
Vol. 39, No. 12 ACTA AUTOMATICA SINICA December, 2013

Semiglobal Stabilization via
Output-feedback for a Class of
Uncertain Nonlinear Systems

LIU Meng-Liang1 LIU Yun-Gang1

Abstract This paper considers the semiglobal stabilization via
output-feedback for a class of uncertain nonlinear systems. Dif-
ferent from the existing results, the systems under investiga-
tion possess more serious nonlinearities and unknown control
coefficients which substantially increase the difficulty of output-
feedback controller design. Combining the backstepping method
and output-feedback domination approach, a semiglobal stabi-
lizing controller is explicitly given, which can guarantee that the
closed-loop system achieves the semiglobal asymptotic stability
under the appropriate choice of design parameter. A simula-
tion example validates the theoretical results and the proposed
approach.
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Stabilization via output-feedback for nonlinear systems
has been a major research field in control theory during
the last decades, since it needs less information on systems
and hence is more practical than that via state-feedback
(see e.g., [1−8] and references therein). Mainly because
of the theoretical elegance, global stabilization via output-
feedback has been paid much attention and plentiful results
have been obtained over the past years[1, 4, 7−8]. However,
for most nonlinear systems, global stabilization via output-
feedback cannot be implied by global stabilization via state
feedback plus observability, unlike the case of linear sys-
tems. Thus, more severe restrictions are usually imposed on
the nonlinear systems, particularly the growth conditions
on unmeasurable states[1, 2, 4]. In fact, if the system non-
linearities grow faster than a quadratic nonlinearity with
respect to unmeasurable states, there exist counterexam-
ples which cannot achieve global stabilization by any con-
tinuous output-feedback[2]. This makes global stabilization
impossible in many nonlinear systems which do not satisfy
the structural or growth conditions.

Different from global stabilization, semiglobal stabiliza-
tion means that construction of a stabilizing feedback law
yields a region of attraction which contains any a priori
given (may be arbitrarily large) compact set[9], and hence
has a less ambitious control objective which can meet the
needs of practical application. This makes semiglobal sta-
bilization applicable to a much wider class of nonlinear sys-
tems than global one[10–15]. The earlier works [11−12] deal
with the semiglobal stabilization via output-feedback of
fully feedback linearizable nonlinear systems which are gen-
erally not globally stabilized via dynamic output-feedback.
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Reference [13] indicated that semiglobal stabilization via
output-feedback can be achieved by uniform observability
and global stabilization via state feedback. In some cases,
due to presence of mismatched uncertainties and lack of
triangularity condition, the nonlinear systems are neither
uniformly completely observable nor feedback linearizable.
For those systems, semiglobal stabilization was addressed
in [10−15]. On the other hand, semiglobal stabilization can
relax or remove the severe restrictions needed in the global
framework[10, 16]. Mainly because of these, semiglobal sta-
bilization has attracted many attentions.

In this paper, we consider the semiglobal stabilization via
output-feedback for a class of uncertain nonlinear systems
in the following form:





η̇i = giηi+1 + ψi(t,ηηη, u), i = 1, · · · , n− 1

η̇n = gnu + ψn(t,ηηη, u)

y = η1

(1)

where ηηη = [η1, · · · , ηn]T ∈ Rn is the system state with
the initial value ηηη(t0) = ηηη0; u ∈ R and y ∈ R are the
input and output, respectively; gi 6= 0, i = 1, · · · , n are un-
known constants, called the control coefficients; functions
ψi : [t0,∞) × Rn × R → R, i = 1, · · · , n are (piecewise)
continuous in the first argument and locally Lipschtiz in
the rest two arguments. In what follows, we suppose that
only the output y is measurable and available for feedback.

To solve the problem, we make the following assumptions
on system (1):

Assumption 1. For i = 1, · · · , n,

|ψi(t,ηηη, u)| ≤ µψi(y)

i∑
j=1

|ηj |+ νψi(y)

i−1∑
j=2

|ηj |
i−1
j−1 (2)

where µψi(·) and νψi(·) are known nonnegative smooth
functions and νψ1(·) = νψ2(·) = 0.

