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Online Contribution Rate Based Fault Diagnosis for

Nonlinear Industrial Processes
PENG Kai-Xiang1 ZHANG Kai1 LI Gang2

Abstract Over past decades, kernel principal component analysis (KPCA) appeared quite popularly in data-driven process moni-
toring area. Enormous work has been done to show its simplicity, feasibility, and effectiveness. However, the introduction of kernel
trick makes it impossible to directly employ traditional contribution plots for fault diagnosis. In this paper, on the basis of revisiting
and analyzing the existing KPCA-relevant diagnosis approaches, a new contribution rate based method is proposed which can explain
the faulty variables clearly. Furthermore, a scheme for online nonlinear diagnosis is established. In the end, a case study on contin-
uous stirred tank reactor (CSTR) benchmark is applied to access the effectiveness of the new methodology, where the comparisons
with the traditional linear method are involved as well.
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Online monitoring and diagnosis of process operation
performance and conditions are crucial for the safety and
reliability of industrial processes. As a data-driven method-
ology in process monitoring area, multivariate statistical
process monitoring (MSPM) is quite popular and is over-
whelmingly being focused in monitoring complex industrial
processes, such as chemical and microelectronics manu-
facturing plants. Within MSPM community, multivariate
projection techniques such as principal component anal-
ysis (PCA) and partial least squares or projection to la-
tent structures (PLS) mainly focus on establishing the
data-driven models for process monitoring. Generally, the
schemes based on PCA and PLS are realized via training a
benchmark model according to a series of normal operating
measurements, then testing the online measurement[1−6].

For a linear process, PCA or PLS based approaches can
be summarized sequentially in three steps:

Step 1. Acquire two low-dimensional subspaces, which
reflect the most significant variations and the residuals, re-
spectively.

Step 2. Detect the possible variations with some statis-
tical indices in different subspaces.

Step 3. Isolate the potential faulty variables with con-
tribution plots, which measure the variables′ contributions
to the detection index.

As for nonlinear processes, the above steps should be
modified and updated correspondingly. In essence, PCA
performs well for linear data, while kernel principal com-
ponent analysis (KPCA), as an advanced version of PCA
functions better for nonlinear cases[7−10]. Naturally, KPCA
model maps the process variables into a high-dimensional
space, where a linear PCA structure is constructed. KPCA
facilitates this procedure by introducing the idea of kernel,
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however, it relatively increases the complexity of overall
model through producing some new parameters. More-
over, these parameters often play crucial roles towards the
monitoring results. Various researches in this domain ap-
pear frequently[10−14]. Furthermore, a sequence of vari-
ants for KPCA models are considered in MSPM field to
cope with the dynamics, time-varying and non-Gaussianity
etc.[15−17].

Once a fault is detected, it is necessary to identify the
faulty variables. The most popular methods for fault di-
agnosis are contribution plots, since they do not require
any known faulty information. However, Alcala and Qin
pointed out that the traditional method is easily affected
by the smearing of the fault, and they proposed a recon-
struction based contribution (RBC) plots which eases the
problem to a large extent[18]. Fault detection based on
KPCA is fairly similar to PCA based methods, while the
stage of diagnosis is quite different and difficult. Cho et al.
employed the gradient of kernel function explored by Rako-
tomamonjy to derive an analytical solution of contribution
for KPCA based diagnosis, whereas its mechanism is quite
confusing and not straightforward to understand[7, 9]. Choi
et al. proposed a RBC based methodology which is simi-
lar to the one introduced by Dunia et al.[10, 19]. Neverthe-
less, their approach just borrowed the idea of KPCA based
de-noising[20], and had not built the relationship between
the diagnosis and detection indices. Recently, Alcala and
Qin prompted the idea of RBC to KPCA successfully[11].
However, in their deduction, the estimation for the fault is
biased and unconvincing. In this paper, a new contribution
rate plot is proposed towards KPCA based process moni-
toring, which is partially motivated by Cho et al.′s work.
Different from their idea, the proposed method is more sim-
ple to understand and explicit. Meanwhile, a more practical
approach based on contribution rate denoted as accumula-
tive relative contribution rate (ARCR) is also given and
demonstrated.

