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Abstract We design a new robust controller for uncertain mechanical systems. The inertia matrix’s singularity and upper bound
property are first analyzed. It is shown that the inertia matrix may be positive semi-definite due to over-simplified model. Further-
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uncertainty in mechanical systems with the assumption of uniform positive definiteness and upper bound of the inertia matrix. We
theoretically prove that the robust control renders uniform boundedness and uniform ultimate boundedness. The size of the ultimate
boundedness ball can be made arbitrarily small by the designer. Simulation results are presented and discussed.

Key words

Inertia matrix, mechanical system, robust control, uncertainty

Citation Zhen Sheng-Chao, Zhao Han, Chen Ye-Hwa, Huang Kang. A new Lyapunov based robust control for uncertain mechanical

systems. Acta Automatica Sinica, 2014, 40(5): 875—882
DOI 10.3724/SP.J.1004.2014.00875

To model a dynamic system more accurately, one must
seek to capture more features of the system to render a
better match between the model and the system. The cap-
tured features play an important role in the control design.
Thus, validity of the captured features or properties of the
system are foundations of modeling and control design.

For mechanical systems, it is essential to investigate
the fundamental properties related to the control design.
Then, we take advantage of the special structure as well
as intrinsic properties of mechanical systems to design
the controller. For example, the skew-symmetric matrix
property[l] significantly reduces the work of control design
for mechanical systems. In this paper, we explore more
properties of mechanical systems which are useful in the
control design.

A general robust control design is proposed in this paper
to suppress the effect of uncertainty in mechanical systems.
The controller is designed based on Lyapunov approach.
For model uncertainty, here we assume it is possible to
estimate the bound.

In early research, mechanical systems were treated as lin-
ear systems and PD or PID control was designed as feed-
back compensation. Since an actual mechanical system is a
complex nonlinear dynamical system, therefore computed
torque scheme was developed. However, there always ex-
ist unnoticeable and unknown aspects of the real system
in the dynamic model which captures prominent features
of the mechanical system. Diverse uncertainties include
unknown parameters, unpredictable external disturbances,
nonlinear friction, inertial cross coupling and so on. In gen-
eral, uncertainties can be either stochastic or deterministic,
and structured or unstructured. Researches on mechanical
system control have always been very active, especially in
handling uncertainties in the system. Adaptive control and
robust control are the two major approaches among many
exciting developments. They are both model-based. That
is to say, a nominal system is selected at first and then
the remaining portion of the system is lumped into the
uncertainty. In the adaptive approach, adaption laws are
constructed to explicitly learn the uncertain parameters.
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After employing robustness enhancement techniques, adap-
tive control can be applied to a wider range of uncertainties,
but it is limited to systems with structured uncertainties.

Robust controller has a fixed structure that guarantees
stability and performance for uncertain systems. It is ca-
pable of compensating for both structured and unstruc-
tured uncertainties and is simpler to implement. There are
five major approaches currently available in robust control.
These are Hoo [273], ,u[4], Kharitonov[576], LyapunovW*S]
and quantitative feedback theory (QFT)®~1%. The first
three are mainly for linear time-invariant systems. The
QFT applies to nonlinear systems in practice but its the-
oretical basis remains to be justified. The Lyapunov ap-
proach is so far the only approach that has established the-
oretical basis and is applicable to non-autonomous nonlin-
ear systems.

In this paper, the uncertainties in mechanical systems are
assumed deterministic and Lyapunov based robust control
algorithm is designed to render the mechanical system to
follow a desired trajectory. We construct Lyapunov func-
tion through the inertia matrix to theoretically prove that
this control renders uniform boundedness and uniform ulti-
mate boundedness. In this robust controller, the maximum
tolerance error between the actual and desired trajectories
can be specified by the designer in advance. The control ap-
proach is based on assuming uniform positive definiteness
and upper bound of the inertia matrix.