Assumption 2. The signs of gi, i = 1, · · · , n are known
and there exist known positive constants gN and gM , such
that

gN ≤ |gi| ≤ gM , i = 1, · · · , n

In contrast to [7−8, 17], the systems under investiga-
tion contain more serious nonlinearities which permit the
higher-order growing unmeasurable states. Compared with
[10], the systems considered here have unknown control co-
efficients which render the output-feedback design more
difficult to carry out. In this paper, we combine with
backstepping method and output-feedback domination ap-
proach to construct a semiglobal stabilizing controller with
appropriately adjusted gain, such that the closed-loop tra-
jectories starting from the given region of the initial condi-
tion converge to the origin asymptotically.

1 Semiglobal output-feedback controller
design

To effectively deal with the unknown control coefficients,
we introduce the following coordinates transformation:

xi =
ηi

n∏
j=i

gj

, i = 1, · · · , n (3)

which changes system (1) into the following:





ẋi = xi+1 + φi(t,xxx, u)

ẋn = u + φn(t,xxx, u)

y = gx1

(4)
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where xxx = [x1, · · · , xn]T, g =
∏n

j=1 gj and φi(t,xxx, u) =
1∏n

j=i gj
ψi(t,ηηη, u), i = 1, · · · , n.

It is necessary to stress that the semiglobal stabilization
of system (1) is implied by that of system (4), and therefore
we turn to investigate system (4) in the sequel. About the
transformed system (4), we have the following proposition
to show the growth of its nonlinearities.

Proposition 1. For each nonlinearity φi of system (4),
there holds

|φi(t,xxx, u)| ≤ µi(y)

i∑
j=1

|xj |+ νi(y)

i−1∑
j=2

|xj |
i−1
j−1 (5)

where µi(y) =
max{gn−i+1

M
, gn

M}
gn−i+1

N

µψi(y), ν1(y) = 0, ν2(y) =

0, νi(y) =
max{g

(n−2)(i−1)
M

, gn−i+1
M

}
gn−i+1

N

νψi(y), i = 3, · · · , n.

Proof. Substituting (3) into (2) and using Assumption
2 directly conclude (5). ¤
1.1 Observer design

In this paper, motivated by [8, 17], we introduce an
input-driven high-gain observer as follows:

{ ˙̂xi = x̂i+1 − Liaix̂1, i = 1, · · · , n− 1
˙̂xn = u− Lnanx̂1

(6)

where L > 1 is a design parameter to be determined later,
and ai > 0, i = 1, · · · , n are chosen as the coefficients of
Hurwitz polynomial p(s) = sn +a1s

n−1 + · · ·+an−1s+an.
Remark 1. Since g is an unknown coefficient, all the

states for system (4) are not measured. Therefore, the
full-order observer tuned by the estimate error x1 − x̂1,
as illustrated in [10], is not feasible and cannot be adopted
to system (4). Moreover, due to the unknowns in g and
ψi(·), i = 1, · · · , n − 1, the nonlinear terms φi(·) in sys-
tem (4) are unknown. Hence, some uncertain term (i.e.,
Φ(·)) arises in the error dynamics system (7) which prevents
convergence of high gain observer and makes it difficult to
be dealt with by the backstepping method. Motivated by
the existing literature, the output-feedback domination ap-
proach is used to deal with the uncertain term and guar-
antees the convergence of the high gain observer.

Let zi = x̂i
Li−1 , εi = xi−x̂i

Li−1 , i = 1, · · · , n, and denote

zzz = [z1, · · · , zn]T, εεε = [ε1, · · · , εn]T. Besides, for notational
simplicity, let zn+1 = u

Ln . Then, by (4) and (6), we have:

ε̇εε = LAεεε + Laaax1 + ΦΦΦ(t,xxx, u) (7)

where ΦΦΦ(t,xxx, u) = [φ1(t,xxx, u), φ2(t,xxx,u)
L

, · · · , φn(t,xxx,u)

Ln−1 ]T, aaa =

[a1, · · · , an]T, and

A =




−a1 1 · · · 0
...

...
. . . 0

−an−1 0 · · · 1
−an 0 · · · 0




It is easy to see that A is a Hurwitz matrix, for which, there
is a symmetric positive-define matrix P ∈ Rn×n such that
ATP + PA ≤ −I, where I ∈ Rn×n is identity matrix.

