upper bound c = τmnσ2 is a predeter-
mined noise-dependent parameter. In fact, by the classical
Lagrangian method of multipliers, given a c, there exists a
λ ≥ 0 such that (4) and (3) are equivalent. Further, let
δΩ(u) signify the indicator function of set Ω, i.e., if u ∈ Ω,
δΩ(u) = 0; or else δΩ(u) = ∞. Then, we can rewrite the
adaptive box-constrained TV restoration problem (4) in an
unconstrained form as follows

min
u

mn∑
i

‖Diu‖2 + δΩ (u) + δΨ (u) (5)

2 Methodology

2.1 Variable splitting and augmented Lagrangian
function for TV restoration problem

Although problems (4) and (5) seem simple from ap-
pearance, the solution of them is troublesome due to the
nondifferentiability of the TV norm and the existence of
box constraints. So far, several approaches have been pro-
posed to overcome the nondifferentiability of the TV reg-
ularizer, including time-marching method[2], primal-dual
based algorithms[15, 22], variable splitting schemes[23−27],
etc. Here, we adopt the variable splitting technique and
the following discussion will show its advantage.

Referring to variable splitting, we introduce three auxil-
iary variables, i.e., an auxiliary variable x for liberating Ku
out of the restriction of the discrepancy principle, an aux-
iliary variable y (or yi for Diu, respectively) for liberating
Du out of nondifferentiability, and an auxiliary variable z
for liberating u out of the restriction of the box constraints.
With these three auxiliary variables, the minimization func-
tional (5) is equivalent to the following linear constrained
problem

min
x, y, z

mn∑
i

‖yi‖2 + δΦ (x) + δΩ (z)

s.t. Ku = x, Du = y, u = z (6)

where δΦ(x) is the indicator function of set Φ = {x ∈ Rmn|
‖x− f‖22 ≤ c}. The augmented Lagrangian functional for
minimization problem (6) is defined as

LA (u, x, y, z; µ, ξ, η) = δΦ (x)− µT (x−Ku)+

β1

2
‖x−Ku‖22 +

mn∑
i

‖yi‖2 − ξT(y −Du)+
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β2

2
‖y −Du‖22 + δΩ(z)− ηT (z − u) +

β3

2
‖z − u‖22

(7)

where µ, η ∈ V and ξ ∈ Q are Lagrange multipliers. β1,
β2, and β3 are positive penalty parameters. Denote the
saddle point of LA as (u∗, x∗, y∗, z∗, µ∗, ξ∗, η∗). Then, ac-
cording to the augmented Lagrangian theory, the solution
of problem (6) is equivalent to (u∗, x∗, y∗, z∗).

2.2 Deduction of the proposed algorithm

The augmented Lagrangian method (ALM) iterates be-
tween minimizing LA with respect to (u, x, y, z) (keeping
the multipliers µ, ξ, and η fixed) and updating the mul-
tipliers, until some convergence criterion is satisfied. The
problem yielding (u, x, y, z) exactly in ALM needs an in-
ner iteration scheme. In fact, setting the inner iteration
number to 1 (in this case, the ALM becomes the so-called
ADM) is adequate for the convergence of ALM. Since when
the inner iteration number is larger than 1, the accuracy of
the inner iteration will be wasted by the outer iteration[27].
To find the minimizer of (6), we resort to ADM, and this
yields the iteration scheme as follows

uk+1 = arg min
u

LA

(
u, xk, yk, zk; µk, ξk, ηk

)
(8)

yk+1 = arg min
y

LA

(
uk+1, xk, y, zk; µk, ξk, ηk

)
(9)

xk+1 = arg min
x

LA

(
uk+1, x, yk+1, zk; µk, ξk, ηk

)
(10)

zk+1 = arg min
z
LA

(
uk+1, xk+1, yk+1, z; µk, ξk, ηk

)

(11)

µk+1 = µk − β1

(
xk+1 −Kuk+1

)
(12)

ξk+1 = ξk − β2

(
yk+1 −Duk+1

)
(13)

ηk+1 = ηk − β3

(
zk+1 − uk+1

)
(14)

From the above seven iterative equations, we can find
that only the updating of variable x is restricted to the
discrepancy principle, i.e., only variable x is in relationship
with the regularization parameter λ.

