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Abstract Simulation optimization is a very powerful tool in analysis and optimization of complex real systems. In this paper, a
tutorial introduction and review of simulation optimization are given. The simulation optimization problems are classified according
to the underlying structure of decision variables (discrete or continuous). And some important techniques for simulation optimization
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future research directions are also provided in this paper.

Key words Simulation optimization, gradient-based methods, ranking and selection, optimal computing budget allocation
(OCBA), nested partitions method

Citation Wang Long-Fei, Shi Le-Yuan. Simulation optimization: a review on theory and applications. Acta Automatica Sinica,
2013, 39(11): 1957−1968

DOI 10.3724/SP.J.1004.2013.01957

Simulation optimization is a very effective and powerful
tool to solve optimization problems arising in a wide variety
of complex real systems. The main goal of simulation opti-
mization is to determine optimal parameter values of sys-
tems that result in the best performance measures. With
the development of the theory and methods of simulation
optimization and the computing technology, simulation op-
timization is receiving considerable attentions and tremen-
dous achievements have been obtained. Reference [1] gives
an excellent survey on techniques for simulation optimiza-
tion. Some other good reviews on the theory, techniques,
applications and commercial software developments can be
found in [2−18].

In this paper, the simulation optimization problems are
classified into two categories: continuous variable optimiza-
tion problems and discrete variable optimization problems.
And some main methods that are used to solve these prob-
lems are introduced. The existing studies related to these
methods are reviewed and the advantages and disadvan-
tages of these methods are discussed. What is more, some
future research directions are summarized. The main pur-
pose of this paper is to give a comprehensive introduction
and tutorial rather than an exhaustive literature survey, to
the researchers who are interested in this area.

The reminder of the paper is organized as follows. In
Section 1, the formal description of simulation optimiza-
tion problems is given, and the classification according to
the underlying structure of decision variables is presented.
In Section 2, we review the techniques that are used to
solve the continuous variable optimization problems, and
discuss methods for solving discrete variable optimization
problems in Section 3. This paper ends with some conclud-
ing remarks and suggestions for future research directions
in Section 4.

1 Problem description and classifica-
tion

In general, the simulation optimization problems can be
stated as

min
θ∈Θ

f(θ)
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where θ can be a single variable or a p-dimensional vector
of all the decision variables, and Θ is the feasible region.

For simulation optimization problems, we do not have
much knowledge on the structure of f(θ) and the analytical
expression of f(θ) cannot be obtained, or may not even
exist. So the objective function must be estimated based
on the outputs of simulation runs, such as

f(θ) = E[L(θ, ω)]

where ω represents the randomness of the simulation sys-
tems, and L(θ, ω) is the performance value obtained from
the outputs of simulation runs. This is an unbiased es-
timate of the objective function. In general, the goal of
simulation optimization is to find the optimal θ that mini-
mizes (or maximizes) f(θ).

There are many practical problems related to simulation
optimization in the real world. For example, θ can repre-
sent the number of servers and service rates in a service
center, or the number of machines and the size of buffers
in a manufacturing system, or the maximum queue length
and waiting time in a queueing system, then f(θ) may indi-
cate the customer satisfaction of the service center, or the
production rate of the manufacturing system, or the aver-
age waiting time and sojourn time in the queueing system,
respectively. The simulation optimization can be seen as a
structured and systematic approach to determine the opti-
mal input parameters θ that result in the best performance
measures.

Unlike other optimization problems (such as linear pro-
gramming or mixed integer linear programming), the major
difficulties in solving simulation optimization problems in-
clude:

1) There does not exist an analytical expression of the
objective function f(θ). What is more, the feasible solution
space Θ may not be described explicitly.

2) The existence of randomness causes that it is difficult
to estimate the objective function values of solution points.
Usually, more than one simulation replication is needed to
ensure the estimation accuracy.

3) In many cases, the simulation run is very expensive
and time-consuming.

According to the underlying structure of the decision
variables, simulation optimization problems can be classi-
fied into two kinds: continuous variable optimization prob-
lems and discrete variable optimization problems. And
these two big groups of problems can be subdivided based
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on the solution methods used. For continuous variable opti-
mization problems, the most important and popular meth-
ods include gradient-based methods, stochastic approxima-
tion methods, sample path methods and response surface
methodology. On the other hand, ranking and selection,
multiple comparison procedures, ordinal optimization, op-
timal computing budget allocation, metaheuristics are of-
ten been used to solve the discrete variable optimization
problems. The classification scheme is showed in Fig. 1.

