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Sufficient and Necessary

Condition of Admissibility for

Fractional-order Singular System

YU Yao1, 2 JIAO Zhuang3 SUN Chang-Yin1, 2

Abstract This paper focuses on the admissibility condition
for fractional-order singular system with order α ∈ (0, 1). The
definitions of regularity, impulse-free and admissibility are given
first, then a sufficient and necessary condition of admissibility
for fractional-order singular system is established. A numerical
example is included to illustrate the proposed condition.
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The history of fractional calculus is more than 300 years
old. Classical works on the fractional integral and frac-
tional differential equations have been done by Oldham
et al.[1], and Poldubny[2]. Recently, increasing attentions
are paid to fractional differential equations and their ap-
plications in various science and engineering fields, such
as electrochemistry[3], electrode-electrolyte polarization[4],
viscous damping[5−6], viscoelastic systems[7], electric frac-
tal networks[8], electromagnetic waves[9] and so on.

As an important application of fractional calculus,
fractional-order control systems[10] have attracted more
and more interests in the last several years, for instance,
some important issues of fractional-order systems, such as
modeling, stability, controllability, observability were con-
sidered in [11−12]; PIλDµ controller, the generalization of

PID controller was proposed in [13]; CRONE control[14]

was the first robust control method based on fractional dif-
ferentiation for linear systems; robust stability of interval
uncertain fractional-order linear time invariant systems was
investigated in [15−17]; a numerical algorithm for stability
testing of fractional-order delay systems is presented in [18].
For more knowledge about fractional-order control theory
and its applications, one can refer to [19−24].

Singular systems[25] have been extensively studied in the
past few decades due to the fact that singular systems
can describe real physical systems better and more directly
than regular systems. Naturally, many theoretical results
for regular systems have been extended to singular cases[26].
It is well known that issues of concern for singular systems
are much more complicated than those for regular systems,
because we need to consider not only stability, but also reg-
ularity and the absence of impulses at the same time[27−28]
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for singular systems. Regularization and stabilization for
singular fractional-order systems with order between 1 and
2 was first investigated in [29]. Admissibility is a very im-
portant property for singular systems, and to the best of
our knowledge, there exist no results about admissibility
for fractional-order singular system, so in this paper we
give the sufficient and necessary condition of admissibility
for fractional-order singular system with fractional order
α ∈ (0, 1).

This paper is organized as follows. Some preliminar-
ies about fractional-order calculus and fractional-order sys-
tems are recalled in Section 1. The main result for
fractional-order singular system with order α ∈ (0, 1) is
given in Section 2, which includes the extensions of some
of the basic results of singular integer-order systems to
fractional-order singular system, e.g., the definition of regu-
larity, impulse-free and admissibility. In particular, a suffi-
cient and necessary condition of admissibility for fractional-
order singular system is given. In Section 3, a numerical
example is included to illustrate the main result established
in this paper.

1 Preliminaries
Fractional calculus[2] has become a powerful mathemat-

ical tool and is playing a more and more important role in
modern science and engineering.

In order to utilize fractional calculus for the discussion
in current paper, the fundamental definition of fractional
calculus is recalled. The uniform formula of fractional-order
integral is defined as follows:

0D
−α
t f(t) := D−αf(t) =

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ

where α > 0, f(t) is an arbitrary integrable function, Γ(·)
is Gamma function.

