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Quantized Nonlinear Control — A Survey
JIANG Zhong-Ping1 LIU Teng-Fei1

Abstract Quantized control systems design is motivated by the convergence of controls and communications to address modern
engineering applications involving the use of information technology. This paper presents an overview of recent developments on
the control of linear and nonlinear systems when the control input is subject to quantization or the quantized states or outputs
are used as feedback measurements. The co-existence of high-dimensionality, quantization, nonlinearity and uncertainty poses great
challenges to quantized control of nonlinear systems and thus calls for new ideas and techniques. The field of quantized nonlinear
control is still at its infancy. Preliminary results in our recent work based on input-to-state stability and cyclic-small-gain theorems
are reviewed. The open problems in quantized nonlinear control are also outlined.
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Information technology is commonly used in modern
control engineering systems ranging from electric power
grids to intelligent transportation systems and groups of
unmanned (aerial, ground, and underwater) vehicles. For
these control systems, signals are quantized before being
transmitted via communication channels. The problem
of controlling systems through quantized signals has re-
cently raised a great interest within the controls commu-
nity. Fig. 1 shows the block diagram of a typical quantized
state-feedback control system.

Fig. 1 The block diagram of a quantized control system
(u is the control input computed by the controller,

x is the state of the plant, uq and xq are
quantized signals of u and x, respectively.)

A quantizer can be mathematically modeled as a dis-
continuous map from a continuous region to a discrete set
of numbers. Two examples of widely adopted quantizers
are shown in Sections 1 and 2. Quantization introduces
strong nonlinear characteristics such as discontinuity and
saturation to the system. It is for this reason that a direct
application of the existing tools to quantized control de-
sign may not yield satisfactory results, particularly in the
context of nonlinear systems.

1) Literature review
The study of quantized control can be traced back to the

1960′s[1−2]. Various results have been obtained for quan-
tized control of linear systems since then. In [3], a discrete-
event model of quantized control systems was developed.
References [4−5] presented the results on minimum data
rates for stabilizability of scalar systems, which have been
subsequently extended for the stabilizability of autoregres-
sive moving average (ARMA) systems[6] and linear systems

described by state-space models[7−9]. If the number of
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quantization levels is not limited, then one may improve the
control accuracy by increasing the quantization resolution
(and equivalently, decreasing the quantization error) close
to the origin. Moreover, it was shown in [10] that the loga-
rithmic quantizer is the most efficient for stabilization with
a quadratic Lyapunov function. In [11], the sector bound
approach was used to study quantized control by formulat-
ing the quantization maps as sector-bounded uncertainties.
Quadratic stability as well as H2 and H∞ performance cri-
teria were also developed in [11]. References [12−13] stud-
ied the quadratic attractivity of quantized control systems
with logarithmic quantizers and uniform quantizers. The
robustness issues have also been taken into account in the
study of quantized control. The quantized control problem
with input and output quantization was considered in [14].
Reference [15] studied the robust stabilization problem for
linear discrete-time systems via a limited capacity commu-
nication channel. In [16], it was proved that for scalar linear
systems, the binary control strategy is the most robust with
respect to varying data-rate constraint and asynchronism
of sampling and control actuation. Quantized stabilization
in the presence of additive disturbances was also been stud-
ied in [7, 9]. See also the survey paper [17] for the recent
development of quantized control for linear systems.

All the papers mentioned above consider static quanti-
zation, that is, the quantization levels of the quantizers are
fixed. For quantizers with finite numbers of quantization
levels, improved control performance can be achieved by
dynamically adjusting the quantization levels during the
control process[18−22]. The dynamic quantization strategy
developed in [20−21] is composed of two stages: zooming
in and zooming out. Intuitively, if the system state is di-
verging from the reference, then the zooming-out stage is
triggered and the range of the quantizer is increased to cap-
ture the system state; if the system state is converging to
the reference, then the zooming-in stage is triggered and
the quantization error is decreased for improved control
accuracy. It should be noted that the adjustment of the
quantization levels depends heavily on the divergence and
convergence rates of the system state. Related problems
were studied by [23−24] in the optimal control setting. Ref-
erences [7, 25−27] developed dynamic quantization strate-
gies for robustness with respect to external disturbances.
Specifically, the notion of input-to-state stability (ISS) in-
vented by Sontag was used in [25, 27] to describe the influ-
ence of the external disturbances. The reader may consult
[28] for the original development and [29] for a nice tutorial
of ISS. Several related properties of ISS can also be found
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in [30−31]. Quantized control results for stochastic linear
systems have also been developed; see e.g., [32−36] and the
references therein.

Recently, there has been an increasing interest in quan-
tized control of nonlinear systems[37−42]. Reference [37]
considered nonlinear systems with quantized control in-
puts. In [41], the general idea of using (robust) control Lya-
punov functions to design (robust) quantized controllers
was proposed. In [42], the concept of the topological feed-
back entropy is used to analyze the data rate necessary
to stabilize a nonlinear system. Reference [43] studied the
conditions under which a logarithmic quantizer does not
cancel the stabilizing effect of a continuous feedback con-
trol law for quantized control of dissipative systems. Set-
valued maps were used in [43] to cover the sector bounded
discontinuity caused by the logarithmic quantizer. The dy-
namic quantization strategy has also been extended to non-
linear systems. In [21, 40, 44], it was shown that if a sys-
tem can be input-to-state stabilized with the quantization
error as the input and the ISS gain satisfies a growth con-
dition, then one can design a dynamic quantization strat-
egy to realize global asymptotic stabilization. According
[38], if the assumption of input-to-state stabilizability is re-
laxed by global asymptotic stabilizability, then semi-global
asymptotic stabilization can be achieved. In [39], an n-
bit encoded state feedback control law was recursively de-
signed for a class of n-dimensional feedforward (or, upper-
triangular) nonlinear systems. Quantized output-feedback
control results can be found in [45−46].