1 Fundamental properties of the me-
chanical system

1.1 Inertia matrix’s lower bound

We first review the example documented in McKerrow'!]

where the inertia matrix

ml% cos? 0 0

H@=| " ()

Thus det[H(q)] =0if 02 = 2n+1)5, n = 0,£1,£2,--- .
That is to say, the inertia matrix H is singular. When 62 =
(2n+1)5,n=0,%1,£2,--- , the kinetic energy %q'TH(q)q'
=0, V01 which means the rotation does not increase kinetic
energy. We point out that this is due to an over-simplified
model and one may avoid this over-simplification by consid-
ering a more realistic model such as rigid bodies all of whose
dimensions are non-negligible. However, in fact, much work
on robot control employs particle mass model. One exam-
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ple is the two-link revolute joint manipulator in [12]. The
inertia matrix’s non-singularity is not a criterion in the pro-
cess of modeling. One usually simplifies the model based
on his own judgements, so the inertia matrix’s singularity
sometimes occurs.

For a slider-crank mechanism as seen in Fig. 1, based on
one’s own judgements, the masses of crank and connecting
rod are negligible. The slider’s mass is m. The slider can
move in a plane and its position can be presented as

r=(z y)=(l1cosb1 +1lacosbs lisinh + l2sinbz) (2)

/74
Fig. 1

Slider-crank mechanism

So, the Jacobian matrix and pseudo-inertia matrix are

ox ox

90, 96, | _ { —1; sin 6,
dy Oy “ | licosf
001 002
m 0 }

—I5 sin 65

J= [ cos 02

M:{O m

The inertia matrix is
H=J"MJ=

[ —l1 sin01
—l3sin 02

llcos¢91}[m 0 }x

lo cos 02 0 m

712 sin 02 :| _

[ —Iysin 6,

11 cos 61 5 cos 02

mi? mlylz cos(61 — 62)
| mlilz cos(61 — 62) mi3

| @

When 61 — 02 = nm, n = 0,£1,£2,---, det(H) =
m?1313sin®(6; — 02) = 0. So, the inertia matrix is singu-
lar. In fact, if the masses of crank and connecting rod are
considered, the inertia matrix becomes non-singular. How-
ever, modeling is a process based on one’s own judgements
and the inertia matrix’s non-singularity is not a criterion
in the process of modeling. So, the issue of inertia matrix’s
singularity due to over-simplified modeling does exist and
should be addressed.

1.2 Inertia matrix’s upper bound

To choose a legitimate Lyapunov function for control de-
sign, it has often been assumed by previous researchers that
the inertia matrix is uniformly bounded above (i.e., H <
1, where 4 > 0). However, it is limited to certain cases
where the inertia matrix itself may be state-dependent. We
take the two-degree-of-freedom manipulator in [12] as an
example. The inertia matrix is

mili+ 1 + 1o+ mads 0

= 0 mo

(5)
The generalized coordinate ¢ = [1 dz2]. Obviously, H is
not uniformly bounded above due to the d2 term. So, we
should explore more general property of the inertia matrix
in the mechanical system.

Chen and Kuo*® have proved and given their conclusion
that for any inertia matrix H(q) of any serial type mechan-
ical manipulator, there exist constants v;, 7 = 0,1, 2, with
Yo > 0, v1,2 > 0, such that

IH@I <70+ llal +2llal*, YgeR"  (6)

This upper bound property of the norm of the inertia ma-
trix is generic. For any rigid serial type manipulators with
revolute and prismatic joints, this property is applicable.
We take this upper bound property as an assumption in
mechanical systems. In the special case that all joints are
revolute, the property is reduced to

|H(q)]| <7, YgeR" (7)

2 Mechanical systems with uncertain-
ties

The general Lagrangian formulation of mechanical sys-
tem dynamics in the form of matrix is

H(q(1))4(t) + V(q(t),4(t)) + G(q(t)) +
F(q(t),4(t), ) = u(t) (8)

In this equation of motion, ¢t € R is the time, ¢(t) € R" is
the joint coordinate, ¢(t) € R™ is the joint velocity, ¢(t) €
R™ is the joint acceleration, H(g(t)) is the inertia matrix,
V(q(t), ¢(t)) is the Coriolis and centrifugal force, G(q) is the
gravitational force, F'(q(t),q(t),t) represents Coulomb and
viscous friction forces and external disturbances, and u(t)
is the generalized control force (we will omit arguments of
functions where no confusions may arise from now on).
V (g, ¢) can be factorized in such a way that

Vi(g,q) = C(q,4)d 9)
with

H(q) —2C(q,9),

This factorization is always feasible and is independent of
the parameter values of the mechanical system™.