According to (5) and the fact L > 1, it can be shown
that

φi(t,xxx, u)

Li−1
≤ φ1i(t,xxx, u) + φ2i(t,xxx, u), i = 1, · · · , n

where φ1i = µi(y)
(∣∣ 1

gn
N

y
∣∣ +

∑i
j=2(|εj |+ |zj |)

)
, and φ21 =

φ22 = 0, φ2i = νi(y)
∑i−1

j=2

(
|zj + εj |

i−1
j−1

)
. This is the

same as that in [10], and is essential to establish the
semiglobal stabilization. For the convenience of later
use, let ΦΦΦ1(t,xxx, u) = [φ11, · · · , φ1n]T and ΦΦΦ2(t,xxx, u) =
[φ21, · · · , φ2n]T.

Proposition 2. For the error system (7), define Vεεε(εεε) =
εεεTPεεε. Then there holds

V̇εεε(εεε) ≤−
(

L

2
− γ(y)

)
‖εεε‖2 +

(
1

2
+

2‖Paaa‖2L
g2n

N

)
y2+

1

2

n∑
i=2

z2
i + 2‖εεεTP‖ · ‖ΦΦΦ2‖ (8)

Proof. Clearly, along the solutions of (7), the time-
derivative of Vεεε(εεε) satisfies

V̇εεε(εεε) = −L‖εεε‖2 + 2εεεTPΦΦΦ + 2LεεεTPaaax1 (9)

Observing that

‖ΦΦΦ1(t,xxx, u)‖ ≤‖ΦΦΦ1(t,xxx, u)‖1 ≤ γ1(y)

gn
N

|y|+

√
nγ1(y)‖εεε‖+ γ1(y)

n∑
i=2

|zj |

where ‖ΦΦΦ1‖1 = |φ11|+ · · ·+ |φ1n|, we have

2εεεTPΦΦΦ1 ≤ γ(y)‖εεε‖2 +
1

2
y2 +

1

2

n∑
i=2

z2
i (10)

where γ1(y) =
∑n

i=1 µi(y) and γ(y) = 2‖P‖2
g2n

N
γ2
1(y) +

2
√

n‖P‖γ1(y) + 2(n − 1)‖P‖2γ2
1(y) are smooth nonnega-

tive functions.
Moreover, there holds

2LεεεTPaaax1 ≤ 2

gn
N

LεεεTPaaay ≤ L

2
‖εεε‖2 +

2L‖Paaa‖2
g2n

N

y2 (11)

Therefore, substituting (10) and (11) into (9) immedi-
ately yields (8). ¤
1.2 Output-feedback controller design

This subsection is devoted to the recursive design steps
for a semiglobal output-feedback controller for system (4).

Step 1. Choose V1(εεε, ξ1) = Vεεε + 1
2
y2, where ξ1 = y. By

(8), a direct calculation gives

V̇1 ≤−
(

L

2
− γ(y)

)
‖εεε‖2 +

(
1

2
+

2‖Paaa‖2L
g2n

N

)
y2+

1

2

n∑
i=2

z2
i + y (gLε2 + gLz2 + gφ1)+

2‖εεεTP‖ · ‖ΦΦΦ2‖
(12)

By the method of completing squares, we have:

{
Lgyε2 ≤ L|gyε2| ≤ L

4
‖εεε‖2 + Lg2n

M y2

gyφ1 ≤ gn
M µ1(y)

gn
N

y2
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Substituting this into (12) concludes

V̇1 ≤−
(

L

4
− γ(y)

)
‖εεε‖2 +

(
1

2
+

gn
Mµ1(y)

gn
N

)
y2+

L

(
2‖Paaa‖2

g2n
N

+ g2n
M

)
y2 +

1

2

n∑
i=2

z2
i +

gLyz2 + 2‖εεεTP‖ · ‖ΦΦΦ2‖ (13)

Choose the virtual controller α1(·) as follows:

α1 = −c1y (14)

where c1 =
( 2‖Paaa‖2

g2n
N

+ g2n
M + 1

) sgn(g)
gn

N
. Let ξ2 = z2 − α1.

Then noting 1
2
z2
2 ≤ ξ2

2 + α2
1, and substituting (14) into

(13) yield

V̇1 ≤−
(

L

4
− γ(y)

)
‖εεε‖2 − (L− ρ1(y)) y2+

1

2

n∑
i=3

z2
i + ξ2

2 + Lgyξ2 + 2‖εεεTP‖ · ‖ΦΦΦ2‖ (15)

where ρ1(y) = 1
2

+
gn

M µ1(y)

gn
N

+ c2
1.