It should be noted that the aforementioned issue of
input-to-state stabilizability with respect to the quantiza-
tion error is closely related to input-to-state stabilization
with respect to sensor noise, which is far from being triv-
ial for general nonlinear systems[47−50]. It is a well-known
fact that even for low-dimensional nonlinear systems, small
measurement errors may lead to instability[48, 51]. Unlike
the actuator disturbance case[28, 52], the relationships be-
tween internal stabilizability and input-to-state stabiliza-
tion in the presence of sensor noise still need further deeper
investigation. Some special cases were studied for this is-
sue of practical relevance and theoretic importance. For
instance, the authors of [53] showed that for general nonlin-
ear control systems under persistently acting disturbances,
the existence of smooth Lyapunov functions is equivalent
to the existence of (possibly discontinuous) feedback stabi-
lizers which are robust with respect to small measurement
errors and small additive external disturbances. Discon-
tinuous controllers were also developed in [53] for nonlin-
ear systems such that the closed-loop system is insensitive
to small measurement errors. Reference [54] introduced a
robust nonlinear control design approach based on back-
stepping methodology (see e.g., [55]) and flattened Lya-
punov functions to deal with bounded measurement er-
rors. But with the method in [54], the influence of the
measurement errors grows with the order of the system,
which is daunting for further application to quantized stabi-
lization of high-order nonlinear systems. Additionally, [49]
considered nonlinear systems composed of two subsystems,
one is ISS and the other one is input-to-state stabilizable
with respect to the measurement disturbance. In [49], the
ISS of the closed-loop system was guaranteed by using the
ISS small-gain theorem proposed in [56−57]. The gain as-
signment technique introduced in [50, 56] is employed such
that the closed-loop system satisfies the small-gain condi-
tion. Related results can also be found in [58−61]. How-
ever, the results listed above are not directly applicable

to the measurement feedback control problem for higher-
dimensional nonlinear systems. On the other hand, another
restrictive assumption in quantized stabilization[21, 40, 44] is
that the ISS gain should also satisfy some growth-type
condition.

With the recently developed ISS cyclic-small-gain
theorem[62−63] as a tool, new methods for quantized sta-
bilization of high-order nonlinear systems in the popular
strict-feedback and output-feedback forms[55] were devel-
oped in [64−67]. Unlike the context of nonquantized non-
linear control, a direct application of the backstepping ap-
proach seems problematic because the virtual control laws
based on quantized signals are not differentiable. Instead,
the basic idea presented in our work[64−67] is to convert the
quantized control problem into a network stability prob-
lem. More precisely, we first transform the control system
into a new system of ISS subsystems via the use of appro-
priately designed virtual quantized control laws. Then, the
cyclic-small-gain theorem is adopted to guarantee the ISS
of the closed-loop systems. Also, the influence of quanti-
zation errors is captured explicitly by means of some ISS
gains.

Another novel feature of quantized nonlinear control is
that due to the discontinuity caused by quantization, the
solutions of the closed-loop quantized systems cannot be
defined as usual. Differential inclusion and the notion of
Filippov solution[68] are used for stability analysis. Refer-
ence [69] proposed the extended Filippov solution for inter-
connected systems and extended the ISS small-gain theo-
rem to discontinuous systems. ISS cyclic-small-gain results
for large-scale dynamic networks of discontinuous subsys-
tems can be directly developed by combining the results of
[62−63, 69]. The discussion on the solutions of quantized
systems in the sense of Carathéodory can be found in [43].

2) Organization of this paper
This survey paper aims to present an overview of the

main ideas that form the basis of quantized control designs
for nonlinear systems. We mainly review the ISS small-gain
results for quantized nonlinear systems proposed in our re-
cent work, in a unique objective to entice more efforts for
the development of other design tools for quantized nonlin-
ear control.

Section 1 is devoted to quantized nonlinear control with
static quantization, while dynamic quantization is exam-
ined in Section 2. Section 2 also provides some discussions
on the connections between the different types of quantiza-
tion. In particular, the following issues are discussed.

1) How to transform a quantized control problem into an
input-to-state stabilization problem;

2) How to use the ISS small-gain methods to realize
input-to-state stabilization.

We also elaborate on the relationship of our small-gain
approach with other existing design methods. Some future
research directions are given in Section 3.

Most of the notations in this paper are standard. Some
notations and definitions that are commonly used in the
paper are given here. Rn, R+ and Z+ represent the n-
dimensional Euclidean space, the set of nonnegative real
numbers and the set of nonnegative integers, respectively.
|x| represents the Euclidean norm of a vector x ∈ Rn. A
function α : R+ → R+ is said to be positive definite if α(0)
= 0 and α(s) > 0 for s > 0. A continuous function α : R+

→ R+ is said to be a class K function, denoted by α ∈ K,
if it is strictly increasing and α(0) = 0; it is said to be a
class K∞ function, denoted by α ∈ K∞, if it is a class K
function and satisfies α(s) →∞ as s →∞.
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1 Static quantization

This section gives an overview of the quantized control
results developed by [41, 43, 65, 70]. In these results, quan-
tization error is considered as constrained uncertainty so
that conventional robust control methods can be used. ISS
has been recognized to be a powerful tool for robust control
of nonlinear systems[29]. It is shown in this section that ISS
offers a unified view in descrbing the basic idea of quantized
nonlinear control.

To this end, we focus on the stabilization problem with
quantized state feedback. Consider a nonlinear system

ẋ = f(x, u) (1)

where x ∈ Rn is the state, u ∈ Rm is the control input.
In the quantized control setting, the quantized signal Q(x)
with the quantizer Q : Rn → Rn generates the feedback
measurement. The objective is to design a feedback control
law in the form of

u = ϕ(Q(x)) (2)

such that the closed-loop system is stabilized and the sys-
tem state x converges to within some small neighborhood
of the origin.

