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Statistical χχχ
2 Testing Based Fault Detection for Linear

Discrete Time-delay Systems

LIU Bo-Ang1 YE Hao2

Abstract This paper is concerned with statistical χ2 testing based fault detection (FD) for a class of linear discrete time-varying
(LDTV) stochastic systems with delayed state. Different from the traditional residual based FD, we propose to construct the
evaluation function by directly using measurement observations. Then an equivalent solution can be given in terms of Riccati
recursion by utilizing projection and innovation analysis technique. Moreover, the fault free case evaluation function is with central
χ2 distribution and the heavy computational burden is reduced. Furthermore, strategies of χ2 statistic testing on evaluation function
are also discussed. Finally, a numerical example is given to illustrate the proposed method.
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Research on model-based fault detection and isolation
(FDI) has received much attention during the past three
decades; see for example [1−10] and references therein.
Generally speaking, model-based FD consists of two stages,
i.e., the residual generation and the residual evaluation. As
summarized in [1−2], the first and important task is to de-
sign a fault detection filter (FDF) by maximizing the sen-
sitivity of residual to fault and simultaneously minimizing
the robustness of residual to unknown input. Then a fault
indicator can be delivered by comparing a chosen residual
evaluation function with a prescribed threshold.

Under the assumption of unknown input being Gaussian
noise, the well known Kalman filter is a suitable choice of
residual generator. Then a statistical testing of whiteness,
mean and covariance of the residual can be used to detect
the occurrence of a fault[3]. In [11], a least square based
residual generation and matching approach was proposed
for a class of discrete time-varying networked sensing sys-
tems with incomplete measurements.

For linear systems subject to l2-norm bounded unknown
input, much attention has been paid to residual genera-
tion in the framework of H∞ filtering or H∞ optimization.
The former one was to formulate the design of FDF as an
standard H∞ filtering in the sense of minimizing the L2-
induced gain from the unknown input to the error between
the residual and the fault[12−16] . The another one was to
define the sensitivity and robustness as an H− index or H∞

norm and formulated the underlying FD problem as an H∞

optimization; see e.g. [17−25]. In [18], a unified solution
was proposed to the H∞/H∞ and/or H−/H∞ optimization
problem and, through co-inner-outer factorization, a resid-
ual generator was given in terms of Riccati equation. In [19]
and [24], optimal solutions of H−/H∞ and H∞/H∞ were
obtained for LDTV systems. An Krein space approach was
proposed for robust H∞ FD and a solution of FDF was
given in terms of Riccati recursion[25].

On the other hand, time-delays are frequently en-
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countered in practical control systems and efforts have
been paid to the investigation of H∞ FD for time-delay
systems[26−31]. In [27] and [30−31], the problem of FD,
estimation, and compensation for time-delay systems were
dealt with. Reference [32] dealt with the problem of fi-
nite horizon H∞ fault estimation for linear discrete time-
varying (LDTV) systems with delayed states by using linear
projection in Krein space, while [33] concerned only the de-
lay of measurement output. It should be pointed out that
the existing results of FD for linear time-delay systems con-
cern with norm bounded unknown input and most of the
focuses are on residual generation. The problem of FD for
networked systems subject to time-delays was investigated
in [34−38]. By considering the main purpose of FD, i.e.,
delivering a fault indicator after its occurrence, a nature
idea is to generate evaluation function directly in the first
stage and perform FD as statistical testing in the second
stage, and this motivates the present study.

This paper is concerned with FD for a class of LDTV
stochastic systems with delayed state. Different from tra-
ditional residual based FD, we will first consider to directly
generate an evaluation function by using a quadratic form
of measurement observations. Under the assumption of un-
known input being jointly normal distributed, the evalua-
tion function will be proved to be central χ2 distribution
and, by using projection and innovation analysis, the evalu-
ation function for LDTV systems with delayed state will be
given in terms of Riccati recursion. Similar to the statistical
testing of residual, the χ2 statistical testing of evaluation
function will also be discussed for detecting the occurrence
of a fault. A numerical example will be given to show the
effectiveness of the proposed method.