Step 2. Choose V2(εεε, ξξξ[2]) = V1 + 1
2
ξ2
2 for this step,

where in the sequel ξξξ[i] = [ξ1, · · · , ξi]
T, i = 2, · · · , n and

particularly ξξξ = ξξξ[n]. In view of (6) and (14), we obtain

ξ̇2 = Lz3 − La2x̂1 + c1 (Lgε2 + Lgz2 + gφ1)

Then by (15), the time-derivative of V2 along the solutions
of (4) and (6) satisfies

V̇2 =−
(

L

4
− γ(y)

)
‖εεε‖2 − (L− ρ1(y)) y2+

1

2

n∑
i=3

z2
i + ξ2

2 + Lgyξ2 + 2‖εεεTP‖ · ‖ΦΦΦ2‖+

ξ2 (Lz3 − La2x̂1 + c1 (Lgε2 + Lgz2 + gφ1)) (16)

By using the method of completing squares, we obtain
the following estimations for the terms on the right-hand
side of (16):





Lgyξ2 ≤ 3Lg2n
M

2
ξ2
2 + L

6
y2

−La2ξ2x̂1 ≤ L
6
y2 +

3La2
2

2g2n
N

ξ2
2 + L

16
‖εεε‖2 + 4La2

2ξ
2
2

Lc1gξ2ε2 ≤ L
16
‖εεε‖2 + 4Lc2

1g
2n
M ξ2

2

Lc1gξ2z2 ≤ L|c1|gn
Mξ2

2 +
3Lc41g2n

M
2

ξ2
2 + L

6
y2

c1gξ2φ1 ≤ g2n
M c21µ2

1(y)

2
y2 + 1

2
ξ2
2

Substituting this into (16) leads to

V̇2 ≤−
(

L

8
− γ(y)

)
‖εεε‖2 +

1

2

n∑
i=3

z2
i + Lξ2z3+

(c2 − 1)Lξ2
2 −

(
L

2
− ρ1(y)− g2n

M c2
1µ

2
1(y)

2

)
y2+

3

2
ξ2
2 + 2‖εεεTP‖ · ‖ΦΦΦ2‖

where c2 = 1+4a2
2 +

3g2n
M
2

+
3a2

2
2g2n

N
+4c2

1g
2n
M + |c1|gn

M +
3c41g2n

M
2

.

Choose the virtual controller α2 as follows:

α2 = −c2ξ2 (17)

Then, by defining ξ3 = z3−α2 and letting ρ2(y) = ρ1(y) +
c21g2n

M µ2
1(y)

2
, we have:

V̇2 ≤−
(

L

8
− γ(y)

)
‖εεε‖2 −

(
L

2
− ρ2(y)

)
y2−

(
L− 3

2
− c2

2

)
ξ2
2 +

1

2

n∑
i=4

z2
i + ξ2

3+

Lξ2ξ3 + 2‖εεεTP‖ · ‖ΦΦΦ2‖

Step k ( k = 3, · · · , n)k ( k = 3, · · · , n)k ( k = 3, · · · , n). Suppose that the previous k − 1
steps had completed and yielded smooth virtual controllers
αi(ξi), i = 1, · · · , k − 1 defined by α1 = −c1y, αi = −ciξi,
ξi = zi − αi−1, i = 2, · · · , k − 1 with c′is being non-zero
constants, such that

V̇k−1 ≤−
(

L

2k
− γ(y)

)
‖εεε‖2 −

(
L

2k−2
− ρk−1(y)

)
y2−

k−1∑
i=2

(
L

2k−1−i
− 3

2
− c2

i

)
ξ2

i +
1

2

n∑

i=k+1

z2
i +

ξ2
k + Lξkξk−1 + 2‖εεεTP‖ · ‖ΦΦΦ2‖

where Vk−1 = V1 + 1
2

∑k−1
j=2 ξ2

j , and ρk−1 is a positive func-
tion of y.