Define

∆(x) = Q(x)− x (3)

as the quantization error. Then, the closed-loop system can
be represented by

ẋ = f(x, ϕ(Q(x))) = f(x, ϕ(x + ∆(x))) (4)

With ∆(x) considered as the disturbance, the quantized
control problem can thus be considered as a robust control
problem.

Here, we consider quantizers satisfying the (truncated)
sector bound property, which were studied in [41, 43, 65, 70].
Specifically, the quantizer Q can be represented by

Q(x) = [q1(x1), · · · , qn(xn)]T (5)

where each qi(xi) satisfies

|qi(xi)− xi| ≤ bi|xi|+ (1− bi)ai (6)

with constants 0 ≤ bi < 1 and ai ≥ 0. Fig. 2 shows a
truncated logarithmic quantizer, which satisfies property
(6).

Fig. 2 A truncated logarithmic quantizer:
|qi(xi)− xi| ≤ bi|xi|+ (1− bi)ai for all

xi ∈ R with ai ≥ 0 and 0 ≤ bi < 1

With property (6), one can find constants a ≥ 0 and 0
≤ b < 1 such that the perturbation ∆(x) caused by quan-
tization satisfies

|∆(x)| ≤ b|x|+ (1− b)a (7)

1.1 Basic idea of the Lyapunov method

The quantized control objective is achievable if there ex-
ists a positive definite and radially unbounded V : Rn →
R+ such that

max
|w|≤b|x|+(1−b)a

∇V (x)f(x, ϕ(x + w)) ≤ −ρ(|x|) + p (8)

where ρ ∈ K∞ and p ≥ 0 is a constant. Here, V guarantees
the practical stability of the closed-loop system in the pres-
ence of the uncertainty caused by quantization. Moreover,
if p = 0, then the asymptotic stabilization is achieved. This
general idea was originally developed in [41]. Note that a
system with sufficiently small perturbation is locally stable
at the origin if the corresponding perturbation-free system
is asymptotically stable at the origin[71]. If the pertur-
bation caused by quantization can be designed to be ar-
bitrarily small, semi-global quantized stabilization can be
obtained for asymptotically stabilizable systems[38]. Ref-
erence [43] yielded properties in the form of (8) for the
closed-loop systems which are dissipative with w as the in-
put. See, e.g., [72] for the basic knowledge of nonlinear
systems.

1.2 ISS small-gain theorem as a tool

The discussions above are closely related to the notion of
ISS[28], and can be performed by using ISS-Lyapunov func-
tions. Below we show how ISS-Lyapunov function and the
ISS small-gain theorem in [56] can be used in a systematic
way to yield new solutions to quantized nonlinear control.

We give a condition for quantized stabilization of system
(1) by using ISS-Lyapunov functions. Suppose that there
exists a ϕ such that system ẋ = f(x, ϕ(x + w)) with w
as the input is ISS with V as an ISS-Lyapunov function
satisfying

α(|x|) ≤ V (x) ≤ α(|x|) (9)

V (x) ≥ γ(|w|) ⇒ ∇V (x)f(x, ϕ(x + w)) ≤ −α(V (x)) (10)

where α, α ∈ K∞, γ ∈ K, and α is a continuous and positive
definite function.

Note that condition (7) implies that

|∆(x)| ≤ max

{
(1 + ε)b|x|,

(
1 +

1

ε

)
(1− b)a

}
(11)

for any constant ε > 0.
We consider the closed-loop quantized system as an in-

terconnection of system ẋ = f(x, ϕ(x+w)) and the pertur-
bation term w = ∆(x), as shown in Fig. 3.

Fig. 3 The closed-loop quantized system

With the robust stability property of ISS[73] or the more
general ISS small-gain theorem[56−57], if there exists an ε >
0 such that
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α−1 ◦ γ((1 + ε)bs) < s (12)

for all s > 0, then the closed-loop quantized system is prac-
tically stable at the origin. In the ideal case when a = 0,
the closed-loop quantized system becomes asymptotically
stable at the origin.

If we consider α−1◦γ as the gain from w to x and (1+ε)b
as the gain from w to x, then condition (12) means that the
composition of the gains, or the loop gain, is less than the
identity function and is called nonlinear small-gain condi-
tion. The system shown in Fig. 3 is composed of one dy-
namic system and one static system. Clearly, the nonlin-
ear small-gain theorem in [56], originally developed for an
interconnection of two dynamic systems which are ISS or
more generally input-to-output stable (IOS), remains valid
and applicable to this special scenario. Notice that the ISS
small-gain theorem as a tool will also be shown powerful
for quantized control of high-order nonlinear systems.

In the simple case shown in Fig. 3, the validity of condi-
tion (12) can be directly checked as follows. First, condition
(12) means that V (x) ≥ α(|x|) > γ((1 + ε)b|x|). Then,

V (x) ≥ γ

((
1 +

1

ε

)
(1− b)a

)
⇒ V (x) ≥ γ(|w|) (13)

This together with property (10) implies that V (x(t)) ul-
timately converges to the region such that V (x) ≤ γ((1 +
1/ε)(1− b)a). This means practical convergence. If a = 0,
then asymptotic stabilization is realized.