Assumption 1. We assume that in mechanical systems
the inertia matrix H(q) is uniformly positive definite (we
emphasize that this is an assumption, not a fact), that is,
there exists a scalar constant ¢ > 0 such that

skew symmetric (10)

H(g) > oI, ¥g€R" (11)

Assumption 2. For general mechanical systems, we
assume that

IH@I <70+ llall +21llal*, VqeR (12)

In many practical situations, there may be modeling un-
certainty and/or computational difficulty which prevents
one from using the precise knowledge of M, C, G, and F.
Uncertainty includes, for example, payload mass and fric-
tion force parameters. Here, we assume it is possible to
estimate the bound of the model uncertainty.

3 The proposed robust controller

We wish the mechanical system to follow a desired tra-
jectory q(t), t € [to,t1], with the desired velocity ¢%(t).
Assume ¢%(-) : [to, 00] — R™ is of class C? and ¢%(t), ¢°(t)
and §%(t) are uniformly bounded. Let

et) = q(t) = ¢" (1) (13)
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and hence é(t) = ¢(t) — ¢%(t), é(t) = ¢(t) — §°(t). Let

e)=le"(t) ¢ @) (14)

The system (8) can be rewritten as

H(e(t) + q" () (&) + ¢°(t) +
Cle(t) + q*(t), é(t) + ¢ (1) (e(t) + ¢ () +
Gle+q") + Fle+q,é+ ¢ t) = u(t) (15)
we first choose nominal matrices H, ¢, G and F. Next,
for a given S = diag{[si]nxn}, si > 0, we choose (and hence

we know) a scalar function p : R™ x R" x R — Ry such
that

ple,é,t) = [lg(e, ¢, b)|| (16)

(e, é,t) =

(H(e+q"(t)) — H(e+q"(t)(§"(t) — Sé) +
(Cle+q" é+q") = Cle+q%,é+¢M))(¢" — Se) +
Gle+q") —Gle+q") +

Fle+gq,é+q"t)— Fle+q,é+4",1) (17)

Here p(e, ¢, t) is based on the assumed bound of uncertainty.
For a given € > 0 (often chosen to be “small”) and ky,, kv; >
0,7=1,2,---,n, the control torque is given by

u= H(G"— S¢)+ C(¢* — Se) + G+ F —

Kpe — Kyé + ple, é,t) (18)
where
ule, é,t) . . .
—%p(e,e,tL if HH(Q €7t)|| >€
ety — | Te 0

SHOED e ), i (et < c
‘ (19)
ule, é,t) = (é+ Se)p(e, é,t) (20)
Ky = diag{[kp;Jnxn} (21)
K, = diag{[kv,]nxn} (22)

4 Preliminaries of proposed controller
4.1 Positive definite

Lemma 1. Suppose ¢ : Ry — Ry is continuous, that
¢(0) = 0, ¢ is nondecreasing, and that ¢(r) > 0, Vr > 0.
Then there exists a function « of class K such that a(r) <
o(r), Vr. Moreover, if ¢(r) — oo as r — oo, then « can be
chosen to have the same property.