Now, choose the smooth function Vk(εεε, ξξξ[k]) = Vk−1 +
1
2
ξ2

k, ξk = zk − αk−1 for step k. Observing that

ξ̇k =Lzk+1 + Lākz1 + Lck−1zk + L

k−2∑
i=2

( k−1∏
j=i

cj

)
zi+1+

( k−1∏
j=1

cj

)(
Lgε2 + Lgz2 + gφ1)

with āk = −ak −
∑k−1

i=2

( ∏k−1
j=i cj

)
ai, we have:

V̇k =V̇k−1 + ξk ξ̇k ≤ −
(

L

2k
− γ(y)

)
‖εεε‖2−

(
L

2k−2
− ρk−1(y)

)
y2 −

k−1∑
i=2

(
L

2k−1−i
− 3

2
− c2

i

)
ξ2

i +

1

2

n∑

i=k+1

z2
i + ξ2

k + Lξkξk−1 + ξk ξ̇k + 2‖εεεTP‖ · ‖ΦΦΦ2‖

(18)

To deduce the function αk, we obtain the following estima-
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tions for Lξkξk−1 and all terms in ξk ξ̇k:





Lξkξk−1 ≤ 3L
2

ξ2
k + L

6
ξ2

k−1

ck−1Lξkzk ≤ ck−1

(
1 + 3

2
c3

k−1

)
Lξ2

k + L
6
ξ2

k−1

ākLξkz1 ≤ L
2k y2 + L2k−2ā2

k

(
1

g2n
N

+ 4
)

ξ2
k + L

2k+2 ‖εεε‖2

( k−1∏
j=1

cj

)
gξkφ1 ≤ 1

2
ξ2

k +

(
k−1∏
j=1

c2j

)
g2n

M µ2
1(y)

2
y2

( k−1∏
j=1

cj

)
Lgξkε2 ≤ L

2k+2 ‖εεε‖2 + 2kg2n
M L

( k−1∏
j=1

c2
j

)
ξ2

k

( k−1∏
j=1

cj

)
Lgξkz2 ≤

2k−2L
( k−1∏

j=1

c2
j

)
g2n

M

(
3
4

+ c2
1

)
ξ2

k+

L
3·2k−2 ξ2

2 + L
2k y2

k−2∑
i=2

( k−1∏
j=i

cj

)
Lξkzi+1 ≤

3L
k−2∑
i=2

(
2k−3−i(1 + c2

i )
k−1∏
j=i

c2
j

)
ξ2

k+

k−2∑
i=3

L
2k−i ξ2

i + L
6
ξ2

k−1 + L
3·2k−3 ξ2

2

Substituting this into (18) concludes

V̇k =V̇k−1 + ξk ξ̇k ≤

−
(

L

2k+1
− γ(y)

)
‖εεε‖2 −

(
L

2k−1
− ρk(y)

)
y2−

k−1∑
i=2

(
L

2k−i
− 3

2
− c2

i

)
ξ2

i +
1

2

n∑

i=k+1

z2
i +

3

2
ξ2

k+

L(ck − 1)ξ2
k + Lξkzk+1 + 2‖εεεTP‖ · ‖ΦΦΦ2‖

where





ρk = ρk−1 +
g2n

M

k−1∏
j=1

c2j

2
µ2

1(y)

ck = 5
2

+ 2kg2n
M

( k−1∏
j=1

c2
j

)
+

(
2k + 2k−2

g2n
N

)
ā2

k+

3
k−2∑
i=2

(
2k−3−i(1 + c2

i )
( k−1∏

j=i

c2
j

))
+

2k−2g2n
M

( k−1∏
j=1

c2
j

) (
3
4

+ c2
1

)
+

ck−1

(
1 + 3

2
c3

k−1

)

(19)

By choosing αk = −ckξk and letting ξk+1 = zk+1 − αk,
we have

V̇k ≤−
(

L

2k+1
− γ(y)

)
‖εεε‖2 −

(
L

2k
− ρk(y)

)
y2−

k∑
i=2

(
L

2k−i
− 3

2
− c2

i

)
ξ2

i +
1

2

n∑

i=k+2

z2
i +

Lξkξk+1 + ξ2
k+1 + 2‖εεεTP‖ · ‖ΦΦΦ2‖ (20)

By now, we complete the entire design steps.
From the n-th step of the above entire design procedure,

we can obtain αn(ξn), and hence the actual controller:

u = Lnαn (21)

where αn is recursively defined as follows:

{
αi = − ciξi, i = 1, · · · , n

ξi = zi − αi−1, i = 2, · · · , n

Noting that zn+1 = u
Ln and thus ξn+1 = 0, from (20) and

(21), it follows that

V̇n ≤−
(

L

2n+1
− γ(y)