1.3 Gain assignment technique for ISS small-gain
design

In [38, 41, 43], it was assumed that an appropriate ϕ ex-
ists so that the closed-loop system (4) has specific stabil-
ity properties. However, such assumption is restrictive for
complex nonlinear systems. By extending the previous ISS
small-gain design methods, it was shown in [65] that quan-
tized input-to-state stabilization can be achieved for high-
order nonlinear systems in the strict-feedback form. Due
to the inherent robustness property of ISS, the design is
also valid for systems with dynamic uncertainties and ex-
ternal disturbances. The essential feature of the small-gain
method consists of transforming the closed-loop quantized
system into a network of subsystems which are made by ISS
by using a modified gain assignment technique and virtual
quantized control laws. An important consequence of the
modified gain assignment technique is that the ISS gains of
the subsystems can be appropriately or somehow “arbitrar-
ily” assigned. This way, for the transformed network of ISS
subsystems, the cyclic-small-gain condition[62−63] holds so
that the closed-loop quantized system is ISS. We refer the
reader to [49−50, 56, 74] for the details on earlier versions
of the gain assignment technique.

In this subsection, we employ the following first-order
system to show the application of the gain assignment tech-
nique to quantized control:

ẋ = f(x, u) = φ(x) + u (14)

where x ∈ R is the state, u ∈ R is the control input,
and φ : R → R is an uncertain, locally Lipschitz function.
Assume that there exists a known locally Lipschitz ψφ ∈
K∞ such that |φ(x)| ≤ ψφ(|x|) for all x ∈ R. We show
that the quantized stabilization of system (14) is solvable,
if a ϕ : R → R can be found such that system (14) in
closed-loop with the following control law

u = ϕ(x + w) (15)

is ISS with w as the input and has an ISS-Lyapunov func-
tion satisfying conditions (9), (10) and (12).

The gain assignment technique developed in [49] can be
readily used to solve the problem. The control law can be
designed as ϕ(r) = −ν(|r|)r for r ∈ R with ν : R+ → R+

being a continuous, positive and nondecreasing function
satisfying

(1− c)ν((1− c)s)s ≥ `

2
s + ψφ(s) (16)

where 0 < c < 1 and ` > 0 are constants. Then, the closed-
loop system composed of (14) and (15) is ISS with V (x) =
x2/2 as an ISS-Lyapunov function satisfying

V (x) ≥ |w|2
2c2

⇒

∇V (x) (φ(x) + ϕ(x + w)) ≤ −`V (x) (17)

Clearly, properties (9) and (10) are satisfied by α(s) = α(s)
= s2/2 and γ(s) = s2/2c2 for s ∈ R+. Condition (12) is
satisfied if constants c and ε are chosen such that c > (1 +
ε)b. With 0 ≤ b < 1, such c and ε exist.

1.4 High-order nonlinear systems

Over the last twenty years, nonlinear systems in the
strict-feedback form[55] have been widely studied for adap-
tive and robust nonlinear control design, backed up by nu-
merous practical examples. Among these novel tools is the
ISS small-gain method that is proven useful in handling the
dynamic uncertainties of systems[50, 56, 75].

A further step was taken in our recent work[65] to come
up with a first solution to the quantized control problem
for nonlinear uncertain systems in the strict-feedback form:

ẋi = xi+1 + ∆i(x̄i), 1 ≤ i ≤ n− 1 (18)

ẋn = u + ∆n(x̄n) (19)

xq
i = qi(xi), 1 ≤ i ≤ n (20)

where x = [x1, · · · , xn]T ∈ Rn is the state, u ∈ R is the
control input, x̄i = [x1, · · · , xi]

T, xq
i is the quantization of

xi, q′is are state quantizers satisfying property (6), and the
∆′

is are unknown, locally Lipschitz functions. It is assumed
that for each ∆i, there exists a known ψ∆i ∈ K∞ such that
|∆i(x̄i)| ≤ ψ∆i(|x̄i|) for all x̄i ∈ Ri.

The control objective is to find, if possible, a quantized
feedback controller in the form of

u = ϕ(xq
1, · · · , xq

n) (21)

such that the closed-loop solutions x(t) are globally
bounded and ultimately converge to within some small
neighborhood of the origin.

If the accurate measurement of x is available for feed-
back, i.e., qi(xi) = xi for i = 1, · · · , n, then the ISS small-
gain design proposed in [50] can be readily used for stabi-
lization. Specifically, one may recursively design a nonlin-
ear controller as

x∗1 = κ̆1(x1) (22)

x∗i+1 = κ̆i(xi − x∗i ), i = 2, · · · , n− 1 (23)

u = κ̆n(xn − x∗n) (24)

where the κ̆′is for i = 1, · · · , n, viewed as “virtual control
laws”, are appropriately designed nonlinear functions, and
u is the implementable control law.
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To take into account the quantization, each xi for i = 1,
· · · , n in (22)∼ (24) is replaced with xq

i and the quantized
control law is designed in the form of

x∗1 = κ1(x
q
1) (25)

x∗i+1 = κi(x
q
i − x∗i ), i = 2, · · · , n− 1 (26)

u = κn(xq
n − x∗n) (27)

where the κ′is are not necessarily the same as the κ̆′is in
(22)∼ (24) and should be carefully designed to make the
control law compatible with the sensor noise.

