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Convergence Analysis of

ARD Algorithm

CHENG Guang-Hui1

Abstract A convergence analysis of the altering row diagonal-
ization (ARD) algorithm is made in this paper. Based on the
convergence analysis, we present some advice on how to choose
the initial matrix, and give a new terminal condition of the al-
gorithm. For cross validating our analysis, three examples are
also given.
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Joint diagonalization algorithms of a set of matrices
have attracted much attention for the last twenty years
within the fields of principle components estimation[1],
blind beamforming[2, 3], blind source separation (BSS)[4, 5],

frequency estimate[6], independent component analysis
(ICA)[7], and so on. Many algorithms[8−15] were proposed
for the so-called joint diagonalization problem. This prob-
lem can be described as follows.

Given a set of matrices A = {A1, A2, · · · , AK}, where
Ak ∈ CM×M , 1 ≤ k ≤ K, the approximate joint diago-
nalization problem is to seek a nonsingular diagonalizing
matrix V ∈ CN×M and K associated diagonal matrices
Λ1, Λ2, · · · , ΛK ∈ CM×M such that the following forms are
best fitted:

Ak = V ΛkV H or V HAkV = Λk, k = 1, 2, · · · , K (1)

The best fit is computed by minimization of some measures.
One mainly used measure is defined as follows:

O(V ) =

K∑

k=1

off(V AkV H) (2)

where

off(A) ≡
∑

1≤i6=j≤N

|aij |2

aij denotes the i-th row and j-th column entry of matrix
A. Definition (2) was proposed by Cardoso and Souloumiac
in the joint approximate diagonalization of eigen-matrices
(JADE) algorithm[16].

Based on criterion (2), Wang et al.[10] proposed the ARD
algorithm. In the ARD algorithm, it is assumed that the
diagonalizing matrix V has the following structure:

V = (V1, V2, · · · , VN )H =




V H
1

V H
2

...
V H

N



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where vectors Vi ∈ CM×1, i = 1, 2, · · · , N satisfy bi =
‖Vi‖F > 0, i = 1, 2, · · · , N . The ARD algorithm is given
in Table 1.

However, the authors have not considered the conver-
gence of the ARD algorithm nor the influences of the initial
matrix V on the ARD algorithm[10]. In this letter, we will
discuss these issues and propose a new terminal condition.

1 Convergence of ARD algorithm
Without loss of generality, we only need consider the case

of one updated Vi. For convenience, vector h denotes the
unitary eigenvector corresponding to the least eigenvalue of
R in the ARD algorithm.

Theorem 1. If Ṽ = (V1, · · · , Vi−1, Ṽi, Vi+1, · · · , VN )H,

where Ṽi = bih, vector h is the unitary eigenvector corre-
sponding to the least eigenvalue of R in the ARD algorithm,
then

O(V ) =

K∑

k=1

off(V AkV H) ≥ O(Ṽ ) =

K∑

k=1

off(Ṽ AkṼ H) (3)

Proof. According to the respective forms of V AkV H

and Ṽ AkṼ H, we have

O(V )−O(Ṽ ) =

K∑

k=1

off(V AkV H)−
K∑

k=1

off(Ṽ AkṼ H) =

V H
i RVi − Ṽ H

i RṼi (4)

where the Hermitian matrix R =
∑K

k=1(AkBBHAH
k +

AH
k BBHAk) is positive definite (or positive semidefinite).

It is easy to show that ‖Vi‖F = ‖Ṽi‖F = bi. Further-
more, since vector h is the unitary eigenvector correspond-
ing to the least eigenvalue of R and because of the equality
(4), we have

O(V )−O(Ṽ ) ≥ 0

i.e.,

O(V ) ≥ O(Ṽ )

This proof is completed. ¤
Remark 1. According to Theorem 1, the cost function

O(V ) is a nonincreasing function of matrix V which is up-
dated as in the ARD algorithm, and has a lower bound.
Hence, the ARD algorithm is convergent.

Remark 2. Let Vi = Ṽi + ∆Vi. By (4), we have

‖O(V )−O(Ṽ )‖ = ‖∆V H
i RṼi + Ṽ H

i R∆Vi + ∆V H
i R∆Vi‖ ≤

‖∆Vi‖(2biλmin(R) + ‖∆Vi‖‖R‖)
where ‖A‖ denotes any norm of A, and λmin(R) denotes the
minimum eigenvalue of R. In a manner similar to the JADE
algorithm, when all ‖∆Vi‖, i = 1, 2, · · · , N , are less than
some threshold, we can argue that the ARD algorithm can
be terminated. In other words, ‖∆Vi‖, i = 1, 2, · · · , N can
be served as the terminal condition of the ARD algorithm.