The minimization subproblem (8) with respect to u has
a least-square form style as follows

(
β1

β2
KTK + DTD +

β3

β2
I

)
u =

β1

β2
KT

(
xk − µk

β1

)
+

DT

(
yk − ξk

β2

)
+

β3

β2

(
zk − ηk

β3

)
(15)

so that it has a closed form solution. Under the periodic
boundary condition, matrices K, D(1), and D(2) are block-
circulant, and therefore, they can be diagonalized by the
discrete Fourier transform (DFT) matrix. As mentioned
in [28], equation in the form of (15) can be solved by two
FFTs and one inverse FFT in O(mnlog(mn)) multiplica-
tive operations.

The solution to subproblem (9) with respect to y is given

explicitly by the two-dimensional shrinkage[28]

yk+1
i = max

{∥∥∥∥Diu
k+1 +

ξk
i

β2

∥∥∥∥
2

− 1

β2
, 0

}
×

Diu
k+1 +

ξk
i

β2∥∥∥Diuk+1 +
ξk

i
β2

∥∥∥
2

(16)

where “×” should be interpreted component-wise and the
convention 0 × (0/0) = 0 is assumed. The computational
cost of (16) is linear with mn.

The subproblem with respect to x can be written as

xk+1 = arg min
x

δΦ (x)−
(
µk

)T

x +
β1

2

∥∥∥x−Kuk+1
∥∥∥

2

2
=

arg min
x

λk+1

2
‖x− f‖22 +

β1

2

∥∥∥x− ak+1
∥∥∥

2

2
(17)

where ak+1 = Kuk+1 + µk
/
β1, and λk+1 is the estimated

regularization parameter in the (k + 1)th iteration which
is consistent with the discrepancy principle. It is obvious
that x is λ related, and in each iteration, we should check
whether ‖x− f‖22 ≤ c holds.

The solutions of λk+1 and xk+1 fall into two cases based
on the range of ak+1. On the one hand, if ‖ak+1 − f‖22 ≤ c
holds, we can set λk+1 = 0 and xk+1 = ak+1 according to
the theory of Lagrangian method. On the other hand, if
‖ak+1 − f‖22 > c holds, according to the same theory, we
should solve the following equation

∥∥∥xk+1 − f
∥∥∥

2

2
= c (18)

to make xk+1 satisfy Morozov′s discrepancy principle.
Since the minimization problem (17) is quadratic, it has
a closed form solution as follows

xk+1 =
λk+1f + β1a

k+1

λk+1 + β1
(19)

Substituting xk+1 with (19) into (18), we obtain

λk+1 = β1
‖fff − aaak+1‖2√

c
− β1 (20)

The subproblem of z is given by

zk+1 = arg min
z

δΩ (z)−
(
ηk

)T

z +
β3

2

∥∥∥z − uk+1
∥∥∥

2

2
=

PΩ

(
uk+1 +

ηk

β3

)
(21)

where PΩ denotes the projection operator onto set Ω and
the solution of projection problem can be found in [29].

We summarize the above discussion in the following algo-
rithm named automatic parameter estimation algorithm for
box-constrained total-variation image restoration (APEA-
BCTV).

Algorithm 1. APEA-BCTV (Automatic parame-
ter estimation algorithm for box-constrained total-
variation image restoration)

Input. f , K, c.
1. Initialize u0, x0, y0, z0, µ0, ξ0, η0. Set k = 0, β1,

β2, β3 > 0.
2. While stopping criterion is not satisfied, do
3. Compute uk+1 according to (15);
4. Compute yk+1 according to (16);

5. If
∥∥ak+1 − f

∥∥2

2
≤ c holds then

6. λk+1 = 0 and xk+1 = ak+1;
7. Else
8. Update λk+1 and xk+1 according to (20) and (19);
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9. Compute zk+1 according to (21);
10. End if
11. Update µk+1, ξk+1, and ηk+1 according to (12),

(13), and (14);
12. k = k + 1;
13. End while
14. Return λk+1 and uk+1.

In Algorithm 1, by introducing the auxiliary variable
x, we achieve the automatic update of λ without any in-
ner iteration. This point makes our algorithm different
from those in [12−16], which introduce inner iterations to
achieve the update of the regularization parameter. Be-
sides, by introducing y and z, the TV norm is liberated
out from nondifferentiability and variable u is liberated out
from the box constraints. All these efforts simplify the solv-
ing of the box-constrained TV restoration problem.