Notation. Through out the paper, E [·] denotes expec-
tation of [·]. Superscripts “−1” and “T ” stand for the
inverse and transpose of a matrix, respectively. R

n×m is
the set of all n × m real matrices. I is the identity ma-
trix with appropriate dimensions. For a real symmetric
matrix P , P > 0 (respectively, P < 0) means that P is
a real positive definite (respectively, negative definite) ma-
trix. diag{·} denotes a block-diagonal matrix. L{·} denotes
the linear space spanned by sequence {·}. For zero mean
stochastic vectors α and β, 〈α, β〉 stands for the covariance
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matrix and Rα = 〈α, α〉.

1 Problem formulation

Consider the following LDTV system with delayed state


















x(k + 1) = A(k)x(k) + Aτ (k)x(k − τ )+

Bd(k)d(k) + Bf (k)f(k)

y(k) = C(k)x(k) + v(k) + Df (k)f(k)

x(0) = x0, x(k) = 0, for k < 0

(1)

where x(k) ∈ R
n, y(k) ∈ R

m, d(k) ∈ R
q , v(k) ∈ R

m

and f(k) ∈ R
p are the state, measurement output, pro-

cess noise, measurement noise and fault to be detected,
respectively; τ > 0 is the state delay which is an inte-
ger; f(k) ∈ l2 [0, N ]; A(k), Aτ (k), Bd(k), Bf (k), C(k) and
Df (k) are known matrices with appropriate dimensions.
The initial state x0 and d(k), v(k) are assumed to be zero
mean and normally distributed vectors with

〈





x0

d(k)

v(k)



 ,





x0

d(j)

v(j)





〉

= diag{P0, R(k)δkj , Q(k)δkj}

(2)

where δkj = I for k = j, δkj = 0 for k 6= j.
Define

fN =
[

fT(0) fT(1) · · · fT(N)
]T

dN =
[

dT(0) dT(1) · · · dT(N)
]T

vN =
[

vT(0) vT(1) · · · vT(N)
]T

yN =
[

yT(0) yT(1) · · · yT(N)
]T

The state transition matrix of system (1) can be given by



















Φ(i + 1, j) = A(i)Φ(i, j) + Aτ (i)Φ(i − τ, j),

i = 0, 1, · · · , N − 1, j ≥ 0

Φ(m, n) = 0, m < n

Φ(m, n) = I, m = n

(3)

Let

H0 =















C(0)

C(1)Φ(1, 0)

C(2)Φ(2, 0)
...

C(N)Φ(N, 0)















HdN = [hdN (i, j)](N+1)×(N+1)

HfN = [hfN (i, j)](N+1)×(N+1)

with

hdN (i, i) = 0, hfN (i, i) = Df (i − 1)

for i = 1, 2, · · · , N + 1, and

hθN (i, j) = C(i − 1)Φ(i − 1, j)Bθ(j − 1)

for i > j = 2, 3, · · · , N + 1; θ = d, f in sequence. We can
rewrite (1) in the following form

yN = H0Nx0 + HdNdN + HfNfN + vN (4)

Under the assumption of x0, d(k), v(k) being jointly nor-
mal distribution with (2) and f(k) = 0, the yN is with
normal distribution and has the following properties:

E [yN ] = E [H0Nx0 + HdNdN + vN ] = 0 (5)

RyN
=

[

H0N HdN I
]

×




P0 0 0

0 RN 0

0 0 QN









HT
0

HT
dN

I



 (6)

where

RN = diag{R(0), R(1), · · · , R(N)}

QN = diag{Q(0), Q(1), · · · , Q(N)}

Without loss of generality, it is assumed that RyN
is

invertible. Introduce

JN = yT
NR−1

yN
yN (7)

Recall that yN is normally distributed and satisfies (5) and
(6) if the fault is not taken into account. So, in the case of
no fault, the JN follows central χ2 distribution with free-
dom degrees of (N + 1)m. In the faulty case, however, the
mean of yN may not be zero and the distribution of yN

may be changed also. Thus the faulty case JN does not
have the central χ2 distribution. Therefore, we can use JN

as an evaluation function and develop FD strategies based
on statistical χ2 testing of JN .