2 Continuous decision variables

For the problems discussed in this section, variables are
continuous and Θ is uncountable and infinite. This kind
of problems have attracted a great deal of research atten-
tions. Below we discuss the commonly used methods in the
literature.

2.1 Gradient-based approaches

The gradient-based approaches can be seen as the
stochastic form of gradient search methods that are used to
solve deterministic optimization problems. When using the
gradient-based approaches to solve simulation optimization
problems, we assume that Θ is continuous and differentiable
in θ, and the gradients of the responses of the simulation
models to the variables should be estimated first, then the
gradient search methods developed for non-linear program-
ming problems (such as Newton′s method) are employed
to identify the optimum. In the following subsections, four
main gradient estimation methods are introduced.

2.1.1 Finite difference estimation

The finite difference estimation (FDE) method is very
intuitive. It is based on the derivative or partial deriva-
tives of a continuous function, i.e., for the gradient of f(θ),
it can be estimated by

df(θ)

dθ
=

f(θ + ∆θ)− f(θ)

∆θ

For the multiple decision variables problems, the gradi-
ent can be estimated by

∂f(θθθ)

∂θi
=

f(θ1, · · · , θi + ∆θi, · · · , θp)− f(θ1, · · · , θi, · · · , θp)

∆θi

For a p decision variables problem, at least p+1 outputs
of simulation runs are needed to estimate the gradient at
each point. And because the observations are noisy, gener-
ally more than one observation is necessary to make reliable
estimations.

2.1.2 Infinitesimal perturbation analysis

Perturbation analysis is first proposed in [19]. In general,
there are two kinds of perturbation analysis: finite pertur-

bation analysis (FPA) and infinitesimal perturbation anal-
ysis (IPA). FPA is designed to estimate the derivatives of
discrete variables, so the discussion in this subsection will
focus on IPA.

IPA can be used to estimate all gradients of the objective
function from a single simulation run. The idea behind IPA
is that if the decision variable is perturbed by an infinitesi-
mal amount, the sensitivity of the response of the objective
function can be estimated by tracing related statistics of
certain events during a simulation run. A comprehensive
and detailed discussion about IPA can be found in [20].

Even though IPA method can be used to estimate all
gradients based on a single simulation run, there are some
restrictive conditions that have to be satisfied. For exam-
ple, if the sequence of events that govern the behavior of the
system changes, the results of IPA may not be reliable[21].
Also, when using the IPA method, a complete knowledge
of the simulation model is necessary.

There have been extensive researches on IPA, such as the
sufficient conditions for unbiased estimates[22], convergence
rates[23], perturbation analysis via coupling[24], applica-
tions in queueing systems[25−29], inventory systems[30−32],
manufacturing systems[33−39], etc.

2.1.3 Frequency domain analysis

In [40], a method called frequency domain analysis
(FDA) that estimates the sensitivity and gradients of the
performance values or responses of simulation models to
the variables is proposed. The main idea of FDA is to os-
cillate the value of a variable according to a sinusoidal func-
tion and approximate the partial derivative of the objective
function with respect to the variable using the magnitude
of the performance value variation. The vector of variables
can be stated as

θθθ(t) = θθθ0 + ααα sin(ωωωt)

where θθθ0 is the variable vector, ααα is the vector of oscillation
amplitudes, and ωωω is the vector of oscillation frequencies.
The selection of an appropriate index for these oscillations
is critical for this method. In [41], using global simula-
tion clock as the sinusoidal oscillations index is discussed.
And the problem of optimally selecting input frequencies is
studied in [42].

Even though the efficiency of FDA is very high for some
simulation optimization problems, it also has some disad-
vantages, such as:

1) The indexing problem, such as oscillation indexing
problem and sampling indexing problem, is difficult to
solve. Reference [43] addresses the problem by providing
some guidelines on the selection of the oscillation index and

Fig. 1 The classification of simulation optimization problems
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compares two different indices: the continuous global sim-
ulation clock time and an inherently discrete index.

2) The incorporation of FDA with independently built
simulation models may be difficult.

3) It may be impossible to induce sinusoidal oscillations
to some variables.