The procedure for solving (15) corresponding to the u
subproblem in the proposed algorithm consumes the most
calculation, and therefore, the calculation cost of our algo-
rithm is O(mnlog(mn)) multiplicative operations. In fact,
our algorithm is an instance of the classical ADMM, so its
convergence can be guaranteed by the theorem of Wu and
Tai in [27]. We summarize the convergence of the proposed
algorithm by the following theorem.

Theorem 1. Given β1, β2, β3 > 0, the sequence {uk,
xk, yk, zk, µk, ξk, ηk, λk} generated by Algorithm 1 from
any initial point converges to (u∗, x∗, y∗, z∗, µ∗, ξ∗, η∗,
λ∗), where (u∗, x∗, y∗, z∗, µ∗, ξ∗, η∗) is a saddle point of
LA with λ = λ∗. In particular, (u∗, x∗, y∗, z∗) is a solution
of functional (6), u∗ is the minimizer of functional (4), and
λ∗ is the Lagrange multiplier corresponding to constraint
u ∈ Ψ.

The proof of Theorem 1 is similar to Wu and Tai′s
convergence analysis for the classical ADMM. For simplic-
ity, we do not repeat the lengthy deduction process here.
However, we still emphasize the importance of Theorem 1,
since it theoretically guarantees the convergence of APEA-
BCTV.

2.3 Parameter setting

The noise-dependent upper bound c in the minimization
functional (4) plays a very important role, since a good
choice of this parameter suppresses the error between the
original image and the restored image. As described above,
c = τmnσ2. Although many methods are available to esti-
mate the noise variance, to our knowledge, the selection of
c is still a pendent problem up to now, since the identifica-
tion of parameter τ is much more difficult. Setting τ = 1
has been a custom choice, but this choice may result in
oversmoothed solution while the noise level is not high[15].
In this paper, by fitting experimental data with a straight
line, we suggest setting

τ = −0.006× BSNR + 1.09 (22)

A similar setting strategy can be found in [14]. In (22), the
blurred signal-to-noise ratio (BSNR) is defined as follows

BSNR = 10lg

∥∥f − f̄
∥∥2

2

mnσ2
(23)

where f̄ denotes the mean of the observed image f . With
the setting of parameter τ , the upper bound c can be easily
calculated through c = τmnσ2.

Besides the choice of the upper bound c, the setting of
parameters β1, β2, and β3 is important to our algorithm.

By a large number of experiments, we suggest setting β1

= β3 = 3β2, where β2 = 1. In fact, β1 = β2 = β3 > 0
is sufficient for the convergence of the proposed algorithm.
However, by setting β1 = β3 = 3β2, our algorithm can re-
sult in a more attractive result. Similar parameter settings
can be found in some other ADMM based algorithms[8].

3 Numerical experiments

In this section, numerical experiments are presented to
examine the applicability of the proposed algorithm to dif-
ferent varieties of images, different types of blur kernels, as
well as different levels of noise. The experiments are per-
formed under Matlab v7.8.0 and Windows 7 on a PC with
Intel Core (TM) i5 CPU (3.20GHz) and 8GB of RAM.
The quality of the restoration results is measured by the
improved signal-to-noise ratio (ISNR) defined as follows

ISNR = 10lg
‖f − uclean‖22
‖u− uclean‖22

(24)

The four test images are 256 × 256 images shown in
Fig. 1. Their pixel values are all scaled to the interval [0,
255], and therefore, for the box constraints, we have p = 0
and q = 255. The percentages of extreme-value pixels in
the four test images, i.e., pixels with value 0 or 255, are
100%, 89.81 %, 28.87 %, and 0%, respectively.

(a) Text (b) Satellite

(c) Fingerprint (d) Cameraman

Fig. 1 Test images

We compare APEA-BCTV with the other three TV-
based methods. The first one is also an ADMM based
box-constrained algorithm denoted by CTY[8]. The ma-
jor difference between our algorithm and CTY is that, our
algorithm achieves the automatic estimation of the regular-
ization parameter so that it can operate without manual in-
terference, whereas the regularization parameter in CTY is
predetermined manually by try-and-error. The second one
is a simplified edition of the APEA-BCTV with no box con-
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straints, denoted by APEA-TV. The deduction of APEA-
TV is similar to that of APEA-BCTV, and for simplicity,
we do not give it here. The third one is a primal-dual model
based method with automatic regularization parameter es-
timation but without box constraints, denoted by Wen and
Chan[15]. The code for CTY was coded by us and the code
for Wen and Chan was provided by the authors.