The remaining sections of this paper are organized as fol-
lows. Section 1 revisits the KPCA model and KPCA based
monitoring policy. The contribution rate based diagnosis
is introduced to identify the faulty variables for nonlinear
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processes in Section 2. Section 3 gives a benchmark case
study to illustrate the feasibility of the new method. At
last, the conclusions are drawn in Section 4.

1 KPCA based nonlinear process mon-
itoring

1.1 KPCA model for nonlinear process

Given a nonlinear process consisting of m variables
with n samples which can be described as: XXX = [xxx1,
xxx2, · · · ,xxxn]T ∈ Rn×m. Define φ as a nonlinear map-
ping function to project the original variables into a high-
dimensional feature space F : xxx ∈ Rm ⇒ φ (xxx) ∈
RM , where they are existing linearly. After the non-
linear mapping, the original input matrix XXX is trans-
formed to ΦΦΦ = [φ (xxx1) , φ (xxx2) , · · · , φ (xxxn)]T ∈ Rn×M .
Define KKK ∈ Rn×n as the kernel matrix to represent
ΦΦΦΦΦΦT, where KKKij = K (xxxi,xxxj) = 〈φ (xxxi) , φ (xxxj)〉 , i, j =
1, 2, · · · , n. The introduction of the kernel trick simpli-
fies the overall algorithm without using an explicit non-
linear mapping function[7]. In order to center the fea-
ture data to zero mean, the following preprocessings are
executed[21−22] : ΦΦΦ = ΦΦΦraw − 1nΦ̄ΦΦraw where ΦΦΦraw is the
directly mapped matrix, Φ̄ΦΦraw denotes the mean of ΦΦΦraw,
1n represents the n-dimension column vector whose ele-
ments are all ones. The centered KKK matrix can be derived
as: KKK =

(
IIIn − (1/n) 1n1T

n

)
KKKraw

(
IIIn − (1/n) 1n1T

n

)
, where

KKKraw represents direct kernel matrix.
Then, KPCA attempts to find a unit vector w, which

maximizes the following objective function:

maxw

(
1

n− 1

)
wTΦTΦw

s.t. wTw = 1

(1)

Although ΦΦΦ is unavailable, it is able to acquire w via
introducing a n-dimensional vector α. It should be a priori
supposed that w = ΦΦΦTα holds. Thus, substituting w =
ΦΦΦTα to (1):

maxα

(
1

n− 1

)
αTKKK2α

s.t. αTKKKα = 1

(2)

Finally, the solution of α in above equation can be
transformed into solving an eigen decomposition, which
can be expressed as: λα = (1/(n− 1))KKKα, where λ de-
notes the eigenvalue of (1/(n− 1))KKK while α is corre-
sponding eigenvector. Then, the ultimate α is normal-
ized to ‖α‖2 = (1/(n− 1)) λ, which guarantees wTw = 1
holds. Then the first score vector of ΦΦΦ is obtained by
ttt1 = KKKα1. Likewise, all stored scores are organized as
TTT ∈ Rn×A = KAKAKA, where AAA = [α1, · · · , αA] contains the
scaled eigenvectors corresponding to the A largest eigen-
values of KKK, which can be described as λ1, · · · , λA. A
represents the order of PCA, which is chosen according to
[7−12]. Then, WWW = [w1, · · · , wA] ∈ RM×A is formed as the
loading matrix regarding ΦΦΦ, where wi = ΦΦΦTαi.

After KPCA calculations, we can model ΦΦΦ as follows:

ΦΦΦ = Φ̂ΦΦ + Φ̃ΦΦ = TTTWWWT + Φ̃ΦΦ (3)

where Φ̃ΦΦ signifies the residual matrix that is used to account
for the noise in ΦΦΦ.

For a test data xxxnew ∈ Rm, the directly mapped test
feature vector is φ(xxxnew)raw, then the direct test inner dot
vector is calculated as (KKKnew

raw )i = φ(xxxi)rawφ(xxxnew)raw =
K (xxxi,xxxnew). Also the centered test data vector
φ (xxxnew) is mean-centered by φ (xxxnew) = φ(xxxnew)raw −
Φ̄ΦΦ

T
raw. KKKnew is also mean-centered by: KKKnew =(
IIIn − (1/n) 1n1T

n

)
(KKKnew

raw − (1/n)KKKraw1n). Ultimately,
the new score of xxxnew is calculated by

tttnew = WWWTφ (xxxnew) = AAATKKKnew ∈ RA (4)

which plays a central role for process monitoring.