Moreover, it should be pointed out that the online com-
putation burden of such an evaluation function is heavy.
Especially, it is not an easy task to implement online FD
for LDTV systems with delayed state with the increasing
of N . To overcome this problem, techniques of orthogonal
projection and innovation analysis in [39] will be applied.

Given measurement observations {y(k)}N
k=0, we now for-

mulate the problem of FD as: 1) to find a projection of
x(k) on space spanned by {y(j)}k

j=0 and calculate JN on-
line in terms of Riccati recursion; 2) to perform FD by
using statistical χ2 testing of JN .

Remark 1. Different from the traditional FD for LDTV
systems with time delay, it is novel to generate the evalu-
ation function by directly using quadratic form (7) instead
of residual generation as usual. There is no doubt that the
online calculation of JN is a heavy burden for time-delay
systems with the increasing of N . So, it will be of signif-
icance to derive the recursive computation of JN by using
projection and innovation analysis.

2 Main results

To overcome the heavy computation problem of JN

in (7), orthogonal projection on linear space spanned by
{y(i)}k

i=0 will be first considered. Denote by x̂(j|k) the
projection of x(j) (j = k − τ, k − τ + 1, · · · , k, k + 1) onto
the linear space spanned by L{y(i)}k

i=0. Let

x̂(k + 1) = x̂(k + 1|k)

Define innovations as

e(j) = x(j) − x̂(j|k) (8)

P (k) = 〈e(k), e(k)〉 (9)

P (j, i) = 〈e(j), e(i)〉, for i 6= j (10)

ỹ(k) = y(k) − C(k)x̂(k) (11)
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Rỹ(k) = 〈ỹ(k), ỹ(k)〉 (12)

It is known from [39] that the innovation sequence {ỹ(i)}k
i=0

forms an orthogonal basis of linear space L{y(i)}k
i=0 and

L{ỹ(i)}k
i=0 = L{y(i)}k

i=0

Hence, the projection x̂(k + 1) can be calculated by

x̂(k + 1) =
k

∑

i=0

〈x(k + 1), ỹ(i)〉R−1
ỹ (i)ỹ(i) =

k−1
∑

i=0

〈x(k + 1), ỹ(i)〉R−1
ỹ (i)ỹ(i) +

〈x(k + 1), ỹ(k)〉R−1
ỹ (k)ỹ(k) =

A(k)x̂(k) + Aτ (k)x̂(k − τ ) + Kp(k)ỹ(k) +

Aτ (k)

k−1
∑

i=k−τ

Kτ (i)ỹ(i) (13)

x̂(i) = 0, i ≤ 0 (14)

where

Kp(k) = 〈x(k + 1), ỹ(k)〉R−1
ỹ (k) =

(A(k)Θ(k) + Aτ (k)Θτ (k))R−1
ỹ (k)

Kτ (i) = 〈x(k − τ ), ỹ(i)〉R−1
ỹ (i) =

Θτ (k, i)R−1
ỹ (i)

Rỹ(i) = C(i)P (i)CT(i) + Q(i)

Θ(k) = 〈x(k), ỹ(k)〉 = P (k)CT(k)

Θτ (k) = 〈x(k − τ ), ỹ(k)〉 = P (k − τ, k)CT(k)

Θτ (k, i) = 〈x(k − τ ), ỹ(i)〉 = P (k − τ, i)CT(i),

i = k − τ, k − τ + 1, · · · , k

It follows from (1) and (8)∼ (14) that














e(k + 1) = A(k)e(k) + Aτ (k)e(k − τ ) + Bd(k)d(k)−

Kp(k)ỹ(k) − Aτ (k)
k−1
∑

i=k−τ

Kτ (i)ỹ(i)

ỹ(i) = C(i)e(i) + v(i), i = k − τ, k − τ + 1, · · · , k

(15)