We make use of the Matlab commands “fspecial (Gaus-
sian, [9 9], 3)” and “fspecial (average, 9)” to blur the four
test images first. Then the solutions are further corrupted
by Gaussian noise such that the BSNRs of the observed im-
ages are 20 dB, 30 dB, and 40 dB, respectively. The stop-
ping criterion for all methods is ‖uk+1 − uk‖22 /‖uk‖22 ≤
10−6 or the number of iterations is larger than 1 000, where
uk is the restored image in the kth iteration.

Tables 1 and 2 present the ISNRs and the runtimes of
the different algorithms under the Gaussian blur and the
average blur, respectively. We use the bold type numbers
to represent the best results. From Table 1, we observe
that under the Gaussian blur, APEA-BCTV is competitive
with CTY in terms of ISNR and both are better than the
other two algorithms without box constraints. Under the

average blur in Table 2, APEA-BCTV does not perform
as well as CTY in terms of ISNR but the results of the
two algorithms are close. We should emphasize that when
executing CTY, one should try many times to find the ap-
proximately optimal regularization parameter to guarantee
the accuracy of the solution. This work will cost much more
extra time, since the regularization parameter is sensitive
to image type, blur kernel, and noise level. For instance,
under the average blur, we should set the regularization
parameter as large as 2 000 for “cameraman” image with a
BSNR of 40 dB, but as little as 5 for “satellite” image with a
BSNR of 20 dB for CTY. Besides, adjusting the regulariza-
tion parameter manually is not allowed in many practical
applications. Compared with CTY, APEA-BCTV selects
the regularization parameter adaptively. If we treat the IS-
NRs produced by CTY as the reference, the ISNRs given
by APEA-BCTV are reasonable enough.

Tables 1 and 2 also show that box constraints are much
more effective and necessary for image whose percentage
of extreme-value pixels is high, such as images “text” and
“satellite”. In particular, for image “text” blurred by the
average kernel with a BSNR of 40 dB, the restored ISNRs

Table 1 Comparison in terms of ISNR and runtime for image restorations from Gaussian blurring observations

ISNR (dB) Runtime (s)

BSNR (dB) Images APEA-BCTV CTY APEA-TV Wen and Chan APEA-BCTV CTY APEA-TV Wen and Chan

(a) 6.24 6.26 4.05 4.09 13.18 11.18 5.17 17.12

(b) 3.74 3.67 3.07 2.76 12.54 10.90 2.98 16.74
20

(c) 4.18 4.22 4.06 3.90 11.45 9.82 4.24 16.62

(d) 2.72 2.70 2.64 2.58 10.51 8.92 1.70 16.08

(a) 11.18 11.21 7.04 7.38 13.38 11.81 4.71 16.95

(b) 4.62 4.71 3.97 3.53 13.32 11.38 2.67 16.37
30

(c) 6.52 6.46 6.41 6.05 11.24 9.92 3.77 16.59

(d) 4.23 4.08 4.18 4.05 10.46 8.82 1.50 10.64

(a) 17.70 18.83 10.43 11.39 13.40 11.83 4.77 15.02

(b) 6.65 6.62 5.24 5.23 12.96 11.53 2.46 16.29
40

(c) 9.43 9.46 9.41 8.56 11.43 9.68 3.18 16.25

(d) 6.34 6.34 6.33 6.21 10.36 8.84 1.30 8.51

Table 2 Comparison in terms of ISNR and runtime for image restorations from average blurring observations

ISNR (dB) Runtime (s)

BSNR (dB) Images APEA-BCTV CTY APEA-TV Wen and Chan APEA-BCTV CTY APEA-TV Wen and Chan