Proof. Pick a strictly increasing sequence ¢; of posi-
tive numbers approaching infinity, and a strictly increasing
sequence k; of positive numbers approaching 1. Define

a(r) =
Zkig(r), 0<r<aq
qi1

T

LTl e b(r) — kid(a:)], @i <7 < g

kid(qi) + ————
qi+1 qi
(23)

O

Definition 1. A function V : Ry x R® — R is said to
be a locally positive definite function (LPDF) if

1) It is continuous;

2) V(t,0)=0,Vt>0;

3) There exist a constant » > 0 and a function « of class
k such that

a(llz])) < V(t,z), Yz € B, (24)

where B, is the ball B, = {x € R" : ||z|| < r}.

Lemma 2. A continuous function W : R® — R is an
LPDF if and only if it satisfies the following two conditions:
1) W(0) = 0; 2) there exists a constant r > 0 such that
W(z) > 0,Vx € B, — 0.

Proof. Suppose W is an LPDF in the sense of Definition
1, then clearly 1) and 2) above hold. To prove the converse,
suppose 1) and 2) above are true, and define

)= il V) %)
Then ¢(0) = 0, ¢ is continuous, and ¢ is nondecreasing
because as p increases, the infimum is taken over a smaller
region. Further, ¢(p) > 0 whenever p > 0; to see this, note
that the annular region over which the infimum in (25) is
taken is compact. Hence, if ¢(p) = 0 for some positive p,
then there would exist a nonzero x such that W(z) = 0,
which contradicts 2). Now by Lemma 1, there exists an
a of class K such that a(p) < ¢(p), Vp € [0,r]. By the
definition of ¢, it now follows that

allz]) < o(llzl) <W(lzl)), vz e B: (26)

Hence W is an LPDF in the sense of Definition 1. O

Lemma 3. A continuous function V : Ry x R" - R
is an LPDF if and only if 1) V(¢,0) = 0, V¢, and 2) there
exists an LPDF W : R"™ — R and a constant r > 0 such
that

V(t,z) > W(z), Vt>0, Vz € B, (27)

Proof. Suppose W is an LPDF and that (27) holds,
then it is easy to verify that V is an LPDF in the sense
of Definition 1. Conversely, suppose V is an LPDF in the
sense of Definition 1, and let «(:) be the function of class
K such that (24) holds, then W(z) = a(||z||) is an LPDF
such that (27) holds. O

4.2 Decrescent

Lemma 4. Suppose ¢ : Ry — Ry is continuous, that
»(0) =0, ¢ is nondecreasing. Then there exists a function
of class K such that 8(r) > ¢(r) Vr. Moreover, if ¢(r) —
oo as r — 00, then B can be chosen to have the same
property.

Proof. Pick a strictly increasing sequence g; of positive
numbers approaching infinity, and a strictly decreasing se-
quence k; of positive numbers approaching 1. Define

B(r) =
L kip(r), 0<r<aq
q1 o
kip(ai) + —— 2 [kipap(r) — kip(@)), @ <7 < qip
qdi+1 — qi
(28)
0

Definition 2. A function V : Ry x R™ — R is decres-
cent if there exist a constant » > 0 and a function (3 of class
K such that
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V(ta) < B(lzl), Vt>0, vz eB,  (29)
Lemma 5. A continuous function U : R" — R is de-
crescent if U is an LPDF.
Proof. If U is an LPDF in the sense of the Definition
1, then clearly U(0) = 0. Define

(p)= sup Ulz) (30)

o<|lz||<p<r

where “sup” represents supreme. Then ¢(0) = U(0) =0, ¢
is continuous and nondecreasing. By Lemma 4, there exists
a f of class K such that ¢(p) < 8(p), Vp € [0,r]. By the
definition of ¢, it now follows that

U(llzll) < e(llll) < B(lll]),

Hence U is decrescent in the sense of Definition 2. a

Lemma 6. A continuous function V : Ry x R"” — R is
decrescent if and only if there exists a decrescent function
U: R" — R and a constant » > 0 such that

Vz € B, (31)

V(t,x) <U(z), Vt>0, Vx € B, (32)

Proof. Suppose U is decrescent in the sense of Definition

2 then U(z) < B(||lz||). Also V(t,z) < U(z), then V(¢,z)
U(z) < B(||lz]]). So, V(¢,z) is decrescent. To prove the
converse suppose V' is decrescent in the sense of Definition
2, then there exists a 3(-) of class K such that V(¢t,z) >
B(|lz||). Pick U(x) = B(||z||) which is decrescent. O

5 Theoretical proof of the controller

Theorem 1. Subject to Assumptions 1 and 2, the con-
trol (18) renders e(t) of the system (15) uniformly bounded
and uniformly ultimately bounded. The size of the ultimate
bounded ball can be made arbitrarily small by a suitable
choice of e.