2.1.4 Likelihood ratio estimators

Likelihood ratio estimators (LRE, also called the score
function method) assumes that the performance measure
function is L(YYY ), where YYY is a random vector with joint
cumulative distribution function F (θ, ·) and density func-
tion f ′(θ, ·), and dependence on θ enters only through the
random vector YYY , thus

f(θ) = E[L(YYY )] =

∫
L(yyy)dF (θ,yyy)

By differentiating the above equation with respect to θ,
we can estimate the derivative of the performance measure.
And the derivative of f(θ) can be written as

∂f(θ)

∂θ
= Eθ

[
L(YYY )

∂ ln f ′(θ,YYY )

∂θ

]

In [44], an overview of LRE is given. And its applications
in the discrete-time and continuous stochastic systems are
discussed in [45]. Reference [46] shows that both the sensi-
tivities (derivatives, gradients, Hessians, etc.) and the per-
formance measure can be estimated simultaneously from
the same simulation when using LRE method. But it also
has some disadvantages, such as it can not be applied to
structural parameters, and the variance of the estimator
increases with the increase in the run length[47]. Refer-
ence [48] gives detailed discussion about the LRE method.
More research about the applications of the LRE method
to different situations, its advantages and disadvantages,
and the comparisons with other methods can be found in
[5, 49−53].

In this section, the main gradient estimation methods,
including FDE, IPA, FDA and LRE, are introduced and
discussed. For more reviews and summaries, please refer to
[54−55].

2.2 Stochastic approximation methods

Stochastic approximation (SA) methods are very popu-
lar and can be employed to solve many kinds of simulation
optimization problems. The first SA method is proposed
in [56−57].

The basic idea of SA is using noisy observations to build
the regression function of a stochastic response surface and
finding the optimal solution through some recursive proce-
dures. The original recursive formula for a single variable
can be stated as

θn+1 = ΠΘ(θn − an∇̂fn)

where an is a series of real numbers that satisfy
∑

an <
+∞,

∑
a2

n < +∞. θn is the estimated value at the nth it-

eration, ∇̂fn is the estimate of the gradient ∇fn at the nth
iteration, and ΠΘ is a projection onto Θ. It has been proved
that as n approaches infinity, θn approaches the value such
that the regression function of the stochastic response is
minimized (for a minimization problem) or maximized (for
a maximization problem). But the biggest disadvantage of
SA method is that the convergence rate may be very low,
i.e., a large number of iterations are necessary to identify
the optimum.

As one of the most important methods to solve simula-
tion optimization problems, SA has attracted a great deal
of research attentions. In [58], two SA algorithms are pro-
posed. And an alternative proof for the convergence of
stochastic approximation algorithms is provided in [59−60].
To deal with the problem of low convergence rate and diver-
gence, [61] studies how to allocate the total available com-
putational budget to the successive SA iterations, and [62]
develops a variant of stochastic approximation defined over
a growing sequence of compact sets. There are also some
excellent researches on the variance reduction in stochastic
approximation estimates[63], the incorporation of different
gradient estimators into SA method[64−71], the applications
in queueing systems[72−74] and manufacturing systems[75],
and the methods that are used to accelerate the conver-
gence rates[76−78]. Reference [79] gives a comprehensive
and detailed discussion of the principles, properties, algo-
rithms and applications of stochastic approximation meth-
ods.

2.3 Sample path methods

Sample path method is also called stochastic counter-
part method, or sample average approximation method[48].
When using this method, some simulation replications
should be performed first and the expected value of the ob-
jective function is estimated by the average of the observa-
tions. Then the deterministic optimization techniques are
used to solve the problem. This method is very effective to
deal with the difficulties faced by stochastic approximation
method, such as low convergence rates, absence of robust
stopping rules and complicated constraints.

The conditions under which the sample path method
converges are given in [80]. In [81], the sample path method
is used to set release times for jobs with due dates in a
stochastic production flow line. And in [47], a sample path
algorithm for optimizing simulation models with rare events
is proposed. The convergence rates, stopping rules, and
computational complexity of the sample path method are
discussed in [82]. There are also some researches on the
applications of sample path methods to stochastic root-
finding problems[83] and the incorporation of statistical
inferences[84].

2.4 Response surface methodology

Response surface methodology (RSM) is first proposed
in [85−86] for the exploration and exploitation of stochastic
response functions. The idea behind the response surface
methodology is building an approximate functional rela-
tionship between the input variables and the output ob-
jective, i.e., fitting a series of regression models to the re-
sponses of the simulation model by evaluating it at several
points, and then optimizing the regression function. Be-
cause the first-order regression models generally provide
good fit locally, when using this method, first-order models
are usually fitted before reaching the vicinity of the op-
timum, and then other metamodels (such as higher order
regression models) are used to provide good global fit.

The biggest advantage of RSM is that many statisti-
cal methods, especially statistical design of experiments,
can be incorporated into RSM. Early applications of RSM
to simulation optimization are given in [87−90]. And [91]
gives a survey of the RSM researches from 1966 to 1988.
To get better fits when using RSM, some methods are in-
tegrated into it, such as quasi-Newton method[92], gradient
deflection and second-order strategies[93]. The combina-
tions of RSM and regression analysis, statistical designs
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and the steepest descent (ascent) method are discussed in
[94].