Moreover, P (k + 1) can be given by

P (k + 1) = 〈e(k + 1), e(k + 1)〉 =

A(k)P (k, k + 1) + Aτ (k)P (k − τ, k + 1) +

Bd(k)R(k)BT
d (k)−

Kp(k)C(k)P (k, k + 1)−

Aτ (k)

k−1
∑

i=k−τ

Kτ (i)C(i)P (i, k + 1) (16)

where

P (i, k + 1) = 〈e(i), e(k + 1)〉 =

P (i, k)AT(k) + P (i, k − τ )AT
τ (k)−

P (i, k)CT(k)KT
p (k)−

k−1
∑

j=k−τ

P (i, j)CT(i)KT
τ (i)AT

τ (k) (17)

P (k, k + 1) = 〈e(k), e(k + 1)〉 =

P (k)AT(k) + PT(k − τ, k)AT
τ (k)−

Θ(k)KT
p (k) (18)

P (k − τ, k + 1) = 〈e(k − τ ), e(k + 1)〉 =

P (k − τ, k)AT(k) +

P (k − τ )AT
τ (k) − Θτ (k)KT

p (k)−

k−1
∑

i=k−τ

Θτ (k, i)KT
τ (i)AT

τ (k) (19)

Recall that

ŷ(k) = Proj{y(k)|L{y(i)}k−1
i=0 } =

Proj{y(k)|L{ỹ(i)}k−1
i=0 } =

k−1
∑

i=0

〈y(k), ỹ(i)〉R−1
ỹ (i)ỹ(i)

y(k) = ŷ(k) + ỹ(k) =
[

lk,1 lk,2 · · · lk,k−1 I
]

ỹk

where

lk,i = 〈y(k), ỹ(i)〉R−1
ỹ (i), k = 1, 2, · · · , N ; i ≤ k − 1

We then have

yN = LN ỹN (20)

RyN
= 〈yN , yN〉 = LN 〈ỹN , ỹN〉LT

N = LNRỹN
LT

N (21)

where LN is given by

LN =











I 0 0 0

l2,1 I 0 0
...

. . .
. . .

...

lN+1,1 · · · lN+1,N I











(22)

with

li,j = 〈y(i), ỹ(j)〉R−1
ỹ (j), i = 2, 3, · · · , N + 1; j < i

and RỹN
is block diagonal with

RỹN
= diag{Rỹ(0), Rỹ(1), · · · , Rỹ(N)} (23)

Substituting (20)∼ (23) to (7) yields

JN = ỹT
NLT

NR−1
yN

LN ỹN = ỹT
NR−1

ỹN
ỹN =

N
∑

k=0

ỹT(k)R−1
ỹ (k)ỹ(k) (24)

When a fault is taken into account, the JN can be calcu-
lated by (24) with















x̂(k + 1) = A(k)x̂(k) + Aτ (k)x̂(k − τ )+

Aτ (k)
k−1
∑

i=k−τ

Kτ (i)ỹ(i) + Kp(k)ỹ(k)

ỹ(i) = y(i) − C(i)x̂(i), k − τ ≤ i ≤ k

(25)

where Kp(k), Kτ (i), i = k − τ, k − τ + 1, · · · , k − 1 are
calculated by
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Kp(k) = (A(k)P (k)CT(k) +

Aτ (k)P (k − τ, k)CT(k))R−1
ỹ (k) (26)

Kτ (i) = P (k − τ, i)CT(i)R−1
ỹ (i) (27)

Rỹ(k) = C(k)P (k)CT(k) + Q(k) (28)

and P (k) is given by (16)∼ (19).
Based on the above analysis, the determination of eval-

uation function for FD can be summarized as the following
theorem.

Theorem 1. Given observations {y(k)}N
k=0, if there ex-

ists P (k) given by (16)∼ (19) such that Rỹ(k) = C(k) ×
P (k)CT(k) + Q(k) > 0, then JN can be calculated by

JN =
N

∑

k=0

ỹT(k)R−1
ỹ (k)ỹ(k) (29)

where ỹ(k) is generated by (25) with (16)∼ (19) and (26)∼
(28).