Proof. Choose the function given by

Vit e) = %(é + Se)TM (e + ¢%(£))(é + Se) +

1
§eT(Kp +SK,)e (33)
1) “Positive definite” and “Decrescent”

To show that V' is indeed a legitimate Lyapunov function

candidate for any mechanical system, we shall prove that
V is (globally) positive definite and decrescent. Based on

)

Vt,e) > fa||e+SeH e'(Kp+ SK,)e =

1 n
O'Z el + 2s;é5ei + S5 ef) +

=1

2”: (kp; + sikw,;) 62 =

S ] -we o

N | =
.
-

l\J\»—l

where

oS; o

U, = { as?—i—kpi + siky, 0s; }

and e; and é; are the ith components of e and é, respec-
tively. Since ¥; > 0, Vi, we get

n

D Auin(Ti)(ef +¢F) >

=1

Wie) >

Allell” = a(|lell)
(36)

N[ =
N | =

where

A = m_in )\min(\l/i)’

K3

1=1,2,--- ;n, A>0 (37)
Based on Lemma 3, we have shown that V' is positive defi-
nite.

Based on (12),

V(t,e) < 500+ lall + 7 lal) ¢ + el
%eT(KP + SK,)e=Ule) (38)
Using (13), one has
lall = ||+ @) < llell + max 4“0 (39)

lall® < llel* + 2 max | o (0) | el + (max |a(0)])) (40)

le+ Sel|* = [lé + Sel|™ [|é + Sell =

o3 1)

s? S =
dowc | %5 [Nt =30 an
GT(KP+SKU)6 S )\min(Kp+SKU) ||€||2 (42)

Note that S > 0. Therefore there are constants A\g > 0,
A1,2 > 0 given by

Ko = 5 Amax(Kp + KL+
%? [VO + 71 max qu(t)H + (mtax qu(t)H)g]
(43)
A= %ﬁ (71 + 272 max qu(t)H> (44)
%o = 55 (45)
such that

Ue) < Xollel” +As llell® + e llel® < B(llel)  (46)

Based on Lemma 6, V is decrescent for all e € R*". Thus,
we have shown that V is a legitimate Lyapunov function
candidate.

2) To prove stability

Taking the time derivative of V' along the trajectory of
(15) yields

V=(e+8e) (u—-Hi"—Cé—C¢" —G—F+ HSé)+

%(é + Se)TH(e+ Se) +e" (K, + SK,)e =

(64 Se)T(u— H(§* — 5¢) — C(¢* — Se) — G — F) —
(é+ Se)TC(é + Se) + ;(e + Se)"H (e + Se) +

e' (K, + SK,)é (47)
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By (10) and using (18),
V= (e+8Se)T[(H - H)(G" - S¢) + (C—C)(¢* — Se) +
G-G+F—F+4p —é"Kyée—e SKye=
(64 Se)Tp+ (e +Se)"p—eTKoée — e"SKpe (48)

If ||pll > e,
. 24+ Se)T(e+ S
(é+5e)Tp= CESD LS,y g
([l
If [[ul| < e
. Ty -
€+ 5e)p = (e + Se) 6(e + Se)pp _
. 2 2 2
_ e+ Selp® _  Jlull (50)
€ €
Hence, by (16), (49), and (50),
(¢+5) 0+ (e+5¢)"p < [lull + (e +59)p< T (51)
Finally, upon using (51) in (48), we conclude that
V<A lle@l + 5 (52)
for all (e(t),t) € R*" x R, where
Ay = min {Amin (Kv), Amin (SKp)} (53)
0

The uniform boundedness performance is as follows!*4.