Based on the definition of fractional-order integral, the
well known definition of Caputo fractional-order derivative
operator is defined as:

C
0 Dα

t f(t) := Dαf(t) = 1
Γ(n−α)

∫ t

0
(t− τ)n−α−1f (n)(τ)dτ

where n− 1 < α < n.
To proceed the discussion of the main result, the follow-

ing lemma is given.
Lemma 1[17]. A fractional-order system: Dαx(t) =

Ax(t) (0 < α < 1) is asymptotically stable if and only if
there exist two real symmetric positive definite matrices
Q11 and Q21, and two skew-symmetric matrices Q12 and
Q22 such that

2∑
i=1

2∑
j=1

sym {Θij ⊗ (QijA)} < 0

[
Q11 Q12

−Q12 Q11

]
> 0,

[
Q21 Q22

−Q22 Q21

]
> 0

where sym{X} := XT + X, Θij (i, j = 1, 2) are defined as
follows:

Θ11 =

[
sin

(
πα
2

) − cos
(

πα
2

)
cos

(
πα
2

)
sin

(
πα
2

)
]

(1)

Θ12 =

[
cos

(
πα
2

)
sin

(
πα
2

)
− sin

(
πα
2

)
cos

(
πα
2

)
]

(2)

Θ21 =

[
sin

(
πα
2

)
cos

(
πα
2

)
− cos

(
πα
2

)
sin

(
πα
2

)
]

(3)
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Θ22 =

[ − cos
(

πα
2

)
sin

(
πα
2

)
− sin

(
πα
2

) − cos
(

πα
2

)
]

(4)

2 Main result
Consider the following fractional-order singular (FOS)

system:
EDαx(t) = Ax(t), 0 < α < 1 (5)

where A ∈ Rn×n, E ∈ Rn×n is a singular matrix such
that rank(E) = r < n, Dα denotes the Caputo derivative
operator.

Parallel to integer order singular systems, the concerning
basic definitions and relevant facts for FOS system (5) are
given as follows.

Definition 1. For FOS system (5), the triplet (E, A, α)
is called regular if there exists a constant scalar c0 ∈ C such
that |cα

0 E −A| 6= 0, e.g., the pseudo-polynomial |sαE −A|
is not identically zero.

Similar to the proof of regularity of integer order sin-
gular systems, the regularity condition for fractional-order
singular system is given as following.

Lemma 2. The triplet (E, A, α) in FOS system (5) is
regular if and only if there exist two nonsingular matrices
Q and P such that

QEP = diag (In1 , N) , QAP = diag (A1, In2) (6)

where n1+n2 = n, A1 ∈ Rn1×n1 , N ∈ Rn2×n2 is nilpotent.
Proof. Sufficiency. Assume there exist two nonsingu-

lar matrices Q and P satisfying (5), then we can choose
cα
0 /∈ σ(A1), where σ(A1) denotes the set of eigenvalues of

A1, then

|cα
0 E −A| =

∣∣Q−1
∣∣ ∣∣P−1

∣∣ |cα
0 QEP −QAP | =∣∣Q−1

∣∣ ∣∣P−1
∣∣ |cα

0 In1 −A1| |cα
0 N − In2 | 6= 0

Thus (E, A, α) is regular.
Necessity. If (E, A, α) is regular, then there exists c0 ∈

C such that |cα
0 E −A| 6= 0. Note that Ē = (cα

0 E −A)−1E,

Ā = (cα
0 E −A)−1A, so it is easy to obtain Ā = cα

0 Ē − I.
On the other hand, it follows from the Jordan canonical

form decomposition that there exists a nonsingular matrix
T such that TĒT−1 = diag

(
Ē1, Ē2

)
, where Ē1 ∈ Rn1×n1

is nonsingular, Ē2 ∈ Rn2×n2 is nilpotent. From the above
analysis, we know that I − cα

0 Ē2 is nonsingular.

Let Q = diag
(
Ē−1

1 ,
(
cα
0 Ē2 − I

)−1
)

T (cα
0 E −A)−1, and

P = T−1. From Ā = cα
0 Ē − I, one has

QEP = diag (In1 , N) , QAP = diag (A1, In2)

where A1 = Ē−1
1

(
cα
0 Ē2 − I

)
, N =

(
cα
0 Ē2 − I

)−1
Ē2 is

nilpotent.
Assume the triplet (E, A, α) in FOS system (5) is regu-

lar, then based on Lemma 2, the FOS system (5) can be
transformed into

{
Dαx1(t) = A1x1(t)
NDαx2(t) = x2(t)

