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Iterative Learning Control for a

Class of Linear Discrete-time
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Abstract In this paper, the iterative learning control (ILC)
is considered for a class of linear discrete-time switched systems
with arbitrary switching signals. It is assumed that the switched
system is operated during a finite time interval repetitively, and
then the first order P-type ILC scheme can be used to achieve
perfect tracking over the whole time interval. By the super vec-
tor approach, a convergence condition for such ILC systems in
the iteration domain can be given. The theoretical analysis is
supported by simulations.
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In recent years, the study of switched systems has re-
ceived a growing attention. The primary motivation for
studying such switched systems comes partly from the fact
that switched systems and switched multi-controller sys-
tems have numerous applications in the control of me-
chanical systems, process control, automotive industry,
power systems, aircraft and traffic control, and many other
fields[1−4]. A switched system belongs to a hybrid system,
which consists of a finite number of subsystems and an as-
sociated switching signal governing the switching among
them. The switching signal may belong to a certain set
and the set may be diverse, and it can be state-driven or
time-driven.

Switched systems with all subsystems described by linear
differential or difference equations are called switched lin-
ear systems, and have attracted most of the attention[5−7].
Recent researches in switched linear system typically focus
on the analysis of dynamic behaviors, such as stability[1, 8],
controllability, reachability[9−10] and observability[11] etc.,
and aim to design controllers with guaranteed stability and
performance[12−14]. Compared with the fruitful results for
stability problem, relatively few efforts are made for de-
signing a controller to achieve tracking of switched systems.
Fortunately, for repeated systems, iterative learning control
(ILC) offers a systematic design that can improve the track-

ing performance by iterations in a fixed time interval[15−21].
It has been shown to be one of the most effective method-
ologies for repeated tracking control tasks for determinis-
tic systems. Control objectives can be achieved iteratively
through updating the control input in the iteration domain.
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However, to the best of our knowledge, no one has studied
the iterative learning control for switched systems. This
observation motivates the present study.

In this paper, we present the problem of iterative learn-
ing control for a class of linear discrete-time switched sys-
tems with arbitrary switching rules, which are assumed op-
erating during a finite time interval repetitively. A conver-
gence condition is given by using the super vector approach
for such ILC systems. It is shown that P-type ILC scheme
can guarantee the convergence of the output tracking error
between the given desired output and the actual output
through the iterative learning process.

It is worth pointing out that the problem considered in
this paper is similar to the ILC for time varying linear sys-
tem. However, there are some crucial differences. The time
varying system admits a family of solutions that can be
parameterized solely by the initial condition, whereas the
switched system admits a family of solutions that is pa-
rameterized both by the initial condition and the switching
signal. In the super vector formulation, the time varying
linear system has a fixed lower-triangular Markov param-
eter matrix during the whole time interval, and the initial
condition is identical for the whole system. While the lift-
ing matrix of a linear switched system is determined by
both subsystems and the switching signal. Besides, the ini-
tial condition is only identical for the first subsystem, not
for all the subsystems, which results in the convergence
analysis to be different from time-varying systems.

The rest of this paper is organized as follows. In Section
1, the problem formulation is described. In Section 2, a suf-
ficient condition which guarantees the stability of the ILC
system is given. In Section 3, a simulation example is pre-
sented to validate the theoretical result. Some conclusions
are given in Section 4.

1 Problem formulation

Let us consider a class of single input single output linear
switched systems given by

{
x(t + 1) = Aα(t)x(t) + Bα(t)u(t)

y(t) = Cα(t)x(t)
(1)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R are the state, input,
and output variables, respectively. t denotes the time vari-
able. α(t) is a switching rule defined by α(t) : N → I with I
= {1, 2, · · · , l}. This means that the matrices (Aα(t), Bα(t),
Cα(t)) are allowed to take values, at an arbitrary discrete
time, in the finite set

{(A1, B1, C1), · · · , (Al, Bl, Cl)}

Such systems are said to be switched and belong to the
class of hybrid. When the system (1) is operated during a
finite time interval repetitively, the switched system can be
described as

{
xk(t + 1) = Aα(t)xk(t) + Bα(t)uk(t)

yk(t) = Cα(t)xk(t)
(2)

where k denotes the iteration number.
Basic assumptions for the system are given as follows:
Assumption 1. 1) every operation begins at an identi-

cal initial condition, i.e., xk(0) = 0 for all k; 2) the desired
trajectory yd(t) is iteration invariant.