As shown below, the discontinuity of the quantization
leads to a major difficulty in quantized control design. If
qi(xi) = xi for i = 1, · · · , n, then one may choose a coordi-
nate transformation

e1 = x1 (28)

ei = xi − κ̆i−1(ei−1), i = 2, · · · , n (29)

and design the feedback control law so that the closed-loop
system with e = [e1, · · · , en]T as the state is asymptotically

stable[50]. The functions κ̆i for i = 1, · · · , n−1 are required
to be continuously differentiable so that the new system
state e is continuously differentiable. However, due to the
discontinuity of quantization, one cannot directly replace
the xi in (28) and (29) with xq

i for quantized control design.
The contribution of [65] lies in the novel set-valued map

design to cover the influence of quantization. Specifically, in
the presence of state quantization, the new state variables
are defined as

e1 = x1 (30)

ei = ddd(xi, Si−1(x̄i−1)), i = 2, · · · , n (31)

where

ddd(z, Ω) = z − arg min
z′∈Ω

{|z − z′|} (32)

represents the directed distance from z ∈ R to compact
set Ω ⊂ R, and for each i = 1, · · · , n − 1, Si : Ri → R
is an appropriately designed set-valued map depending on
κi. Basically, the set-valued maps are employed to cover
the influence of quantization. An example of the defini-
tion of e2 is shown in Fig. 4. By choosing the boundaries
of the set-valued maps to be continuously differentiable al-
most everywhere, the new state variable e = [e1, · · · , en]T

is continuously differentiable almost everywhere. It was
shown in [65] that if qi(xi) = xi for i = 1, · · · , n, then the
coordinate transformation (30) and (31) is reduced to (28)
and (29).

Fig. 4 The definitions of S1 and e2

With the set-valued map designs, the ei-subsystems can
be represented by differential inclusions

ėi ∈ Fi(e1, · · · , ei+1) (33)

with Fi : Ri+1 → R, which can be designed to be ISS
with e1, · · · , ei−1, ei+1 as the inputs by using a modified
gain assignment technique. Specifially, en+1 = 0. Thus, the
closed-loop quantized system is transformed into a network
of ISS subsystems. The interconnection structure of the
network can be represented by a directed graph (digraph),
as shown in Fig. 5. Then, the recently developed cyclic-
small-gain theorem for large-scale dynamic networks[62] can
be readily used to check the stability property of the closed-
loop quantized system. See also [76−77] for a variety of
small-gain results for very general nonlinear systems. More-
over, with the Lyapunov-based ISS cyclic-small-gain the-
orem [63], an ISS-Lyapunov function can be constructed
for the closed-loop quantized system by using the ISS-
Lyapunov functions of the ei-subsystems to explicitly de-
scribe the convergence property.

Fig. 5 The interconnection graph of the closed-loop
quantized system

The truncated sector bound condition (7) assumed in
this section means that the quantizers have infinite number
of quantization levels. Due to finite-word length, a practical
quantizer has a finite number of quantization levels, for
which condition (7) may only hold in a specific range of
x, say, Ω. If the parameters of the quantizers are fixed,
then the above-described design could only guarantee local
stabilization within Ω. If the upper-bound of the initial
state of the system is known a priori and the quantizers
are designable, then the semi-global stabilization problem
is solvable. This idea was used in [38] and remains valid for
the quantized stabilizer design based on the ISS small-gain
theorem.

2 Dynamic quantization

As discussed in Section 1, if the quantizers have fi-
nite numbers of fixed quantization levels, then, generally
speaking, global and semiglobal quantized stabilization can
hardly be achieved via static quantization. Instead, we turn
to use dynamic quantization that consists of dynamically
adjusted quantization levels during the process of control
for enlarged region of stability.

To highlight the relationship between the quantization
error and the quantization range, in this section, we con-
sider uniform quantizers with finite numbers of quantiza-
tion levels. Fig. 6 shows an example. If the input r of the
quantizer is within the quantization range Mµ with M be-
ing a positive constant, then the quantization error is less
than µ, i.e.,

|r| ≤ Mµ ⇒ |q(r, µ)− r| ≤ µ (34)

Otherwise, the output of the quantizer is saturated. With
µ considered as a variable of the quantizer, dynamic quan-
tization is performed by adjusting µ in the control process.
It should be noted that more general quantizers can be
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used for dynamic quantization with the methods reviewed
in this section as long as property (34) holds; see, e.g., [78]
for discussions.

Fig. 6 A uniform quantizer q with a finite number of levels:
µ represents the quantization error within the quantization

range Mµ, i.e., |r| ≤ Mµ ⇒ |q(r, µ)− r| ≤ µ, with
M being a positive integer

Dynamic quantization was originally developed in [20]
for quantized control of linear systems by using Lyapunov
arguments. With a Lyapunov-based ISS formulation, the
basic idea is naturally extended to nonlinear systems; see,
e.g., [21, 40, 44].

2.1 Basic idea

To clarify the basic idea of dynamic quantization, we
consider the following closed-loop quantized system as an
example:

ẋ = f(x, ϕ(q(x, µ))) (35)

where x ∈ R is the state, f : R2 → R is a locally Lipschitz
function, ϕ : R → R is the control law, q : R ×R+ → R
is the quantizer as shown in Fig. 6 with parameter M > 0,
and µ ∈ R+ is the variable of the quantizer.

By defining quantization error ∆(x, µ) = q(x, µ)−x, the
closed-loop quantized system can be rewritten as

ẋ = f(x, ϕ(x + ∆(x, µ))) (36)

Assume that system ẋ = f(x, ϕ(x+w)) is ISS with w as
the input and admits an ISS-Lyapunov function V : R →
R+ satisfying

α(|x|) ≤ V (x) ≤ α(|x|) (37)

V (x) ≥ γ(|w|) ⇒ ∇V (x)f(x, κ(x + w)) ≤ −α(V (x)) (38)

where α, α ∈ K∞, γ ∈ K and α is a continuous and positive
definite function. Here, w can be considered as the mea-
surement error caused by quantization. Also assume that
α, γ and M satisfy

α−1 ◦ γ(µ) ≤ Mµ (39)

for all µ ∈ R+.
Consider the case of α(Mµ) ≥ V (x) ≥ γ(µ). Direct

calculation yields:

V (x) ≤ α(Mµ) ⇒ |x| ≤ Mµ ⇒ |∆(x, µ)| ≤ µ (40)

which together with V (x) ≥ γ(µ) implies V (x) ≥
γ(|∆(x, µ)|). By using (38), we have

α(Mµ) ≥ V (x) ≥ γ(µ) ⇒
∇V (x)f(x, κ(x + ∆(x, µ))) ≤ −α(V (x)) (41)

Clearly, ΩL(µ) = {x : V (x) ≤ α(Mµ)} and ΩS(µ) =
{x : V (x) ≤ γ(µ)} are nested invariant sets of the closed-
loop quantized system. The existence of such invariant
sets is recognized as a sufficient condition for dynamic
quantization[78]. Here, it can also be observed that if µ is
fixed, then quantized stabilization can only be guaranteed
within ΩL(µ).