0 < α < 1 (7)

where [ x1(t) x2(t) ]T = P−1x(t), the initial state re-
sponse of FOS system (7) is

[
x1(t)
x2(t)

]
= P




Eα,1(A1t
α)x1(0)

−
h−1∑
k=1

δ((k−1)α)(t)Nkx2(0)


 , t ≥ 0

(8)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , n1 + n2 = n, δ(t) is
the impulse function, Eα,β(t) is the two-parameter Mittag-

Leffler function[2].
From (8), we know that the triplet (E, A, α) is impulse-

free if N = 0. ¤
Definition 2. The finite eigenvalues of (λE−A) in FOS

system (5) are called finite dynamic modes of the triplet
(E, A, α).

Let σ(E, A, α) = {λ |λ ∈ C, λ finite, |λE−A| = 0} de-
notes the finite pole set for FOS system (5). It can be
easily known from [11] that the FOS system (5) is asymp-
totically stable, if all the finite dynamic modes lie in the
domain Dα

s := {λ | |arg(λ)| > απ/2, λ ∈ C}. Stable regions
for FOS system (5) of order 0 < α < 1, α = 1 and 1 < α < 2
are illustrated in Fig. 1.

Fig. 1 Stable regions Dα
s for 0 < α < 1, α = 1 and 1 < α < 2

Definition 3. The generalized eigenvectors ν satisfying
Eν = 0 are defined as:
1) The infinite eigenvector of order 1 satisfies Eν1

i = 0.
2) The infinite eigenvector of order k satisfies Eνk

i =

Aνk−1
i , k > 1.
Remark 1. Suppose that Eν1 = 0, then the infinite

eigenvalues associated with the generalized principal vec-
tors νk satisfying Eνk = νk−1 are impulsive modes. The
triplet (E, A, α) is impulse-free if and only if there exists
no infinite eigenvector of order 2, ν2.

Definition 4. FOS system (5) is said to be admissible,
if the triplet (E, A, α) is regular, impulse-free, and all the
finite eigenvalues of triplet (E, A, α) lie in the stable regions
of Dα

s .
In the following, as the main result, a sufficient and nec-

essary condition of admissibility for FOS system (5) is de-
rived.

Theorem 1. Assume the triplet (E, A, α) is regular,
then FOS system (5) is admissible, if and only if there
exist two real symmetric positive definite matrices Q11 and
Q21, and two skew-symmetric matrices Q12 and Q22, and
Q ∈ R(n−r)×n such that

sym

{
2∑

i=1

2∑
j=1

{
Θij ⊗

(
ETQijA

)}
+I2 ⊗

(
QTET

0 A
) }

< 0

(9)

where rank (E) = r < n, E0 ∈ Rn×(n−r) is a matrix of full
column rank such that ETE0 = 0, sym{X} := XT + X,
Θij (i, j = 1, 2) are defined in (1)∼ (4).

Proof. Sufficiency. Proof by contradiction, assume
that triplet (E, A, α) is impulsive, then it can be known
similarly from Remark 1 that there exists an infinite eigen-
vector of order 2, ν2 ∈ Rn such that Eν2 = Aν1 and

Eν1 = 0. By premultiplying
(
I2 ⊗ ν1

)T
and postmultiply-

ing
(
I2 ⊗ ν1

)
, then (9) becomes

(
I2 ⊗ ν1

)T×
sym

{
2∑

i=1

2∑
j=1

{
Θij ⊗

(
ETQijA

)}
+ I2 ⊗

(
QTET

0 A
) }

×
(
I2 ⊗ ν1

)
< 0
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Then one has

I2 ⊗
(
ν1

)T×
sym

{
2∑

i=1

2∑
j=1

{
Θij ⊗

(
ETQijA

)} } (
I2 ⊗ ν1

)
+

I2 ⊗
(
ν1

)T
sym

{
I2 ⊗

(
QTET

0 A
) } (

I2 ⊗ ν1
)