1.2 Fault detection based on KPCA

T 2 statistic and square prediction error (SPE) are of-
ten utilized for KPCA based detection. The residuals of
φ (xxxnew): φ̃ (xxxnew) = φ (xxxnew)−WWWtttnew cannot be calculated
explicitly because of the unspecific map function φ (·). Af-
ter obtaining tttnew according to (4), two statistics T 2 and
SPE can be calculated:

T 2 = tttTnewΛ−1tttnew (5)

SPE =
∥∥∥φ̃ (xxxnew)

∥∥∥
2

(6)

The popular approach for control limits of these two statis-
tics are available in [1]. Although φ (xxxnew) is unavailable,
we calculate SPE by the kernel trick as follows,

SPE =
∥∥∥φ̃ (xxxnew)

∥∥∥
2

=

φT (xxxnew) φ (xxxnew)−
2tttTnewWWWTφ (xxxnew) + tttTnewWWWTWWWtttnew =

φT (xxxnew) φ (xxxnew)− tttTnewtttnew (7)

where φT (xxxnew) φ (xxxnew) = 1 − (2/n)
∑n

i=1 KKKnew
raw (i) +(

1/n2
) ∑n

i=1

∑n
j=1 KKKraw (i, j).

Within the statistics, T 2 is applied for the systematic
abnormalities, whereas SPE is for monitoring the process
noise. According to the former study, two types of com-
bined detection indices were proposed by Cho et al. and
Alcala et al. as summarized in Table 1. By contrast, it can
be concluded that, Alcala′s method balances T 2 and SPE
into ϕ, while Cho incorporates T 2 and weighted SPE into
ϕ. In addition, ϕ defined by Cho et al. can be treated as
a measurement of the energy for a sample, which is quite
simple to follow and apply[7]. Thus, Cho et al.′s index is an
ideal choice in the subsequent parts of this paper. Mean-
while, the control limit for ϕ is obtained according to kernel
density estimation (KDE) based method[10].

Table 1 Combined index based on KPCA model

Algorithm ϕ

Cho et al. (2005)[7] ϕ = T 2 + λ−1
⊥ SPE

Alcala and Qin (2010)[11] ϕ = T2

δ2 + SP E
τ2

1 λ⊥ is a constant, representing the nonsignificant eigenvalues in

KPCA algorithm[7].
2 δ2 and τ2 are thresholds of T 2 and SPE, respectively[11].

With kernel idea, the whole procedure of KPCA model is
considerably simplified. However, the kernel parameter has
to be specified in the off-line training stage. Take Gaussian
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kernel functions for example:

K (xxxi,xxxj) = φT (xxxi)raw φ (xxxj)raw = exp

(
−‖xxxi − xxxj‖2

c

)

(8)

As c > 0, if c 7→ 0, it means φ (xxxi)⊥φ (xxxj). Then, the
order of PCA will be large, since all training data are
treated without relations, and the false alarm rates will
then be large, as many test samples which vary in tolera-
ble scales may cause excessive alarms. If c 7→ ∞, namely
φ (xxxi) = φ (xxxj) holds, then, the order A will be small re-
spectively, since all training data are processed similarly,
also the detection rates will be consequently small, because
some faulty samples are wrongly seen as the normal data.
To conclude, the choice of c is a trade-off between false
alarm rate and fault detection rate. In addition, it also af-
fects the complexity of KPCA model which is governed by
order A[8−9, 13−14].

As for this paper, a cross-validation combined with bisec-
tion approach is used to search for c. First of all, we choose
a tolerant false alarm rate zone Ω (5%∼ 8% in this paper)
as a benchmark zone and cmin and cmax as the boundary
values for c. Then bisection is implemented to search for
the optimal c of which the false alarm rate drops into Ω[23].

2 Contribution rate based fault diagno-
sis

2.1 Problem formulation

After a fault is detected, the subsequent step of process
monitoring is to diagnose the faulty variables[24]. For PCA
model, traditional contribution plots based approaches
function well. However, it cannot be utilized directly for
nonlinear cases with an intangible φ (xxx). Intuitively, if we
want to derive the contribution of each variable for KPCA
based method, the kernel function should be concentrated.