That is, given any r > 0 with ||e(to)|| < r, where o is the
initial time, there is a function d(r) given by

{Z(Xo + N+ X27"2)
" Y

%
} , if r>R

d(r) = (54)

, ifr<R

-l

such that ||e(t)|| < d(r) for all t > tg. The uniform ultimate
boundedness performance also follows. That is, given any
d with

{2 )\0+)\1R+/\2R )}
1
2

2
> { )\0+/\1R—|—)\2R ) (56)
we have |e(t)|| < d, YVt > to + T(d, ), with
7 lf T S R
T(d,r) = { Ror? 4 Mar® + Rort — SAR (7
2 ifr>R
MR-
— 1.1 . —
R=1, 1(gAd ) (58)
Y2(€) = Mo&? + X1 €’ + Xat? (59)

The ultimate bounded ball size d can be made arbitrarily
small by a suitable choice of e.

We note that in the proof d(r) and T'(d,r) may be un-
known due to the uncertain nature of H(q) and therefore of
Ai, © = 0,1,2. However, one can easily calculate the upper
bound of A\; from the bound of A; in (54) if the bound of
uncertainty is known. The upper bound of A\; may be used
in (54) and (57) to replace A; for a known d(r) and T'(d, ).

Remark 1. The (positive) gain parameters s;, kp,, and
k., are arbitrary. No restrictions are imposed. The designer
has the discretion of choosing these parameters based on a
number of practical factors such as the actual saturation
limits. o )

Remark 2. In a sense, the matrices H, C, G, and F
define the torque for the nominal portion of the system.
However, no restrictions on their choices are imposed. In
the special case that there is no modeling uncertainty and
one can afford sufficiently fast online computation, one nat-
urally chooses H = H, C = C, G = G, and F = F and
therefore p =0, e(t) — 0 as t — oo.

6 Illustrative example

Consider a vehicle with an inverted pendulum hinged
to the center as shown in Fig.2. Assume that there is no
friction between the vehicle and the ground. The vehicle’s
mass is M (uncertain) and an external force F' (the con-
trol) is imposed. The mass of the inverted pendulum is m
(uncertain) and the length is I. An external torque 7 (the
control) is applied on the pendulum.

[
F
- X M
No friction
VNN ayaaas

Fig.2 Vehicle with an inverted pendulum

We choose two generalized coordinates ¢ = [q1,¢2]T =
[z,0]" to describe the mechanical system, where x denotes
the displacement of the vehicle and 6 denotes the rotatory
angle of the pendulum. The two coordinates are indepen-
dent of each other. The kinetic energy of the mechanical
system is

1 1 . .
T=5(M+ m)i® + 5mﬁez —mlifsing  (60)
The potential energy is

V =mglsin6 (61)

where g is gravitational acceleration. Then the Lagrange’s

equation
d (0L oL
(%) -5 (62)

can be written out where the Lagrangian L =T — V, u is
the external control force. The equation of motion can be
written in matrix form from using Lagrange’s equation as

H(q)§+C(q,4)¢d +G(q) =u (63)
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where
|z N I | F
q= 2] y 4= 0 y 4= 0 y U= T
| M+m —mlsind
H(q) { —mlsin6 mi? ]
. —mlf cos 6
cai=| g e |

mgl cos 0

oet | (64)

The desired trajectory ¢%(t), the desired velocity and ac-
celeration ¢%(t), ¢°(t) are given by

. - .
dipy | X - sint
q"(t) = | 04 ]~ | 1.5—cost }
© 4 n -
din | X | cost
‘0= 5] =] o |
ro.d 7 r .
diN | X | —sint
i'0=| 5| =] ant | (63)