< 0

Then

I2⊗sym

{
2∑

i=1

2∑
j=1

{
Θij ⊗

(
ν1

)T (
ETQijA

)
ν1

} }
+

I2 ⊗ sym
{

I2 ⊗
(
ν1

)T (
QTET

0 A
)
ν1

}
< 0

So, one has

I2⊗sym

{
2∑

i=1

2∑
j=1

{
Θij ⊗

(
Eν1

)T
(QijA)ν1

} }
+

I2 ⊗ sym
{

I2 ⊗
(
ν1

)T (
QT ET

0

)
Aν1

}
< 0

Then

I2 ⊗ sym
[
I2 ⊗

(
ν1)T

(
QTET

0

)
Eν2

]
< 0

Then the following inequality holds

I2 ⊗
[(

ν1)T
(
QTET

0 E
)

ν2 +
(
ν2)T

(
ETE0Q

)
ν1

]
< 0

Of course, the above inequality does not hold, so the as-
sumption is false. Then it can be known that triplet
(E, A, α) is impulse-free.

Let λ be any finite eigenvalue of triplet (E, A, α), ν is
the corresponding eigenvector, i.e., Aν = λEν and ν∗AT =
λ̄ν∗ET. From (9), one has

(I2 ⊗ ν)∗sym





2∑
i=1

2∑
j=1

{
Θij ⊗

(
ETQijA

)}
+

I2 ⊗
(
QTET

0 A
)



 (I2 ⊗ ν) =

2∑
i=1

2∑
j=1

{
Θij ⊗

(
λν∗ETQijEν

)}
+

2∑
i=1

2∑
j=1

{
ΘT

ij ⊗
(
λ̄ν∗ETQT

ijEν
)}

=

2∑
i=1

2∑
j=1(

I2 ⊗ ν∗ET
) {

Θij ⊗ (λQij)+ΘT
ij ⊗

(
λ̄QT

ij

)}
(I2 ⊗ Eν) =

(
I2 ⊗ ν∗ET

)
{

2∑
i=1

2∑
j=1

{
Θij ⊗ (λQij)+ΘT

ij ⊗
(
λ̄QT

ij

) }
}
×

(I2 ⊗ Eν) < 0

It is known from the above inequality that

2∑
i=1

2∑
j=1

{
Θij ⊗ (λQij) + ΘT

ij ⊗
(
λ̄QT

ij

)}
< 0

Based on Lemma 4, one knows that both λ and λ̄ lie in Dα,
i.e., all the finite eigenvalues of triplet (E, A, α) lie in Dα,
then FOS system (5) is admissible.

Necessities. As triplet (E, A, α) is regular and impulse-
free, then there exist nonsingular matrices M and N , such
that

MEN =

[
M1

M2

]
E

[
N1 N2

]
=

[
Ir 0
0 0

]

MAN =

[
M1

M2

]
A

[
N1 N2

]
=

[
A1 0
0 In−r

]

where M1 ∈ Rr×n, N1 ∈ Rn×r.
Note that M2AN =

[
0 In−r

]
, M2E = 0, then it can

be known from Lemma 1 and the Dα-stability of triplet
(E, A, α) that there exist two real symmetric positive def-
inite matrices Q̄11 and Q̄21, and two skew-symmetric ma-
trices Q̄12 and Q̄22, such that

2∑
i=1

2∑
j=1

sym
{
Θij ⊗

(
Q̄ijA1

)}
< 0

Therefore, there exists a sufficiently small positive constant
ε, such that

2∑
i=1

2∑
j=1

sym
{
Θij ⊗

(
Q̄ijA1

)}
+ I2 ⊗

( ε

2
NT

1 N1

)
< 0

The above inequality can also be rewritten as

2∑
i=1

2∑
j=1

sym
{
Θij ⊗

(
Q̄ijA1

)}
+

[
I2 ⊗

(
εNT

1 N2

)] [
I2 ⊗

(
2εNT

2 N2

)]−1 [
I2 ⊗

(
εNT

2 N1

)]
< 0

Invoking Schur complement, the above inequality is equiv-
alent to



2∑
i=1

2∑
j=1

sym
{
Θij ⊗

(
Q̄ijA1

)} −I2 ⊗
(
εNT

1 N2

)