Prior presenting contribution rate, the approach pro-
posed by Cho et al. should be revisited at first. In their
work, the Gussian kernel function is rewritten as:

K (xxxj ,xxxk) = k (vvv · xxxj , vvv · xxxk) = exp

(
−‖vvv · xxxj − vvv · xxxk‖2

c

)

(9)

where vvv = [v1, v2, · · · , vm]T represents a scaling factor and
vi = 1 for i = 1, · · · , m. Then, the gradient of the new
kernel function regarding the variable vi defined by Rako-
tomamonjy was employed to calculate the contribution of
the ith variable, which is presented as:

∂K (xxxj ,xxxk)

∂vi
= −1

c
(xxxj,i − xxxk,i)

2K (xxxj ,xxxk) |vi=1 (10)

Based on the preliminary knowledge, Cho et al. derived
the contribution of each variable to the detection index as
shown in [7]. The approach is applicable to the process
monitoring using KPCA and has a precise theoretical anal-
ysis. However, its physical meaning is ambiguous which
makes it difficult to understand.

2.2 The derivation of contribution rate

The contribution rate underlies an assumption that all
variables are disturbed by the same scale. Namely, when

the whole process variables are violated to the same ex-
tent, the variables which give larger influence to detection
index are identified as the faulty variables. The violation is
symbolized by xxx ¯ vvv, where ¯ represents component-wise
vector product, vvv is defined as the same as in (9), while it
is treated as a variable vector instead of a constant vector
with all unit elements. Furthermore, all elements of vvv are
equally guarantee that xxx varies to the same extent. Then,
for xxxnew, according to first-order Taylor series expansion,
the following equation holds,

ϕ (xxxnew ¯ vvv) ≈

ϕ (xxxnew) +

m∑
i=1

∂ϕ (xxxnew ¯ vvv)

∂vi
|vvv=111m (vi − 1) (11)

where vvv = 111m means vi = 1, i = 1, · · · , m. The contribu-
tion rate of ith variable to ϕ is defined as:

C(xxxnew, i) =

∣∣∣∣
∂ϕ (xxxnew ¯ vvv)

∂vi
|vvv=111m

∣∣∣∣ (12)

Conceptually, contribution rate defines the influence of
the variable to ϕ. Given a measurement xxx, Fig. 1 demon-
strates the physical analysis for this definition, where there
are two variables. The contribution rate of each variable
to ϕ denotes the gradient of ϕ (xxx¯ vvv) with respect to its
corresponding scale factor v.

Fig. 1 Physical analysis of contribution rate

Equation (12) can be realized quantitatively in the fol-
lowing. First of all,

ϕ (xxxnew ¯ vvv) = kkkT
newAAAΛ−1AAATkkknew+

λ⊥
(
φT (xxxnew ¯ vvv) φ (xxxnew ¯ vvv)− kkkT

newAAAAAATkkknew

)
(13)

where kkknew = ΦΦΦφ (xxxnew ¯ vvv). Then, (12) can be trans-
formed to

C(xxxnew, i) =

∣∣∣∣∣tr
(

∂
(
kkknewkkkT

new

)

∂vi
|vvv=1m AAAΛ−1AAAT

)
+

λ⊥

{
∂

(
φT (xxxnew ¯ vvv) φ (xxxnew ¯ vvv)

)

∂vi
−

tr

(
∂

(
kkknewkkkT

new

)

∂vi
|vvv=1m AAAAAAT

)}∣∣∣∣∣ (14)

Subsequently, the pth row and qth column element of
∂(kkknewkkknew

T)
∂vi

|vvv=1m can be denoted as
∂(kkknewkkkT

new)
p,q

∂vi
|vvv=1m .
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To obtain the relevant partial gradient, it firstly requires

to calculate
∂K(xxxnew¯vvv,xxxj)

∂vi
|vvv=1m :

∂K (xxxnew ¯ vvv,xxxj)

∂vi
|vvv=1m =

− 2

c
xxxnew,i (xxxnew,i − xxxk,i) K (xxxnew,xxxk) (15)

Remark 1. The fundamental difference between the
present approach and Cho et al.′s work[7] could be found
via comparing (15) with (10).