By using ¢ = e+ ¢%, ¢ = ¢ + ¢%, § = € + 7, (63) can be
rewritten as

H(e+qMé+ H(e+q¢Y)§* +
Cle+q"ée+d)e+q)+Gle+q)=u  (66)
where
H(e+q%) =

M+m —mlsin(ez + 1.5 — cost)
—mlsin(ez2 + 1.5 — cost) mi?
Cle+q’e+q") =
{ 0 —ml(éa +sint)cos(es + 1.5 — cost) }
0 0

Gle+a") = | 0 | (67)

mgl cos(ez + 1.5 — cost)

So, nominal matrices are given by

- M + —rmlsin(ez + 1.5 — cost)
" | —ilsin(es + 1.5 — cost) ml?
A 0 —rnl(éz +sint)cos(ez + 1.5 — cost)
C =
0 0
A 0
G = [ gl cos(ez + 1.5 — cost) } (68)

We choose S to be a 2 x 2 identity matrix. Therefore, we
can get

6= (H—H)(G —8e)+(C-C)¢"—Se) +G -G =

{ M—M+rm—m —(m—m)lsin(e2+1.5—cost) %
—(h— 5

m)lsin(es+1.5—cost) m—m)l?
[ —sint—.él :|+
| cost—eé2
[0 —( —m)l(éa + sint) cos(ez + 1.5 — cost) }

X

0 0
[ cost—es n 0
| sint — e (r — m)gl cos(ez + 1.5 — cost)

Based on ¢, we choose the scalar function as

o= <HM . MH + |l — mH) lléx + sint]| +

[/ — m]| ||l sin(e2 + 1.5 — cost)(é2 — cost)|| +

|l — m|| ||l(é2 + sint) cos(ez + 1.5 — cost)(e2 — sint)|| +
[[(m — m)|| ||l sin(e2 + 1.5 — cost)(é1 + sint)|| +

67— )l [|12(é2 — cost)]| +

[[(m — m)|| ||gl cos(ez + 1.5 — cost)|| (69)

For simulation, we take

g=10,1=1, e=0.1, kp, = kpy = kv, = kv, =1
M =10, m=1, M =10+sin10¢, = 1.1 (70)

Two different classes of uncertainties, namely constant and
high frequency, are chosen to test the control scheme. Fur-
thermore, we compare the proposed robust control with
the control scheme without p function (that is, computed-
torque-like with PD control). We take the initial condition
as

(71)

Fig. 3 depicts the histories of x position errors of the pro-
posed robust control (with p control) and computed-torque-
like with PD control (without p control). We can see, with p
control, the maximum overshoot is reduced from 1.64 to 1.5
and the settling time is much more reduced. Fig.4 shows
the histories of 8 position errors of the two control schemes.
With p control, the maximum overshoot is reduced and the
improved control also has a smaller settling time and steady
state error. In Fig. 5, p control has an increased maximum
overshoot of the & velocity error, but the settling time is
greatly reduced. Fig.6 shows that, although p control has
a bigger maximum overshoot of 8 velocity error, it has a
greatly reduced steady state error. Fig.7 shows that his-
tories of & acceleration error of the two control schemes
are similar, while Fig. 8 illustrates that, with p control, the
steady state error of § acceleration error is much more re-
duced. Figs.9 and 10 show histories of input force F' and
torque 7. We can see the histories are similar which means
that the control costs are similar. According to the figures
and analysis, we conclude that the proposed robust control
gets a better performance compared to the control without
p function.

7 Conclusions

The main contributions of this paper are twofold. First,
the inertia matrix’s singularity and upper bound property
are discussed in detail. The inertia matrix may be singu-
lar due to over-simplified modeling. The assertion of inertia
matrix’s non-singularity remains to be an assumption. Sec-
ond, a robust control scheme is proposed to deal with the
uncertainty in mechanical systems. It is demonstrated that
based on the non-singularity and upper bound assumptions
of the inertia matrix, one can indeed utilize the inertia ma-
trix to construct a legitimate Lyapunov function candidate
for control design and stability analysis. The control does
not need to have the uncertainty information of the dy-
namic system other than its upper bound.
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