)
‖εεε‖2 −

(
L

2n
− ρn(y)

)
y2−

n∑
i=2

(
L

2n−i
− 3

2
− c2

i

)
ξ2

i + 2‖εεεTP‖ · ‖ΦΦΦ2‖

(22)
where ρn and c′is are recursively defined by (19), and Vn =
V1 + 1

2

∑n
j=2 ξ2

j .
It should be pointed out that the design parameter L

is not yet specified, which determines whether or not the
closed-loop states asymptotically converge to the origin, for
the given region of the initial condition.

2 Main results
We are now in a position to summarize the main result

of the paper into the following theorem.
Theorem 1. Consider system (1) under Assumptions

1 and 2. Based on the high-gain observer (6) and the
output-feedback controller (21), if the design parameter L
is suitably chosen, then the semiglobal stabilization can be
achieved.

Proof. We prove the theorem by referring to that in
[10]. By the above definitions and choices, we see that

V n(εεε,zzz) := Vn(εεε, ξξξ) is positive definite and radially un-
bounded. Define NK =

{
ζζζ

∣∣ ‖ζζζ‖ ≤ K
2

, ζζζ ∈ Rn
}
, and

ΩK =
{
(εεε,zzz)

∣∣ Vn ≤ MK , MK = max{‖εεε‖≤K, ‖zzz‖≤K}Vn

}
,

where K > 1 is arbitrary. Clearly, NK and ΩK are
nonempty compact sets.

Noting the preceding definitions, particularly ΦΦΦ2(t,xxx, u),
ξ′is and α′is, for any (εεε,zzz) ∈ ΩK , there holds

‖εεεTP‖·‖ΦΦΦ2‖ ≤ ‖εεεTP‖ · ‖ΦΦΦ2‖1 ≤

ν(y)‖εεεTP‖
n∑

i=3

i−1∑
j=2

(
|zj + εj |

i−1
j−1

)
=

ν(y)‖εεεTP‖
n∑

i=3

i−1∑
j=2

(
|ξj − cj−1ξj−1 + εj |

i−1
j−1

)
≤

λ1

(‖ξξξ‖2 + ‖εεε‖2) (23)

where ν(y) =
∑n

i=1 νi(y), ‖ΦΦΦ2‖1 = |φ21| + · · · + |φ2n| and
λ1 is a positive constant which depends on ΩK and is inde-
pendent of L. In deriving the above inequality, the bound-
edness of z′is and ε′is (as well as ξ′is and ε′is) on compact set
ΩK has been used.

Hence, noting that y = z1 + ε1, and by the continuity of
γ(y) and ρi(y)′s, there exists a positive constant λ2, such
that on ΩK , there hold γ(y) ≤ λ2 and ρn(y) ≤ λ2.

By choosing

L ≥ max
{

2n+1(2λ1 + λ2), 2n−i−1(3 + 2c2
i + 2λ1),

i = 2, · · · , n
}

(24)

the right hand side of (22) becomes negative definite,

soV̇ n(εεε,zzz) will be negative definite. In this case, the tra-
jectories of the closed-loop system starting from ΩK will
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stay in this compact set forever. Moreover,

lim
t→+∞

εεε(t) = 0, lim
t→+∞

zzz(t) = 0

from the definitions of ε′is and z′is, we have

x̂i = Li−1zi, xi = x̂i + Li−1εi

when εi and zi converge to zero, we can easily get xi and
x̂i converge to zero. Hence the set ΩK is the domain of
attraction of the closed-loop system.

Noting the previous definitions of ε′is and z′is, we have
the following relation for any arbitrarily large K,

xxx ∈ NK , x̂xx ∈ NK ⇒ ‖εεε‖ ≤ K, ‖zzz‖ ≤ K ⇒ (εεε,zzz) ∈ ΩK

Consequently, we have the conclusion that starting from
any points in NK × NK , the trajectory will stay in the
compact set ΩK and tend to the origin. ¤