To the end, substitute (15) into
∂(kkknewkkkT

new)
p,q

∂vi
|vvv=1m and

∂(φT(xxxnew¯vvv)φ(xxxnew¯vvv))
∂vi

, the following equations hold.

∂
(
kkknewkkkT

new

)
p,q

∂vi
|vvv=1m =

− 2

c
(kkknew (p)kkkraw

new (q)xxxnew,i (xxxq,i − xxxnew,i)+

kkknew (q)kkkraw
new (p)xxxnew,i (xxxp,i − xxxnew,i)) +

1

nc
(kkknew (p)+

kkknew (q))xxxnew,i

n∑

k=1

(xxxk,i − xxxnew,i)KKK
raw
new (k) (16)

∂φT (xxxnew ¯ vvv) φ (xxxnew ¯ vvv)

∂vi
|vvv=1m =

− (2/n)

n∑
j=1

xxxnew,i (xxxnew,i − xxxj,i)K (xxxnew,xxxj) (17)

So far, (12) is calculable and can be applicable for fault
diagnosis.

2.3 Comparison and implementing remarks

Considering the two methods, the computational bur-
den of present one seems less than Cho et al′s, as it merely
calculates xxxnew ¯ vvv instead of both xxxnew ¯ vvv and xxx ¯ vvv.
Furthermore, the definition of the new contribution rate is
clear physically. Also, the proposed technique provides a
new diagnosis framework for other kernel-related models.
The disadvantages lie in the aspect that (11) holds approx-
imately, which entails that the new concept is given under a
linear assumption. However, this approximation is reason-
able and valid, since, to address the issue like nonlinearity,
lots of similar treatments could be found[25−26].

Note that prior to construct KPCA model, the raw data
are merely normalized to zero mean, and not scaled to unit
variance. Thus, all variables′ contribution rates under nor-
mal condition may be different from each other, since the
feature mapping may effect all variables unevenly. There-
fore it is meaningful to normalize the raw contribution rates
obtained by (14) to make sure that all variables contribute
more or less the same to ϕ under normal operation. The ul-
timate contribution rate for both training and testing sam-
ples are expressed separately:

C (xxx, i) =
Craw (xxx, i)

mc (i)
(18)

C (xxxnew, i) =
Craw (xxxnew, i)

mc (i)
(19)

where mc (i) = (1/n)
∑n

j=1 Craw (xxxj , i).

2.4 Accumulative relative contribution rate

Up to now, the absolute contribution rates are available.
However, directly implementing contribution rate on non-
linear fault diagnosis still needs to pay more attention on
two problems: 1) When contribution rates are available
for a faulty measurement, how could we identify the latent
fault root-cause and 2) how can we eliminate the smear-
ing caused by fault transmission effectively. Compared
with the absolute contribution rate, the relative one is pre-
ferred to identify those variables whose absolute contribu-
tion rates are large. So, each contribution rate of a sample
is firstly divided by the sum of all contribution rates, then
the original relative contribution rate is obtained:

Cr (xxxnew, i) =
C (xxxnew, i)

m∑
i=1

C (xxxnew, i)
(20)

where C (xxxnew, i) varies around 1/m.
Finally, an accumulative relative contribution rate

(ARCR) is established as follows:
A faulty sample xxxnew is available,
1) Obtain the absolute contribution rate C (xxxnew, i), then

calculate relative Cr (xxxnew, i) , ΣCr(xxxnew, i) = 1;
2) Rearrange Cr (xxxnew, i) in the descending sequence;
3) Orderly collect the corresponding variables whose ac-

cumulative relative contribution rates exceed θ.
ARCR attempts to isolate the variables according to

their cumulative contribution rates. θ is a crucial parame-
ter corresponding to the final control limit. An appropriate
θ can deal with the smearing, while an extreme one may
also result in wrong diagnosis. Generally, θ > 1/m, as,
Cr(xxxnew)max > 1/m. However, a large control limit iso-
lates more variables which may mislead the results. Prac-
tically, θ that satisfies θ < ‖Cr (xxxnew)‖2 is a valid choice
where ‖·‖2 represents the operator of Euclid norm and
Cr(xxxnew)max < ‖Cr (xxxnew)‖2 < 1 . Hence, the choice of θ is
a trade-off between 1/m and ‖Cr (xxxnew)‖2. In this study,

this problem can be reduced to choose θ =
‖Cr(xxxnew)‖2+1/m

2
.