So far, we have derived a feasible evaluation function for
FD. The remaining task is decision making, which consists
of the choice of threshold and logic unit. Similar to the
statistical testing of residuals in [3], the occurrence of a
fault can be detected based on χ2 testing.

For this purpose, we rewrite (25) in the following form










































e(k + 1) = (A(k) − Kp(k)C(k))e(k) + Aτ (k)e(k − τ )−

Aτ (k)
k−1
∑

i=k−τ

Kτ (i)C(i)e(i) +

Bd(k)d(k) + (Bf (k) − Kp(k)Df (k))f(k)−

Kp(k)v(k) − Aτ (k)
k−1
∑

i=k−τ

Kτ (i)v(i)

ỹ(k) = C(k)e(k) + v(k)

It is easy to see that under the assumption of d(k) and
v(k) being jointly normally distributed and satisfying (2),
the elements of fault free case ỹ(k) are jointly normally
distributed with

E [ỹ(k)] = 0

Rỹ(k) = C(k)P (k)CT(k) + Q(k)

〈ỹ(i), ỹ(j)〉 = 0, i 6= j

Therefore, in the case of no fault, both the statistics
ỹ(k)TR−1

ỹ (k)ỹ(k) and JN follow the central χ2 distribution
with degrees of freedom m and (N + 1)m, respectively.

On the other hand, if the fault free case evaluation func-
tion follows the central χ2 distribution with degree of free-
dom β, then a corresponding threshold with the false alarm
rate ε can be chosen as Jth = χ2

β,ε. Finally, the fault de-
tection test can be performed as the following statistic χ2

testing
{

if Je < χ2
β,ε, then no fault

if Je ≥ χ2
β,ε, then fault alarm

(30)

Similar to the case of statistical testing of residual in [3], the
following three alternative strategies of FD are considered
in this paper.

1) Single observation. For the given false alarm rate ε
> 0, choose the evaluation function Je(k) and threshold
Jth(k) as

{

Je(k) = ỹT(k)R−1
ỹ (k)ỹ(k)

Jth = χ2
m,ε

(31)

where Rỹ(k) is given in (25).
2) Observation sequence. Choose the evaluation function

JeN and threshold Jth as
{

Jek = ỹT
k R−1

ỹk
ỹk

Jth(k) = χ2
(1+k)m,ε

(32)

3) Window average of observations. Choose the evalua-
tion function JeN,a and threshold Jth,a as







Jek,a =
1

k + 1
ỹT

k R−1
ỹk

ỹk

Jth,a = χ2
m,ε

(33)

Remark 2. When a residual signal r(k) is chosen as

r(k) = R
−1/2
ỹ (k)ỹ(k), it is easy to have

JN =

N
∑

k=0

rT(k)r(k)

Moreover, the fault free case r(k) is jointly normally dis-
tributed with

E [r(k)] = 0, 〈r(k), r(k)〉 = I

In this case, one can further use the strategy in [3] to de-
tect the occurrence of the fault, i.e. statistical testing of
residual. Note that the main focus of this paper is the
evaluation function JN , but most of the existing results are
concerned with the residual r(k) or ỹ(k). From this view-
point, we call the case of this paper the evaluation function
based FD, while the conventional one as in [3] the residual
based FD.

Remark 3. It is easy to see that (25) with r(k) =

R
−1/2
ỹ (k)ỹ(k) can be used as an observer-based FDF for

the LDTV time-delay systems (1). Different from the
most existing results for time-delay systems, not only the
current innovation ỹ(k), but also the delayed innovations
{ỹ(i)}k−1

i=k−τ are considered in (25).