RSM has also been applied to decision support
systems[95−96] and computer-integrated manufacturing
systems[97]. For more discussions and researches about
RSM methods, please refer to [98−99].

3 Discrete decision variables

For the problems discussed in this section, the feasible
region Θ is finite or countably infinite. So the methods
discussed in the previous section may be inapplicable. Ac-
cording to the structure of the feasible region (finite and
small, finite and large, countably infinite), different solu-
tion methods are introduced in the following section.

3.1 Ranking and selection

For many simulation optimization problems, there is a
given set of alternatives, and the goal is to select the best
one. Because the set of alternatives is fixed, there is no
need to search the solution space. What should do is to
calculate or estimate the performance of alternatives and
compare them. If the problem is deterministic, the goal
can be achieved by enumeration. But due to the existence
of randomness, the number of simulation replications for
each alternative is usually more than one to get an accu-
rate estimation. So the main problem is how to efficiently
allocate the finite computation efforts to each alternative
to get a reliable conclusion.

In general, the problem mentioned above can be classi-
fied into two categories. And to give a clear description, the
notations should be introduced: let Θ = {θ1, θ2, · · · , θk}
denote the set of solutions, let θ∗ denote the best solu-
tion, and f(θi) the objective function, P the probability of
correct selection (the probability of selecting the best so-
lution). So the two kinds of problems can be described as
follows:

1) Minimize the number of simulation replications sub-
ject to P exceeding a given level;

2) Maximize P subject to a given simulation budget con-
straint.

One of the most important methods to deal with these
problems is indifferent zone ranking and selection proce-
dure. First define the difference in f(θ) that is less than
δ > 0 to be insignificant, then allocation the simulation
replications to each solutions carefully to assure that the
probability of correct selection is greater than or equal to
a prespecified value P 0, i.e.,

Prob{|f(θ)− f(θ∗)| < δ} ≥ P 0

To achieve the desired probability guarantee, [100−101]
use a two-stage procedure to determine how many simula-
tion replications are allocated to each solution. The main
idea is to estimate the mean and variance of each solution
in the first stage and then use the variances to determine
how many more simulation replications are needed in the
second stage. But there is a restriction that the simula-
tion runs should be conducted independently so that the
outputs from each run are independent.

There is also another popular method, called subset se-
lection or screening. In subset selection, the objective is
not to select the best solution, but to reduce the feasible
region to a small subset of solutions, i.e., identify a sub-
set that contains the best solution. Some early studies on
this problem are given in [102−103], in which two basic as-
sumptions should be satisfied, i.e., the simulation output
is normal with common variance and the same number of

simulation observations is used for each solution. Reference
[104] develops two procedures for screening a set of popula-
tions with unknown moments. And [105] also presents pro-
cedures the assumption of common variance is not required.
In [106], the combinations of statistical subset selection and
indifference-zone ranking procedures are investigated. In
this kind of approaches, the subset-selection procedures are
used to screen out the obviously inferior systems, and the
best system is distinguished from the less obviously infe-
rior systems through the indifference-zone procedures. For
more researches on ranking and selection, see [107].

3.2 Multiple comparison procedures

Similar to ranking and selection, multiple comparison
procedures (MCPs) are also efficient methods to find the
optimal alternative over a finite set Θ = {θ1, θ2, · · · , θk},
k < +∞. The MCPs can be classified into three kinds:
all pairwise multiple comparisons (MCA), multiple com-

parisons with the best (MCB)[108−109], and multiple com-

parisons with a control (MCC)[110−112].
When using the multiple comparison procedures, the dif-

ference between the estimates of the performance measures
of a pair of solutions is computed and the confidence inter-
val for a given confidence level is constructed. For example,
for a pair of solutions θi and θj , if the (1 − α)100% con-
fidence interval for f(θi) − f(θj) is strictly negative, then
we can say that θi is a better solution than θj (for a mini-
mization problem).

The existing researches about MCP mainly focus on
the incorporation of variance reduction techniques[113−114],
the applications to steady-state simulation[115−118], and
the connection between indifference zone procedures and
MCB[119−121].

3.3 Ordinal optimization

Ordinal optimization is a very effective and efficient
method used to solve problems with a large number of de-
cision variables. It is first proposed in [122].

The basic idea of ordinal optimization is to concentrate
on finding good, better, or best designs rather than esti-
mate accurately the performance values of these designs.
This idea is called “goal soften”, and it is intuitive that
finding the ordering among alternative designs is much eas-
ier than estimating the performance value of every design
and ranking order. Reference [123−124] give more discus-
sions and explanations about the goal softening in ordinal
optimization. And a comprehensive review is given in [125].