To sum up, the implementation of the proposed diag-
nosis scheme involves KPCA modeling, ϕ based detection
and contribution rate based diagnosis. The whole proce-
dure of online monitoring for nonlinear processes can be
summarized step wise in Fig. 2.

3 Case study on CSTR benchmark

In this section the continuous stirred tank reactor
(CSTR) with feedback control is applied to assess the per-
formance of the new approach.

3.1 Description of CSTR

The CSTR process can be described by the following
differential equations:

dCA

dt
=

q

V
(CAf − CA)− k0 exp

(
− E

RT

)
CA + v1

dT

dt
=

q

V
(Tf − T ) +

−H

ρCp
k0 exp

(
− E

RT

)
CA +

UA

V ρCp
(Tc − T ) + v2 (21)
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where CA is the outlet concentration, T is the reaction
temperature, Tc is the temperature of cooling water, q
is the input fluent velocity of reactant, CAf is the input
reactant concentration, Tf is the input reactant tempera-
ture, and v1, v2 are process noise, where vi ∼ N

(
0, σ2

v

)
,

i = 1, 2. In this case study, Tf , CAf , T , q, Tc and CA are
referred as process variables XXX. Measurement noises are
also added to XXX in the formula of xxx (k) = xxxraw (k) + eee (k),
where eee (k) ∼ N

(
0, σ2

e

)
, k is the observation number. The

classic PID feedback control with the transfer function of
K (1 + Tds + TI (1/s)) ε is employed to fulfill the closed-
loop control, where ε = [CA − C∗A, T − T ∗]T, inputs are
added to [q, Tc]

T, C∗A and T ∗ are the normal observations of
the outlet concentration and reaction temperature. All rel-
evant systematic parameters and operational conditions are
available in [19]. To satisfy this application, a little changes
are given as follows: σ2 (Tf ) = σ2 (CAf ) = 0.05, σv = 0.04,
σ2 (CA) = 1E − 4. Under normal circumstance, 500 sam-
ples are collected and recorded to form KPCA model, where
cmin = 0.1, cmax = 1000, c = 500 is obtained according to
the end part of Subsection 1.2, λ⊥ = 0.02, A = 7 is kept for
this simulation. Absolute contribution rate plot of a normal
sample is presented in Fig. 3 which is consistent with the
conclusion in Subsection 2.3. Three types of fault scenarios
are formulated with 1 000 samples:

1) Fault I: a step bias in xxx2 at 501st sample:{
xxx2 (k) = 1 k < 500

xxx2 (k) = 1.2 k ≥ 501
.

2) Fault II: a ramp disturbance in xxx1 at 501st sample:{
xxx1 (k) = 400 k < 500

xxx1 (k) = 400 + (k − 400)/20 k ≥ 501
.

3) Fault III: a random disturbance in xxx1 at 501st sample:{
xxx1 (k) = 400 k < 500

xxx1 (k) = 400 + ξ k ≥ 501
, where ξ ∼ N

(
0, 252

)
.

There are also artificial noises that should be added to
the samples under the fault scenarios. Meanwhile for this
simulation, we also give the following remark.

Fig. 2 Implementation of contribution rate ((a) Off-line

training model; (b) Online testing model)

Fig. 3 Diagnosis result under normal situation

Remark 2. For comparison with the linear method, a
PCA based diagnosis approach is also employed, where the
detection index and contribution plot are constructed by
referring refs. [19] and [27], respectively.