3 A numerical example

Consider system (1) with the following parameters

A(k) =

[

1.8e−k 0.2 sin(k)

0 0.6

]

Aτ (k) =

[

0.7 0.3 cos(k)

0 0.9

]

Bf (k) =

[

0.9

1.8

]

Bd(k) =

[

0.3

0.7

]

C(k) =
[

1.4 2.8
]

Df (k) = 0

Set τ = 2, P (0) = I , and P (0, i) = 0, i = 1, 2, 3. Suppose
that the process noise d(k) and the measurement noise v(k)
follow normal distribution with zero mean and variance 1.
The fault f(k) is simulated as
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f(k) =











−1, k = 20 ∼ 40

1, k = 60 ∼ 80

0, otherwise

To detect the occurrence of a fault, the first step is to gener-
ate JN online by using Theorem 1. The next step is the so
called χ2 statistical testing. An acceptable false alarm rate
is supposed to be 0.1. The above discussed three testing
strategies are considered as follows.

1) Single observation. The fault free case and faulty
case evaluation functions are calculated by (31), i.e., the
J0(k) and Je(k) shown in Fig. 1. Recall that J0(k) follows
the central χ2 distribution with degrees of freedom 1. The
threshold is chosen as Jth = χ2

1,0.1 = 2.7055. The result in
Fig. 1 has shown that both false alarms and missed fault
alarm exist in this case.

Fig. 1 The evaluation functions J0(k) and Je(k)

2) Observation sequence. The fault free case and faulty
case evaluation functions are calculated online by (32), i.e.,
the J0k and Jek shown in Fig. 2. Recall that J0k follows the
central χ2 distribution with degree of freedom k + 1. The
threshold is chosen as Jth(k) = χ2

k+1,0.1, i.e., the dash dot
line in Fig. 2. It is easy to see that, in the faulty case, the
fault alarm has 5 steps of delay and the fault alarm is not
cleared away even if f(k) is 0 for 41 ≤ k ≤ 59 and 81 ≤ k
≤ 100. Meanwhile, only a few false alarms appear in the
fault free case.

Fig. 2 The evaluation functions J0k and Jek

3) Window average of observations. The fault free case
and faulty case evaluation function are calculated online
by (33), i.e., the J0k,a and Jek,a shown in Fig. 3. Recall
that J0k,a follows the central χ2 distribution with degree
of freedom 1. The threshold is chosen as Jth,a = χ2

1,0.1 =
2.7055. It is seen from the result in Fig. 3 that in the faulty
case, the fault alarm is delivered at k = 29 and is not
cleared away even if f(k) being 0 for 41 ≤ k ≤ 59 and 81
≤ k ≤ 100. Meanwhile, there is no false alarm in the fault
free case.

Fig. 3 The evaluation functions J0k,a and Jek,a

Remark 4. It should be pointed out that the available
χ2 statistical testing strategies are not unique. In practi-
cal applications, we may choose one of them based on the
trade-off between false alarm rate and missed alarm rate.

Remark 5. The residual mentioned in Remark 2 is also
calculated and shown in Fig. 4.

Fig. 4 The residuals r0(k) and r(k)

Since the fault free case residual follows zero mean nor-
mal distribution with variance 1, one can perform FD by
using the statistical testing of residual r(k) as in [3]. For
simplicity, more details are not discussed here.

Remark 6. Using the single observation strategy, the
occurrence of a fault can be detected in time, but false
alarm is unavoidable. Meanwhile, the observation se-
quences and window average of observations strategies test
the existence of fault over the considered time window, but
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the missed alarm is cleared at the start of fault happen-
ing. Moreover, the fault alarm can not stop in time even
the fault disappears. So, for the purpose of practical appli-
cation, a trade-off of false alarm and missed alarm rate is
necessary.

4 Conclusion

In this paper, a statistical χ2 testing based approach to
FD has been proposed for a class of LDTV systems with
delayed state and normally distributed noises. Under the
assumption of process and measurement noises being with
jointly normal distribution, a quadratic form of fault free
case measurement output follows a central χ2 distribution
and, therefore, can be used as an evaluation function of FD.
To reduce the heavy online computational burden, orthog-
onal projection and innovation analysis techniques are ap-
plied and, based on this, an available solution is obtained by
recursively computing Riccati recursions. To detect the oc-
currence of a fault, three strategies of statistical χ2 testing
of evaluation function and decision making are discussed.
Finally, a numerical example is given to illustrate the de-
veloped method.
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