One of the significant advantages of ordinal optimiza-
tion is the exponential convergence rate. In [126−128], the
convergence properties of ordinal optimization are investi-
gated. And [127] shows that for a regenerative system, the
probability of obtaining a desired solution by using ordinal
optimization converges with an exponential rate while the
variance of the performance measures converges with the
rate O(1/t2), where t is the simulation time. There are
also some researches on the impact of correlation on ordi-
nal optimization[129], subset selection rules[130], the lower
bound on the probability that the selected subset contains
at least one good design and the probability that the best of
the selected subset is very close to the true best design[131],
iterative ordinal optimization procedure[132] and the meth-
ods that can be used to enhance the efficiency of ordinal
optimization[133−135].

For a comprehensive and detailed introduction and dis-
cussion about ordinal optimization, see [136].
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3.4 Optimal computing budget allocation

As discussed in Subsection 3.1, if a set of alternatives is
given, and the number of the alternatives is small, then the
key issue is how to efficiently allocate the computing efforts
to each alternative. One simple and intuitive method is to
gradually increase the number of simulation replications for
each alternative until the variance decreases to a sufficiently
small value, which can be used to give a satisfactory con-
clusion. There is also a simple allocation method, i.e., al-
locating the computing budget to each alternative equally.
But these methods are not efficient. Consider one situation
that one or several alternatives have very small variances,
then there is no need to take many replications to estimate
their performance. And if the means of some alternatives
are very large, i.e., these alternatives are obviously inferior
to others (for a minimization problem), then these alter-
natives may be screened out and there is also no need to
allocate many simulation replications to them, even though
the variances of them may be large. So it can be seen that
the number of simulation replications allocated to each al-
ternative should be dependent on the means and variances
of them, and it decreases with the increase in means and
the decrease in variance (for a minimization problem).

The idea discussed above is included in the optimal com-
puting budget allocation (OCBA) approach. The OCBA is
introduced in [133−134, 137−138]. In [134], the simulation
computing budget allocation problem is formulated as an
optimization problem. To describe the formulation clearly,
some notations should be defined first. Let Ni denote the
number of simulation replications that are allocated to the
ith alternative, T the total computing budget. Let P{CS}
denote the probability of correct selection, i.e., the proba-
bility of selecting the best alternative. Then the problem
can be formulated as

max P{CS}
s.t. N1 + N2 + · · ·+ Nk = T

Ni ∈ N, i = 1, · · · , k

where N is the set of non-negative integers.
To solve this problem, P{CS} must be estimated. Based

on the estimation technique that approximates P{CS} for
ordinal comparison developed in [131], a cost-effective se-
quential approach is proposed. In this approach, the com-
puting budget allocation is based on the combination of
the means and variances of alternatives. The details of the
sequential algorithm are showed below.

Step 1. Input k, T, ∆, n0.
Step 2. Initialize, and let l be 0, perform n0 simulation

replications for each alternative, i.e., let

N l
1 = N l

2 = · · · = N l
k = n0

Step 3. If
∑k

i=1 N l
i < T , go to Step 4, otherwise, go to

Step 7.
Step 4. Based on the outputs of the simulation runs,

calculate sample means f i, sample standard deviation si, i

= 1, 2, · · · , k for each alternative, and b = arg mini f i.
Step 5. Increase the computing budget by ∆ and cal-

culate the new budget allocation, N l+1
1 , N l+1

2 , · · · , N l+1
k ,

according to

N l+1
i

N l+1
j

=

s2
i

(fb − f i)
2

s2
j

(fb − f i)
2

, i 6= j 6= b

N l+1
b = sb

√√√√
k∑

i=1,i6=b

(
N l+1

i

si

)2

Step 6. Perform max(N l+1
i −N l

i , 0) additional simula-
tions for alternative i, i = 1, · · · , k; and let l = l + 1; go to
Step 3.

Step 7. Based on the outputs of the simulation runs,
identify the optimal alternative b = arg mini f i.

In [139], the dual problem of the original problem dis-
cussed above is formulated. In the dual problem, the ob-
jective is to minimize the computing efforts subject to a
specified P{CS}, such as 95%, the formulation is showed
below:

min N1 + N2 + · · ·+ Nk

s.t. P{CS} ≥ P ∗

Ni ∈ N, i = 1, · · · , k

This problem coincides with the first kind of problems
that ranking and selection is used to solve. Because the
approximation solutions of the problem are the same as
the original problem, so the OCBA approach can also be
applied to this problem.