In the ARD algorithm, we need an initial matrix V. By
the proof of Theorem 1, the decrement of the cost function
O(V ) and matrix V have a very tight relation. Hence, the
initialization of matrix V is very important. But how to
choose a good V is very difficult. In the next section, we
will propose some advice on how to choose it.

2 Examples
In this section, we will give three examples for illustrat-

ing the importance of the initialization of matrix V and
the validity of the new stopping criterion. All the nu-
merical examples were performed with MATLAB 2009a.
In the following, we denote some MATLAB function com-
mands. The command diag(x) produces a diagonal matrix
whose diagonal elements are the elements of vector x. The
command randn(m, n) returns an m × n matrix contain-
ing pseudorandom values drawn from the standard normal
distribution.

Example 1. Consider

A1 =

[
2 1
1 1

]
, A2 =

[
2 −1
−1 1

]

V =

[
1 0
0 1

]
and W =

[−0.5257 −0.8507
−0.8507 0.5257

]
are used as

the initial matrices, respectively, where the columns of W
are the unitary eigenvectors of A2. After 40 sweeps, we
have

V A1V
H =

[
2 1
1 1

]

V A2V
H =

[
2 −1
−1 1

]

and

WA1W
H =

[
2.2761 0

0 0.3905

]

WA2W
H =

[
0.3905 0

0 2.2761

]

The logO(V ) and logO(W ) of each sweep are shown in
Fig. 1.

From the above results, we can see that the initial matrix
V is important in the ARD algorithm. In general, if the
unitary eigenvectors of Ai, 1 ≤ i ≤ K, can be used as the
columns of the initial matrix V , then this choice is good.

Example 2[17]. Consider

A1 =




1− ε 0 0 0
0 1 + ε 0 0
0 0 0 1
0 0 1 0


 A2 =




0 1 0 0
1 0 0 0
0 0 1− ε 0
0 0 0 1 + ε




(5)
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where ε = 0.01. Let V = I4 and W be the initial matrices,
respectively, where I4 is a 4 × 4 identity matrix, and the
columns of W are the unitary eigenvectors of A1. In this

example, we use max1≤i≤4 ‖4Ṽi‖F ≤ 10−6 as the stopping
criterion. When the ARD algorithm is convergent, we have

V A1V
H =




0.9900 0.9900 0 0
0.9900 0.9900 0 0

0 0 0 0
0 0 0 0




V A2V
H =




0 0 0 0
0 0 0 0
0 0 0.9900 0.9900
0 0 0.9900 0.9900




and

WA1W
H =




0.2294 −0.0000 −0.0000 0.0000
−0.0000 −0.2294 −0.0000 −0.0000
−0.0000 −0.0000 0.9999 0.0000
0.0000 −0.0000 0.0000 0.9999




WA2W
H =




−0.2294 −0.0000 0.0000 −0.0000
−0.0000 0.2294 0.0000 0.0000
0.0000 0.0000 0.9999 −0.0000
−0.0000 0.0000 −0.0000 0.9999




From Example 2, we can see that the condition ‖4Ṽi‖F ≤ ε
can be used as the stopping criterion. A good initialization
of matrix V can make V AiV

H, i = 1, · · · , K, simultane-
ously diagonal as far as possible. A bad initialization of
the matrix V cannot make V AiV

H, i = 1, · · · , K be of
simultaneous diagonalization, even V AiV

H, i = 1, · · · , K,
become degenerated matrices.

From the above two examples, the initialization of matrix
V is very important. However, such deeper discussions are
beyond the scope of this letter.

Fig. 1 Values of the cost function O(V ) for different
initial matrices

Example 3. Consider K = 100 and Ak = V HDkV ,
where V = randn(n, n), Dk = diag(randn(n, 1)) and n =
10, 1 ≤ k ≤ K. Let V = In and Wi be the initial matrices,
respectively, where In is an n× n identity matrix, and the
columns of Wi are the unitary eigenvectors of Ai. In this

example, we use max1≤i≤n ‖4Ṽi‖F ≤ 10−6 as the stopping
criterion. In this example, we take the averages of 100 tests
in sweeps for each initial matrix in Table 2.

Table 2 Averages of 100 tests in sweeps for different
initial matrices

I10 W1 W10 W20 W50 W60 W90 W100

40.16 35.74 34.98 38.33 38.34 36.97 32.41 38.39

From Example 3, we can see that the proposed initial
matrices are stable and effective.

3 Conclusion
In this paper, we performed some convergence analy-

sis on the ARD algorithm. The importance of the initial
matrix is also considered; it has great influence on the con-
vergence of the ARD algorithm. By some examples, we
can find that a good initial matrix can be obtained by the
eigenvectors of Ak, k = 1, · · · , K.
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