3.2 Results and discussion

Fault I involves a step change in CAf (xxx2), which leads to
abnormalities in other variables due to the close-loop feed-
back control. The detection result with ϕ is shown in Fig. 4,
where the fault is detected from 501st time instant. PCA
based diagnosis for this fault is shown in Fig. 5. To give a
valid result compared with the present method, Fig. 5 uti-
lizes the average contributions of all variables regarding a
time scope from the detecting time to the end of the simu-
lation, which is likewise in the following experiments. From
the result, it can be concluded that the contributions of xxx1,
xxx2, xxx5 and xxx6 all exceed the relative threshold 1, so it is
hard to identify the ultimate faulty source. The real time
diagnosis utilizing ARCR for this fault is given in Fig. 6,
where “o” is marked as an effective diagnosis, and differ-
ent values of θ are included in the simulation. θ = 0.4 in
the first subfigure is chosen empirically, whereas θ = 0.26
is given according to Subsection 2.4. From the two subfig-
ures, it is obvious that the new real-time diagnosis scheme
can successfully locate the faulty origination, namely xxx2.
Meanwhile, it can be found that ARCR with an appropri-
ate θ is able to deal with the smearing effect caused by the
transmission of the fault.

Fault II, an incipient fault, is triggered by a slow ramp
drift Tf (xxx1). As can be seen from Fig. 7, there is a time-
delay for the detection, since it is successfully detected from
the 589th sample. This phenomenon is caused by the dy-
namics of CSTR process and the nature of incipient fault.
The online diagnosis starts from the 589th sample that is
presented in Fig. 9, where the new scheme identifies xxx1 as
the origin of this fault straightforwardly. By contrast, PCA
based contribution plot is sketched in Fig. 8. With the con-
fusing result, it is hard to determine which component is
truly responsible for this fault. Indeed, the performances
could be explained according to the nature of both meth-
ods. When a change happens in a nonlinear system like
CSTR, it will smear to other components from the occur-
rence point. The traditional contribution plot measures
each variable′s contribution to the detection index at a time
point, thus, with the smearing effect, other variables will
be wrongly labeled as the fault source. Instead, contri-
bution rate accounts for the fault origin by analyzing each
variable′s sensitivity to the the detection index, which could
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successfully locate the faulty component.

Fig. 4 Detection result of Fault I with index ϕ

Fig. 5 PCA based diagnosis for Fault I

Fig. 6 Diagnosis result of Fault I with ARCR

Fig. 7 Detection result of Fault II with index ϕ

Fault III is random disturbance that occurs in Tf . In
general, the mathematical description of this fault resem-
bles a declination in precision of sensor 1 physically, and
it may result in severe disturbances in other process vari-
ables, of which Tc, namely xxx5 is intuitively included due to
the function of the closed-loop control. ϕ detects this fault
immediately in Fig. 10. PCA based approach picks out xxx1,
while xxx5 and xxx6 contribute a lot as well. As for ARCR
based diagnosis in Fig. 12, it isolates xxx1 directly. Differ-
ent from Fault II, xxx4 is also isolated subsequently in this
fault, that is because the abnormal variations occurring in
xxx1 cause significant threat to xxx4 that cannot be resisted
by ARCR. However, the result from another side demon-
strates that ARCR can not only find the faulty source, but
also point out the fault sequence as well.

Fig. 8 PCA based diagnosis for Fault II

Fig. 9 Diagnosis result of Fault II with ARCR

Fig. 10 Detection result of Fault III with index ϕ
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Fig. 11 PCA based diagnosis for Fault III

Fig. 12 Diagnosis result of Fault III with ARCR

4 Conclusion

In this paper, KPCA model and KPCA based process
monitoring are revisited at first. Then a contribution rate
based diagnosis scheme is established to address the difficul-
ties existing in KPCA based diagnosis area which success-
fully overcomes the demerits introduced by kernel function.
Instead of focusing on the contribution to the detection in-
dex as shown in linear models, contribution rate primarily
concerns with how to measure the variable′s influence to
the increment of the fault detection. From this viewpoint,
the present approach is derived physically and theoretically.
Meanwhile, a more effective method based on contribution
rate called accumulative relative contribution rate is also
developed from the practical motivation. In the simula-
tion, a case study on CSTR demonstrates the effectiveness
of the contribution rate based strategy. To conclude, the
present scheme is powerful enough to address the online
nonlinear fault diagnosis issue. It also provides a universal
paradigm to handle other kernel-relevant data-driven fault
diagnosis problem.

Due to the scope of this paper, some other aspects such
as dynamics, non-Gaussianity and time-varying character-
istic etc. are not considered for industrial processes. These
fields will be considered in the future work.
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