−I2 ⊗
(
εNT

2 N1

) −I2 ⊗
(
2εNT

2 N2

)


 < 0

⇐⇒

sym





2∑
i=1

2∑
j=1

{
Θij ⊗

[
Q̄ijA1 0

0 0

]}
+

I2 ⊗
([

0
In−r

] [ −εNT
2 N1 −εNT

2 N2

])





< 0

⇐⇒

sym





2∑
i=1

{
Θi1⊗

([
Ir 0
0 0

][
Q̄i1 0
0 In−r

][
A1 0
0 In−r

])}
+

I2 ⊗
([

0
In−r

] (−εNT
2

)
N

)





+

sym

{
2∑

i=1

{
Θi2⊗

([
Ir 0
0 0

][
Q̄i1 0
0 0n−r

][
A1 0
0 In−r

])}}
< 0

Substituting the decomposed form of triplet (E, A, α) into

the above inequality, and let Q̃i1 =

[
Q̄i1 0
0 In−r

]
> 0,

Q̃i2 =

[
Q̄i2 0
0 0n−r

]
, i = 1, 2, then

sym





2∑
i=1

2∑
j=1

{
Θij ⊗

(
NTETMTQ̃ijMAN

)}
+

I2 ⊗
(
NT(−εN2)M2AN

)



 < 0

Denote MTQ̃ijM = Qij , MT
2 = E0 and −εNT

2 = Q, where
E0 is a matrix of full column rank. As N is a nonsingular
matrix, the above inequality is equivalent to the following:

sym

{
2∑

i=1

2∑
j=1

{
Θij ⊗

(
ETQijA

)}
+ I2 ⊗

(
QTET

0 A
) }

< 0

¤
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3 Numerical example
In this section, numerical examples are shown to demon-

strate the effectiveness of the presented results.
Example 1. Consider a FOS system (5) described

with parameters as α = 0.5, E =

[
1 1
8 8

]
and A =

[ −1 0
1 −9

]
.

Firstly, E0 =
[

8 −1
]T

can be chosen to satisfy

ETE0 = 0.
Then, by solving LMI (9) one obtains two real symmetric

positive definite matrices

Q11 =

[
2.0349 −0.8182
−0.8182 0.8639

]

Q21 =

[
0.1167 0

0 1.3092

]

two skew-symmetric matrices

Q12 =

[
0 0.8182

−0.8182 0

]

Q22 =

[
0 0.8182

−0.8182 0

]

and a matrix Q =
[ −2.7139 −2.7867

]
.

Therefore, from Theorem 1, one knows that the
fractional-order singular system is admissible.

Example 2. Consider another FOS system (5) with

parameters as α = 0.5, A =

[
2 0
1 3

]
and E =

[
1 3
3 9

]
.

Choose E0 =
[

3 −1
]T

to satisfy ETE0 = 0.
Then, solving LMI (9) by Matlab, one obtains the follow-

ing information, which means this FOS is not admissible.
Result: best value of t: 5.404716E−012
f-radius saturation: 21.284% of R = 1.00E+009
Marginal infeasibility: these LMI constraints may be fea-

sible but are not strictly feasible.

4 Conclusion
The issue of admissibility for fractional-order singular

system with order belonging to (0, 1) was considered in
this paper. The extensions of some basic results of integer
order singular system to fractional-order singular system
were given, e.g., the definitions of regularity, impulse-free
and admissibility; and a sufficient and necessary conditions
of admissibility was proposed, which was verified by nu-
merical examples.
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