Remark 2. In this paper, we use the method of com-
pleting squares rather than the weighted mean square in-

equality (i.e., 2d1d2 ≤ d2
1

µ
+ µd2

2 with a weighted coefficient

µ > 0) to establish some estimates in the construction of
the desirable controller, since the new parameter µ will
make the controller design and stability analysis much com-
plicated. It is necessary to point out that, the introduction
of weighted coefficient µ may affect the magnitude of the
design parameter L, but how to choose the appropriate µ
to make L smaller is difficult. In fact, the determination of
L depends on the choosing of key parameters λ1, λ2 and
ci, i = 1, 2, · · · , n which have complex nonlinear relation-
ship. Once weighted mean square inequality is used, λ1, λ2

and ci, i = 1, 2, · · · , n would depend on µ. Therefore, how
to choose the appropriate µ so as to specify the appropriate
λ1, λ2 and ci, i = 1, 2, · · · , n and hence to make L smaller
would be much difficult to achieve.

Remark 3. It is clear that L is determined provided
that the parameters λ1, λ2 and ci, i = 2, · · · , n are given.
Obviously, ci, i = 2, · · · , n are directly given through the
construction of the virtual controller α′is (for example, see
(19)). In fact, the purpose of introducing λ1 and λ2 is to
facilitate the choosing of an appropriate L which can finally
guarantee the stability of closed-loop system. For details,
λ1 is the estimation gain of ‖εεεTP‖·‖ΦΦΦ2‖ in the domain ΩK ,
and λ2 is the common upper bound of γ(y) and ρn(y) in
the domain ΩK . Therefore, we can choose λ1 by estimating
‖εεεTP‖ · ‖ΦΦΦ2‖ which is formulated as in (23), and choose
λ2 = max{sup γ(y), sup ρn(y)} in the compact set of y.
On the other hand, we can specify an appropriate design
parameter L from (24) by conservatively choosing λ1 and
λ2. Specifically, λ1 can be chosen based on the estimations
of ‖εεεTP‖ · ‖ΦΦΦ2‖ and ‖ξξξ‖2 + ‖εεε‖2 on the given compact set
ΩK , and λ2 can be chosen based on the estimations of γ(y)
and ρn(y) in the domain ΩK .

3 Simulation example
In this section, a numerical example is provided to il-

lustrate the correctness and effectiveness of the theoretical
results by considering the following third-order nonlinear
system:





ẋ1 = g1x2 + 2x1 sin(x1)

ẋ2 = g2x3 + x1x2

ẋ3 = g3u + x1(x1 + x2
2 sin(x2))

y = x1

where 0.5 ≤ gi ≤ 1.5, i = 1, 2, 3. It is easy to verify that
the system satisfies Assumptions 1 and 2.

Choose a1 = 5
4
, a2 = 1

2
, a3 = 1

16
such that A is Hurwitz

and design the observer as follows:





˙̂x1 = x̂2 − La1x̂1

˙̂x2 = x̂3 − L2a2x̂1

˙̂x3 = u− L3a3x̂1

According to Section 2, we can obtain a semiglobal sta-
bilizing output-feedback controller in the form as (21).
Then we can select L = 18, the initial conditions are
xxx(0) = [0, 0.5,−0.5]T, x̂xx(0) = [0.1, 0,−0.4]T. Figs. 1∼ 4 de-
pict the simulation results. From the figures, we see that
the output-feedback stabilizer can guarantee that the tra-
jectories starting from the given initial domination indeed
converge to the origin asymptotically.

Fig. 1 State x1 and its estimation x̂1

Fig. 2 State x2 and its estimation x̂2

4 Concluding remarks
Compared with global stabilization, semiglobal stabiliza-

tion has less restriction and much more practical appli-
cations. This paper has addressed the semiglobal stabi-
lization via output-feedback for a class of nonlinear sys-
tems with unknown control coefficients. The semiglobal
stable controller via output-feedback has been constructed
by using backstepping method and output-feedback dom-
ination approach. Under the appropriate choice of gain,
the designed controller guarantees the closed-loop system
semiglobally asymptotically stable. It is worth mentioning
that the semiglobal output-feedback stabilization of high-
order nonlinear systems with unknown control coefficients
is far more complicated and difficult than the special case
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considered in present paper. This problem is currently un-
der our study. Moreover, when the design parameter L
is large, the feedback gain will quickly become unaccept-
able in practice, so how to design a controller with small
feedback gain is also meaningful and deserves further in-
vestigation.

Fig. 3 State x3 and its estimation x̂3

Fig. 4 Controller u
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