(a) 9.05 9.24 6.01 6.24 13.00 11.69 5.67 17.05

(b) 4.46 4.50 3.79 3.78 12.77 11.01 2.73 16.82
20

(c) 4.09 4.27 3.85 3.87 11.10 9.82 3.23 16.31

(d) 3.93 3.91 3.92 3.85 10.55 8.77 1.61 13.48

(a) 17.37 17.26 10.21 10.71 13.50 10.44 4.61 13.95

(b) 6.06 6.25 5.51 5.41 13.08 11.64 2.43 15.73
30

(c) 7.07 7.15 6.63 6.45 11.20 9.94 3.01 16.18

(d) 5.92 5.92 5.89 5.86 8.10 8.80 1.40 8.91

(a) 26.79 27.35 16.41 16.10 13.53 11.84 1.30 9.63

(b) 9.30 9.29 7.72 7.83 13.06 10.96 2.16 8.35
40

(c) 10.41 10.85 10.05 10.03 11.54 9.72 2.38 10.33

(d) 8.62 8.65 8.60 8.46 7.26 8.80 1.27 6.14
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of APEA-BCTV and CTY are at least 10 dB higher than
those of APEA-TV and Wen and Chan. For image “satel-
lite” blurred by the Gaussian kernel with a BSNR of 20 dB,
the gain in ISNR of algorithm CTY over the other two al-
gorithms is still at least 0.6 dB, which is the least for images
“text” and “satellite”. In contrast, for test images “finger-
print” and “cameraman”, whose percentages of extreme-
value pixels are not high, the gain in ISNR of APEA-BCTV
or CTY over APEA-TV or Wen and Chan is not obvious
in most cases.

Furthermore, in terms of speed, APEA-TV outperforms
the other three remarkably. The proposed APEA-BCTV is
a little slower than CTY, since the estimation of the reg-
ularization parameter costs some extra time. The reason
why APEA-BCTV and CTY are much slower than APEA-
TV is obvious: the box constraints make the convergence
slower. Compared with Wen and Chan, APEA-BCTV is
faster in most cases, since Wen and Chan involves inner
iterations to achieve the automatic estimation of the reg-
ularization parameter, whereas APEA-BCTV involves no
inner iteration.

Fig. 2 shows the observed “text” image blurred by the
Gaussian kernel with a BSNR of 20 dB, and the restored
results of the four algorithms. From Fig. 2, we can visu-
ally find that the restorations of APEA-BCTV and CTY
are on the same level, both remarkably outperforming the
restorations of APEA-TV and Wen and Chan. The similar
phenomenon can be found in the other restoration results
of images “text” and “satellite”. This illustrates the effec-
tiveness of box constraints for image with high percentage
of extreme-value pixels. On the contrary, the results shown
in Fig. 3 indicate that the gain in ISNR and visual quality
of box constraints over no box constraint is not obvious for
the test image “cameraman”, which possesses a 0 % per-
centage of extreme-value pixels.

(a) Blurred (b) APEA-BCTV

(c) CTY (d) APEA-TV

(e) Wen and Chan

Fig. 2 Observed and restored “text” images ((a) observed

“text” image which is degraded by a 9 × 9 Gaussian blur with

a BSNR of 20 dB, and the restored images by (b)

APEA-BCTV, (c) CTY, (d) APEA-TV and (e) Wen and

Chan, with ISNRs of 6.24 dB, 6.26 dB, 4.05 dB, and 4.09 dB,

respectively.)

(a) Blurred (b) APEA-BCTV

(c) CTY (d) APEA-TV

(e) Wen and Chan

Fig. 3 Observed and restored “cameraman” images ((a)

observed “cameraman” image which is degraded by a 9 × 9

average blur with a BSNR of 30 dB, and the restored images by

(b) APEA-BCTV, (c) CTY, (d) APEA-TV and (e) Wen and

Chan, with ISNRs of 5.92 dB, 5.92 dB, 5.89 dB, and 5.86 dB,

respectively.)
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4 Conclusion

We have developed an ADMM based algorithm to au-
tomatically solve the TV image restoration problem with
box constraints. Unlike the existing methods dealing with
box constraints, our algorithm achieves the automatic es-
timation of the regularization parameter without inner it-
eration. In each iteration, the update of the regulariza-
tion parameter is in a closed form. Numerical experiments
in image restoration indicate that our algorithm produces
more accurate solutions, especially for those images with
high percentages of extreme-value pixels.
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