In [140], the OCBA approach is compared with other
popular methods through extensive experimentations, and
the results indicate that the efficiency of OCBA is very
high.

When using the OCBA approach, we assume that the
sample performances L(θ, ω) are independently and nor-
mally distributed. In [141−142], the OCBA problem in
which the simulated designs or system performances are
correlated is considered. And in [143], the non-normal dis-
tribution of the underlying random variables is discussed.
There are also some researches about other kinds of ob-
jective functions, such as minimizing the expected oppor-
tunity cost[144−145], minimizing variance[146], and selecting
an optimal subset of top-m solutions[147]. In [148], the in-
corporation of OCBA and the selection of Gaussian process
models are used on different noisy mathematical test func-
tions. For more researches on the OCBA approach, please
refer to [149].

3.5 Metaheuristics

Most of the current commercial simulation software
packages contain the optimization modules. Rather than
making statistical estimation, these optimization modules
incorporate some search methods to find the optimal values
of input parameters. It should be noted that metaheuris-
tics are the most commonly used methods embedded in
simulation software.

When combining the metaheuristics with simulation
models, the latter can be seen as a black box, i.e., some
input parameters are given to the black box, then the sim-
ulation models will give some feedbacks or responses, which
can be used to guide the search process in metaheuristics.
Fig. 2, which is proposed in [16], gives a good description of
the relationship between the simulation models and meta-
heuristics. In this section, five metaheuristics are intro-
duced and discussed, but an emphasis is placed on the
nested partitions method, which is a newly-developed and
powerful method for global optimization.

3.5.1 Simulated annealing

Simulated annealing is a kind of global optimization
method based on the simulation of the physical annealing
process, which is first proposed in [150] to solve combinato-
rial optimization problems. When implementing the sim-
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ulated annealing method, the search process moves from
one solution to the next until the terminating condition is
satisfied. To avoid to be trapped in a local optimum, the
inferior solutions may be accepted with a probability, i.e.,
for each iteration, the probability that a solution will be
accepted is

Prob{Accept} =

{
1, if f(θc) < f(θk)

e
− f(θc)−f(θk)

Tk , otherwise

Fig. 2 The relationship between simulation
models and metaheuristics

In other words, the candidated solution will be accepted
if it is better than the current one. And if it is inferior, it
may be accepted or rejected. The probability of being ac-
cepted is inversely proportional to the difference between
the performance values of the two solutions, and propor-
tional to the temperature Tk.

Even though simulated annealing is commonly used to
solve the deterministic optimization problems, there are nu-
merous studies about its applications to the area of sim-
ulation optimization. Reference [151] extends the basic
convergence results for the simulated annealing algorithm
to a stochastic optimization problem where the objective
function is stochastic and can be evaluated only through
Monte Carlo simulation. And [152] proposes a modified
simulated annealing algorithm designed for solving discrete
stochastic optimization problems. Rather than the decreas-
ing temperature used in the original simulated annealing
algorithm, the constant temperature is used in the new
algorithm. And two approaches for estimating the opti-
mal solution are considered and it is shown that both are
guaranteed to converge almost surely to the global optimal
solutions. To improve the performance of simulate anneal-
ing for discrete variable simulation optimization, [153] pro-
poses a method in which portions of the search procedure
are based on inferred statistical knowledge of the system.

3.5.2 Tabu search

Tabu search can be seen as a special search procedure
that is constrained by the tabu list at each step. The main
idea behind this method is that an adaptive memory is used
to forbid backtracking moves. The basic framework of tabu
search is developed in [154−155].

In tabu search method, a fixed-length list of explored
moves is maintained, and the solutions are tabu if they re-
quire the moves in the list. The restriction can help the
search process to escape from the local optima. For exam-
ple, if the current solution is θ, and θ′ is the best solution in
the neighborhood of θ and θ′ is not tabu, then the process
will move form θ to θ′. The opposite move θ′ → θ will be
added into the tabu list and the oldest move in the list will
be deleted.

Tabu search procedures have been applied to simulation

optimization in a number of papers. Reference [156] uses
the tabu search method with random moves to solve opti-
mal engineering design problems. The reliability and effi-
ciency of the algorithm are investigated by using some stan-
dard test functions and the results show that it outperforms
the random search and a composite genetic algorithm on
the example problems. The combination of simulation of
stochastic inventory system simulator and the tabu search
is considered in [157].