Assumption 2. For a given desired trajectory yd(t),
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there exists a desired control input ud(t) such that

{
xd(t + 1) = Aα(t)xd(t) + Bα(t)ud(t)

yd(t) = Cα(t)xd(t)
(3)

Note that α(t) is an arbitrary switching rule during the
finite time interval [0, N ], which is different from the afore-

mentioned studies[3−7]. Without loss of generality, we can
assume the arbitrary switching rule α(t) is given as

α(t) = i =





1, t ∈ [0, m1]

2, t ∈ [m1 + 1, m2]

...
...

l, t ∈ [ml−1 + 1, N ]

(4)

where 0 = m1 < m2 < · · · < ml−1 < N . Then, the
switched system (2) can be represented as

{
xk(t + 1) = Aixk(t) + Biuk(t)

yk(t) = Cixk(t)
(5)

and i ∈ {1, 2, · · · , l }.
In this paper, the control target is to find a control input

sequence uk(t) = ud(t), such that yk(t) converges to yd(t)
as k → ∞. We consider the first order ILC algorithm as
follows:

uk+1(t) = uk(t) + γek(t + 1) (6)

where ek(t + 1) = yd(t + 1) − yk(t + 1) is output tracking
error, and γ is a constant learning gain. In the following,
we consider how to choose the learning gain γ, then the
convergence of the output tracking error can be guaranteed.

2 Main results
In this section, we firstly analyze the stability of switched

system with two subsystems for the sake of convenience,
and then the result is extended to the multi-subsystems
case.

2.1 Two-subsystem switched process

In this case, the switched system (5) only contains two
subsystems {(A1, B1, C1), (A2, B2, C2)} and the switching
law is given as follows:

i =

{
1, t ∈ [0, m]

2, t ∈ [m + 1, N ]
(7)

By the lifting approach, the switched system (5) with the
switching sequence (7) can be represented as

[
Y1,k

Y2,k

]
=

[
H1

H2

] [
U1,k

U2,k

]
+

[
D1

D2

] [
xk(0)
xk(m)

]
(8)

where

U1,k = [uk(0), uk(1), · · · , uk(m− 1)]T

Y1,k = [yk(1), yk(2), · · · , yk(m)]T

U2,k = [uk(m), uk(m + 1), · · · , uk(N − 1)]T

Y2,k = [yk(m + 1), yk(m + 2), · · · , yk(N)]T

and

H1 =



C1B1 0 0 · · · 0

C1A1B1 C1B1 0 · · · 0

C1A
2
1B1 C1A1B1 C1B1 · · · 0

...
...

...
. . .

...

C1A
m−1
1 B1 C1A

m−2
1 B1 C1A

m−3
1 B1 · · · C1B1




H2 =


C2B2 0 0 · · · 0

C2A2B2 C2B2 0 · · · 0
C2A2

2B2 C2A2B2 C2B2 · · · 0

.

..
.
..

.

..
. . .

.

..