Suppose that an upper bound of V (x(0)) is known a pri-
ori. By choosing µ(0) such that α(Mµ(0)) ≥ V (x(0)) and
reducing µ on the timeline slowly, asymptotic stabilization
can be achieved. Fig. 7 shows the case where µ is updated
on discrete time instants {tk}k∈Z+ satisfying tk+1− tk = δt

with constant δt > 0.

Fig. 7 Basic idea of dynamic quantization

The nested invariant sets defined by (41) play a central
role in dynamically quantized control of nonlinear systems.
The process of reducing µ is usually known as the zooming-
in stage of dynamic quantization. Variable µ is also called
zooming variable.

In the case where the upper bound of V (x(0)) is un-
known, (semi)global stabilization can be achieved for for-
ward complete systems by employing a zooming-out stage,
i.e., increasing µ and thus α(Mµ) being fast enough such
that α(Mµ(t∗)) ≥ V (x(t∗)) at some finite time t∗. Very
detailed discussions of this idea can be found in [78]. Dy-
namic quantization for more general nonlinear systems can
also be implemented based on this idea.

Note that condition (39) is equivalent to

α−1 ◦ γ

(
1

M
s

)
≤ s (42)

for all s ∈ R+. By comparing (12) and (42), one may
recognize the similarity between the conditions for static
quantization and dynamic quantization.

For the first-order system (14), by using the gain assign-
ment technique reviewed in Subsection 1.3, we can design
a control law in the form of (15) such that with w as the
input, the closed-loop system ẋ = f(x, ϕ(x + w)) is ISS
with V (x) = x2/2 as an ISS-Lyapunov function satisfying
(37) and (38) with α(s) = α(s) = s2/2 and γ(s) = s2/2c2

for s ∈ R+. The constant c can be arbitrarily chosen such
that 0 < c < 1. Condition (42) is satisfied if cM > 1. This
is practically realizable as M ≥ 3 holds for any uniform
quantizer with no less than three levels[66].

Moreover, as shown in the next subsection, the ISS small-
gain methods are also quite useful in solving the new prob-
lems with dynamic quantization for high-order nonlinear
systems.

2.2 Quantized output-feedback control

To highlight the difficulty caused by the high-
dimensionality of the system, this subsection discusses
quantized output-feedback control with one quantizer.
Consider the following nonlinear system in the output-
feedback form with quantized output:

ẋi = xi+1 + fi(y), i = 1, · · · , n− 1 (43)

ẋn = u + fn(y) (44)
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y = x1 (45)

yq = q(y, µ) (46)

where [x1, · · · , xn]T ∈ Rn is the state, u ∈ R is the control
input, y ∈ R is the output, q(y, µ) is the output quan-
tizer with variable µ, yq ∈ R is the quantized output avail-
able for feedback design, [x2, · · · , xn]T is the unmeasured
portion of the state, and f ′is (i = 1, · · · , n) are uncertain,
locally Lipschitz functions. For each fi(y), it is assumed
that |fi(y)| ≤ ψfi(|y|) for all y with a known ψfi ∈ K∞.
Moreover, the quantizer q(y, µ) is assumed to satisfy prop-
erty (34) with the r replaced by y and constant M ≥ 3.
As discussed before, this assumption is mild for uniform
quantizers with no less than three quantization levels.

Motivated by [75], a reduced-order observer which uses
the quantized output yq can be designed as

ξ̇i = ξi+1 + Li+1y
q − Li(ξ2 + L2y

q), i = 2, · · · , n− 1
(47)

ξ̇n = u− Ln(ξ2 + L2y
q) (48)

where ξi is an estimate for the unmeasured state xi − Liy
for each i = 2, · · · , n.

Define z = [x2 − L2y − ξ2, · · · , xn − Lny − ξn]T as the
observation error. Then, the observation error system can
be represented by

ż = g(z, y, w) (49)

where w = yq − y represents the quantization error. By
appropriately choosing the parameters of the reduced-order
observer, the e0-system can be designed to be ISS with y
and w as the inputs.

Then, the quantized output-feedback control problem is
transformed into a partial-state feedback control problem
for the following strict-feedback system with dynamic un-
certainties:

ż = g(z, y, w) (50)

ẏ = ξ2 + φ1(z, y) (51)

ξ̇i = ξi+1 + φi(y, ξ2, w), i = 2, · · · , n− 1 (52)

ξ̇n = u + φn(y, ξ2, w) (53)

For system (50)∼ (53), (yq, ξ2, · · · , ξn) is available for
feedback. In [64], a set-valued map design was developed to
deal with the quantization. Specifically, through the design,
the closed-loop quantized system can be transformed into
a network of ISS subsystems. The state variables of the
subsystems are defined as

e0 = z (54)

e1 = y (55)

ei = ddd(ξi, Si−1(e1, ξ2, · · · , ξi−1, µ)), i = 2, · · · , n (56)

where each Si−1 : R× · · · ×R×R+ → R is a well chosen
set-valued map. The definition of ddd is given in (32). Fig. 8
shows an example of S1 and the definition of e2. The set-
valued map with “size” depending on µ covers the influence
of quantization.