In addition to these researches, tabu search has also
been applied to other different kinds of simulation op-
timization problems, including determining buffer loca-
tion and size[158], determining the number of kanbans and
lotsizes[159], identifying the optimal number of kanbas in a
just-in-time system[160], flow-shop scheduling problems[161],
unmanned aerial vehicles routing problems[162], and so on.

3.5.3 Genetic algorithm

Genetic algorithm (GA) is a global optimization method
based on the natural selection principles. The main differ-
ence between the GA and other random search methods is
that a population of solutions in GA is manipulated rather
than a single solution. In each iteration, a population of
solutions is used to generate the next population based on
the operators such as selection, crossover and mutation.
When selecting solutions, the main principle is that each
solution should have a chance to be selected and the prob-
ability of being selected as the better solution should be
higher. The crossover operation is to take two solutions
(parents) to generate new solutions (children). And to es-
cape the local optima, the chromosome of some individuals
(solutions) will change slightly in the mutation stage. The
genetic algorithm hopefully converges to the global optimal
solution.

Since being introduced in [163], a great deal of research
has been done and there are many discussions about its
application to simulation optimization. Readers interested
in this topic, please refer to [164−168].

3.5.4 Scatter search

Similar to GA, scatter search is also designed to oper-
ate on a set of points, called reference points. It is first
introduced in [169] as a heuristic for integer programming.
In each iteration of the scatter search algorithm, new set of
points are generated based on the weighted linear combina-
tion of the previous points, and some generalized rounding
mechanisms should be used to assure the points satisfy in-
teger feasibility conditions.

Reference [170] presents a template for scatter search and
its generalized form called path relinking method. The ba-
sic design to implement scatter search consists of five meth-
ods: a diversification generation method, an improvement
method, a reference set update method, a subset generation
method, and a solution combination method[171].

There have been many applications of scatter search in
recent years, and a comprehensive discussion and overview
can be found in [172].

3.5.5 Nested partitions

The nested partitions (NP) method is a newly-developed
and novel optimization framework for solving complex sys-
tem optimization problems. The advantages of the NP
method include flexibility, convergence to a global opti-
mum, high compatibility with parallel computer structures
and so on. So it is suitable to solve the simulation opti-
mization problems that arise in the field of manufacturing
system, service system, product design, healthcare, etc.

When implementing the NP method, there is a most
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promising region in each iteration. The most promising
region is partitioned into M sub-regions, and the entire
surrounding region is aggregated into one. So, within each
iteration, there are M + 1 disjoint regions that need to be
explored. Some feasible solutions should be sampled from
each region by some random sampling schemes. Based on
the objective function values or estimated performance val-
ues of these solutions, the promising index of each region
is calculated. The promising index can be used to deter-
mine which region will be the most promising region in the
next iteration. If the best promising index corresponds to
one of the M sub-regions, the sub-region will be the next
most promising region. If the surrounding region is found
to be the best, then the method will backtrack to a larger
region that contains the previous most promising region.
The larger region will be the most promising region in the
next iteration. The process will continue until the termi-
nating condition is satisfied.

Mathematically, the NP method will be described as fol-
lows. Firstly, some notations and terminologies should be
defined. If region η is a sub-region of region σ, then σ is a
super-region of η. And let σ(k) denote the most promising
region of the kth iteration, d(k) the depth of σ(k). The
depth of the whole solution space Θ is 0. If the feasible
solution space Θ contains finite solutions, then there exist
some sub-regions, each of which contains only one solution.
The singleton regions are called the regions of maximum
depth. And if the feasible solutions in Θ is infinite, the
maximum depth is the depth of the smallest desired sub-
sets. Let d∗ denote the maximum depth. The “generic
nested partitions algorithm” or “pure nested partitions” is
given below (similar algorithm can also be found in [173]).

1) Partition. Partition the most promising region σ(k)
into M sub-regions σ1(k), σ2(k), · · · , σM (k), and aggregate
the complimentary region Θ\σ(k) into one region σM+1(k).

If we have some knowledge about the structure of the
feasible region and the objective function, problem-specific
partitioning schemes can be designed and implemented to
make the good solutions clustered together in the same
sub-regions. Thus the good sub-regions and solutions will
be identified quickly and the convergence rate will be im-
proved. Reference [174] gives more discussion about parti-
tioning methods when the NP method is used to solve the
traveling salesman problem.