Denote e = [eT
0 , e1, · · · , en]T. Then the closed-loop quan-

tized system can be represented by a differential inclusion

ė ∈ F (e, µ) (57)

If the output is within the range of the quantizer, i.e., |y| ≤
Mµ, then by using the ISS cyclic-small-gain theorem, one
can find a V : R2n−1 → R+ such that

V (e) ≥ µ2

2c2
⇒ max

f∈F (e,µ)
∇V (e)f ≤ −α(V (e)) (58)

where constant c can be arbitrarily chosen such that 0 <
c < 1 and α is a continuous and positive definite function.
Moreover, it is guaranteed that

V (e) ≤ M2µ2

2
⇒ |y| ≤ Mµ (59)

Fig. 8 The definitions of S1 and e2

Note that M ≥ 3. With constant c chosen to be larger
than 1/3, properties (57) and (58) together implies

M2µ2

2
≥ V (e) ≥ µ2

2c2
⇒

max
f∈F (e,µ)

∇V (e)f ≤ −α(V (e)) (60)

This is in accordance with property (41).
However, since the set-valued maps depend on µ, the

newly defined variables e2, · · · , en depend on µ. One can-
not trivially implement the standard dynamic quantization
strategy to update µ during the quantized control process,
as this may make V (e) “jump out” of the larger invari-
ant set ΩL(µ) = {e : V (e) ≤ M2µ2/2}. This problem
was successfully solved in [64] by carefully studying the de-
creasing rate of V (e). If an upper bound of the initial value
V (e(0)) is known, then the zooming variable µ can be re-
duced slowly to realize the convergence of V (e) and thus
the convergence of e1 = y, as shown in Fig. 9.

Fig. 9 The motions of M2µ2(t)/2, µ2(t)/2c2 and V (e(t))

If an upper bound of V (e(0)) is unknown, then a
zooming-out process is needed before zooming-in. In this
process, the zooming variable µ should be increased fast
enough such that at some finite time t∗, V (e(t∗)) ≤
M2µ2(t∗)/2. This needs some a priori knowledge on the
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divergence rate and observability of the system. Small-
time norm-observability is an often used notion[79]. The
structure of the quantized output-feedback control system
proposed in [64] is shown in Fig. 10.

Fig. 10 A quantized output-feedback control structure

2.3 Quantized state-feedback control

If more than one quantizers are used to control a system,
then the updates of the zooming variables of the quantizers
should be well coordinated. In this subsection, we show
how the problem is solved with ISS small-gain designs based
on the result of [66]. Fig. 11 shows the quantized control
structure for nonlinear systems with dynamic uncertainties.
Each quantizer qij in the system has a zooming variable µij .

Fig. 11 A quantized control structure for high-order nonlinear
systems: xi ∈ R, the z-subsystem with z ∈ Rm represents

dynamic uncertainties, qij for i = 1, · · · , n, j = 1, 2
are quantizers, and κi for i = 1, · · · , n
are functions forming the control law

Reference [66] considers the case where the z-subsystem
is ISS. A set-valued map design is employed to transform
the closed-loop quantized system into a network of n+1 ISS
subsystems with ei (i = 0, · · · , n) as the state variables of
the subsystems. Denote e as the vector of ei for i = 0, · · · , n
and µ as the vector of µij for i = 1, · · · , n, j = 1, 2. Then,
the closed-loop quantized system can be represented by a
differential inclusion ė ∈ F (e, µ). Moreover, the closed-loop
quantized system satisfies the cyclic-small-gain condition,
and one can construct a positive definite and radially un-
bounded V such that

min
i=1,··· ,n,j=1,2

{σij(µij)}≥ V (e) ≥ max
i=1,··· ,n,j=1,2

{σij(µij)}⇒
max

f∈F (e,µ)
∇V (e)f ≤ −α(V (e)) (61)

for all e and µ, where σij and σij are class K∞ functions
satisfying σij > σij , and α is a continuous and positive

definite function. Intuitively, the min operator on the left-
hand side of (60) is used to guarantee that all the signals to
be quantized are covered by the ranges of their correspond-
ing quantizers. Clearly, property (60) defines the nested
invariant sets for the closed-loop quantized system.

In the zooming-in stage, to always satisfy the condition
of the implication in (60), the zooming variables µij should
be updated cooperatively. One solution is to adjust µij

such that for all i = 1, · · · , n, j = 1, 2,

σij(µij(t)) = θ(t) (62)

for all t ≥ 0. Then, property (60) implies

θ ≥ V (e) ≥ χ(θ) ⇒ max
f∈F (e,µ)

∇V (e)f ≤ −α(V (e)) (63)

where χ is a class K∞ function being less than the identity
function. With this treatment, the dynamic quantization
problem can be solved by designing an update law for θ.
It should be noted that due to the set-valued map design,
e2, · · · , en depend on the zooming variables µij and thus
θ. This problem can be solved similarly as for quantized
output-feedback control discussed in Subsection 2.2.

3 Conclusions and open problems

This paper provides a survey on the state of the art of
quantized feedback control for nonlinear systems. As ar-
gued in the paper, quantized nonlinear control is strongly
connected to robust nonlinear control. And advanced ro-
bust control design methods, such as the ISS small-gain ap-
proach, are powerful in handling the new problems caused
by quantization in nonlinear control. Expectedly, the pre-
liminary results presented in the paper can be further gen-
eralized in several directions, in view of the rich literature of
nonlinear control over the last three decades. It should be
mentioned that there are more open problems in this field
than the available results. Some open problems of great
interest are stated below:

1) Geometric nonlinear control with quantized sig-
nals. The classical yet important topic of controllabil-
ity and observability for nonlinear systems needs to be
revisited[80−81], when only quantized signals are allowed.
In addition, the relationships between controllability and
stabilizability[82], and feedback linearization theory[80],
need to be revisited as well in the context of quantized
feedback control.