2) Random sampling. Randomly generate Nj sample so-
lutions from each of the region σj(k), j = 1, 2, · · · , M + 1:

θj
1, θ

j
2, · · · , θj

Nj
, j = 1, 2, · · · , M + 1

Calculate the corresponding performance values:

f(θj
1), f(θj

2), · · · , f(θj
Nj

), j = 1, 2, · · · , M + 1

Sampling is a very important factor in determining the
efficiency of the NP method. To make a correct move
in each iteration, or to increase the probability of correct
move, good solutions should be sampled in each region. In
general, three ways can be used to increase the probabil-
ity of making a correct move when sampling: a) biasing the
sampling distribution so that good solutions are more likely
to be selected; b) using some heuristics or metaheuristics
(SA, GA, TS, etc.) to search for good solutions; c) using a
sufficiently large sample. But whichever sampling method
is used must ensure that each solution in the sampling re-
gion should be selected with a positive probability.

3) Calculate promising index. For each region σj , j =
1, 2, · · · , M + 1, calculate the promising index as the best

performance value within the region:

I(σj) = min
i=1,2,··· ,Nj

f(θj
i ), j = 1, 2, · · · , M + 1

There are also some other definitions of the promising
index, such as the sample mean[174].

When using the NP method, suitable promising index
should be defined carefully so that more information will
be contained and the quality of each region will be better
reflected. Because the performance of each sampled point
is estimated based on the outputs of simulation runs, it is
very important to efficiently allocate the computing budget
to each solution and OCBA can be employed in this step.

4) Move. Identify the index of the region with the best
performance value:

j∗k = arg min
j=1,2,··· ,M+1

I(σj), j = 1, 2, · · · , M + 1

If more than one regions are equally promising, the tie
can be broken arbitrarily. If this index corresponds to a
region that is a sub-region of σ(k), i.e., j∗k ≤ M , then let
this sub-region be the most promising region in the next
iteration:

σ(k + 1) = σj∗
k
(k)

Otherwise, if the index corresponds to the complemen-
tary region, i.e., j∗k = M +1, backtrack to the super-region
of the current most promising region (the previous most
promising region):

σ(k + 1) = σ(k − 1)

or backtrack to the entire solution space:

σ(k + 1) = σ

There have been extensive researches on the NP meth-
ods, such as the study about its convergence rate to a global
optimum and the stopping criteria[175−177], the combina-
tion of NP method and OCBA[178], and the applications of
NP method to production design[179], supply chain network
optimization[180], beam angel and dose optimization[181],
and scheduling[182−183], etc. A comprehensive introduction
and review on the nested partitions method are given in
[173].

Because metaheuristics are usually designed for the com-
binatorial optimization problems, it is very important to
investigate the effect of the simulation noise on these algo-
rithms. The convergence rates of these methods are also
worthy of deeper studies. In [184], these issues are investi-
gated and some metaheuristics are discussed in detail.

4 Conclusion

Simulation optimization is a very active field of research.
In recent years, extensive researches on simulation opti-
mization has been conducted and a great deal of excel-
lent achievements have been obtained. In this paper, we
have given a review on the theory and techniques of simu-
lation optimization. According to the underlying structure
of decision variables, the simulation optimization problems
are classified into two categories: continuous variable opti-
mization problems and discrete variable optimization prob-
lems. For each kind of problems, several important solution
methods or techniques are introduced. The principles, im-
plementation procedures, applications, advantages and dis-
advantages of these techniques are discussed, and existing
researches on these topics are reviewed. It is worth men-
tioning that there are also some other useful methods that
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are not covered in this paper, such as Nelder-Mead sim-
ple/complex search methods[185−187], Hooke-Jeeves pattern

search methods[188−189], gradient surface methods[190], ant
colony algorithms[191], etc.

Finally, we make the following suggestions for future re-
search:

1) In the literature, many techniques and algorithms
have been proposed. But there is not enough research on
the comparisons between them. So it is very important
to build and maintain a testbed for the simulation opti-
mization problems[192], including benchmark problems and
standard test functions to evaluate the performances of dif-
ferent techniques, which can help researchers to compare
their algorithms.

2) As pointed in [13], there seems to be a gap between
academic theory and commercial applications. Most of
the existing optimization modules in simulation software
search for good solutions based on metaheuristics (SA, GA,
TS, etc.), other methods and techniques, such as gradient
search methods, statistical inference techniques, have not
been integrated into these modules yet.

3) The efficiency of the simulation optimization soft-
ware needs to be improved. Because of the complexity
and huge scale of real problems, it is very difficult and
time-consuming to solve them using the existing simula-
tion software packages. Some advanced techniques, such as
parallel computing and factor screening techniques, should
be integrated into those software packages. And more re-
search efforts are necessary to improve the efficiency of the
simulation optimization systems.
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176 Shi L Y, Ólafsson S. Convergence rate of the nested parti-
tions method for stochastic optimization. Methodology and
Computing in Applied Probability, 2000, 2(1): 37−58
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