2) Tracking via quantized feedback. While this paper
and the work of others focus on quantized stabilization, the
problem of quantized feedback tracking is of more practi-
cal interest and recovers stabilization as a special case. In-
stead of forcing the state or the output to the origin or a
set-point of interest, the quantized feedback tracking prob-
lem seeks a quantized feedback controller so that the out-
put follows a desirable reference signal or the state follows
the desired state of a reference model. This problem has
received practically no attention in the present literature.
Closely related to this problem is the output regulation
theory[83−84] that consists of searching for (unquantized)
feedback control laws to achieve asymptotic tracking with
disturbance rejection, when the disturbance and reference
signals are generated by an exo-system. The well-known
internal model principle serves as a bridge to convert the
output regulation problem into a stabilization problem for a
transformed system. To what extent will the internal model
principle remain valid and applicable when only quantized
signals are used?
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3) Decentralized quantized control. In the decentralized
control setting, local controllers are used to control the
subsystems of a large-scale system[85]. Among the main
characteristics of decentralized control are the dramatic
reduction of computational complexity and the enhance-
ment of robustness against uncertain interactions or loss of
interaction. The ISS small-gain designs for decentralized
control[75, 86] makes it possible to further take into account
the effect of quantization. It should be noted that the de-
centralized measurement feedback control problem, which
is closely related to decentralized quantized control, has
been studied in a recent paper[87]. For dynamic quantiza-
tion, the zooming variables of the quantizers of different
subsystems should coordinate with each other. This is still
the case when decentralized control is reduced to central-
ized control, as shown in Subsection 2.3. Another problem
with decentralized dynamic quantization is that the up-
dates of the zooming variables of the quantizers may not
be synchronized. For such a problem, the small-gain results
for hybrid system[76, 88−89] should be helpful.

4) Quantized adaptive control. Controllers are expected
to possess adaptive capabilities to cope with “large” un-
certainties. A further extension of the previously de-
veloped methodology to quantized adaptive control is of
practical interest for engineering applications. The recent
achievements[90−91] provide a basis for future research in
this direction. Reference [90] proposes a Lyapunov-based
framework for adaptive quantized control of linear uncer-
tain systems modeled in discrete-time. In [91], a direct
adaptive control strategy was developed for nonlinear un-
certain systems with input quantizers under the assump-
tion that the system is robustly stabilizable with respect to
sector bounded uncertainties.

5) Networked and quantized control systems with time
delays. In modern networked control systems, data trans-
mission through communication channels inevitably results
in time delays, a severe cause for poor performance and
even instability of the system in question. Data-sampling
may be considered as a special case of time-delay. Refer-
ence [92] studied the connections between the ISS small-
gain theorem and the Razumikhin theorem, in the context
of time-delay nonlinear systems. Recently, a necessary and
sufficient condition for robust stabilizability of nonlinear,
time-varying systems with delayed state measurements was
presented in [61], which is a new framework capable of deal-
ing with quantization and time-delay, at the same time is
of paramount importance for the transition of advanced
nonlinear control theory to practice.
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85 Siljak D D. Decentralized Control of Complex Systems.
Boston: Academic Press, 1991

86 Jiang Z P. Decentralized disturbance attenuating output-

feedback trackers for large-scale nonlinear systems. Auto-
matica, 2002, 38(8): 1407−1415

87 Liu T F, Jiang Z P, Hill D J. Decentralized output-feedback

control of large-scale nonlinear systems with sensor noise.
Automatica, 2012, 48(10): 2560−2568

88 Karafyllis I, Jiang Z P. A vector small-gain theorem for gen-
eral non-linear control systems. IMA Journal of Mathemat-
ical Control and Information, 2011, 28(3): 309−344

89 Liu T F, Jiang Z P, Hill D J. Lyapunov formulation of

the ISS cyclic-small-gain theorem for hybrid dynamical net-
works. Nonlinear Analysis: Hybrid Systems, 2012, 6(4): 988

−1001

90 Hayakawa T, Ishii H, Tsumura K. Adaptive quantized con-
trol for linear uncertain discrete-time systems. Automatica,

2009, 45(3): 692−700

91 Hayakawa T, Ishii H, Tsumura K. Adaptive quantized con-
trol for nonlinear uncertain systems. Systems and Control

Letters, 2009, 58(9): 625−632

92 Teel A R. Connections between Razumikhin-type theorems
and the ISS nonlinear small gain theorem. IEEE Transac-

tions on Automatic Control, 1998, 43(7): 960−964

JIANG Zhong-Ping Received his
bachelor degree in mathematics from
Wuhan University, China, in 1988, his
master degree in statistics from the
University of Paris XI, France, in 1989,
and his Ph.D. degree in automatic control
and mathematics from the Ecole des
Mines de Paris, France, in 1993. He is a
full professor in electrical and computer
engineering at the Polytechnic Institute of
New York University, USA. His research

interest covers stability theory, robust and adaptive nonlinear
control, adaptive dynamic programming and their applications
to underactuated mechanical systems, communication networks,
multi-agent systems, smart grid and systems neuroscience.
Corresponding author of this paper. E-mail: zjiang@nyu.edu

LIU Teng-Fei Received his bachelor de-
gree in automation and his master degree
in control theory and control engineering
from South China University of Technol-
ogy, China, in 2005 and 2007, respectively.
He received his Ph.D. degree in engineer-
ing from the Australian National Univer-
sity, Australia, in 2011. He is a visiting
assistant professor at Polytechnic Institute
of New York University, USA. His research
interest covers stability theory, robust non-

linear control, quantized control, distributed control and their
applications in mechanical systems, power systems and trans-
portation systems. E-mail: tliu@poly.edu