C2A
N−m−1
2 B2 C2A

N−m−2
2 B2 C2A

N−m−3
2 B2 · · · C2B2




D1 = [C1
T, (C1A1)

T, · · · , (C1A1
m−1)T]

D2 = [C2
T, (C2A2)

T, · · · , (C2A2
N−m−1)T]

Now, we can give the following theorem.
Theorem 1. For the linear switched system (5) with

the switching sequence (7), when the ILC algorithm (6) is
used, then the output tracking error is convergent if

‖I − γHi‖ < 1, i = 1, 2 (9)

where ‖·‖ denotes the matrix norm.
Proof. Define

Y1,d = [yd(1), yd(2), · · · , yd(m)]T

Y2,d = [yd(m + 1), yd(m + 2), · · · , yd(N)]T

E1,k = [ek(1), ek(2), · · · , ek(m)]T

E2,k = [ek(m + 1), ek(m + 2), · · · , ek(N)]T

then
E1,k = Y1,d − Y1,k, E2,k = Y2,d − Y2,k

The super vector formulation of ILC algorithm (6) is

Uk+1 = Uk + γEk (10)

where Uk = [U1,k, U2,k]T, Ek = [E1,k, E2,k]T. From (8) and
(10), we can obtain

E1,k+1 = (1− γH1) E1,k (11)

E2,k+1 = (1− γH2) E2,k + D1∆xk+1(m) (12)

where ∆xk+1(m) = xk+1(m)− xk(m). From (11), we have
‖E1,k+1‖ ≤ ‖1− γH1‖ ‖E1,k‖ . Thus, since ‖1− γH1‖ < 1,
limk→∞ ‖E1,k‖ = 0 can be obtained.

Now, we prove the convergence of E2,k. limk→∞ ‖E1,k‖
= 0 implies limk→∞ ek(m) = 0, which leads to
limk→∞∆xk+1(m) = 0. From (12), we get

E2,k+1 =

(I − γH2)E2,k + D2∆xk+1(m) =

(I − γH2)2E2,k−1 + (I − γH2)D2∆xk(m) +
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D2∆xk+1(m) = · · · =
(I − γH2)kE2,1 + (I − γH2)k−1D2∆x2(m) + · · ·+
(I − γH2)D2∆xk(m) + D2∆xk+1(m)

then, the following inequality can be obtained:

‖E2,k+1‖ ≤
‖(I − γH2)k‖ ‖E2,1‖+ ‖(I − γH2)k−1‖ ‖D2∆x2(m)‖ +

· · ·+ ‖(I − γH2)‖ ‖D2∆xk(m)‖+ ‖D2∆xk+1(m)‖ ≤
‖I − γH2‖k ‖E2,1‖+ ‖D2‖ ‖I − γH2‖k−1 |∆x2(m)| +

· · ·+ ‖D2‖ ‖(I − γH2)‖ |∆xk(m)|+ ‖D2‖ |∆xk+1(m)|
(13)

Define ∆x̃k = sup {|∆xk(m)| , |∆xk+1(m)| , · · ·}. Hence,
∆x̃k ≥ ∆x̃k+1 ≥ 0 and ∆x̃k ≥ |∆xk|. From (13), if k
is even, then

‖E2,k+1‖ ≤ ‖I − γH2‖k ‖E2,1‖ +

‖D2‖ ‖I − γH2‖k−1 |∆x2(m)|+ · · · +

‖D2‖ ‖(I − γH2)‖ |∆xk(m)|+ ‖D2‖ |∆xk+1(m)| ≤
‖I − γH2‖k ‖E2,1‖+ ‖D2‖ ‖I − γH2‖k−1∆x̃2 + · · · +

‖D2‖ ‖(I − γH2)‖
k
2 ∆x̃ k

2 +1 +

‖D2‖ ‖(I − γH2)‖
k
2−1∆x̃ k

2 +2 + · · · +

‖D2‖ ‖(I − γH2)‖∆x̃k + ‖D2‖∆x̃k+1 ≤
‖I − γH2‖k ‖E2,1‖+ ‖D2‖ ‖I − γH2‖k−1∆x̃2 + · · · +

‖D2‖ ‖(I − γH2)‖
k
2 ∆x̃2 +

‖D2‖ ‖(I − γH2)‖
k
2−1∆x̃ k

2 +2 + · · · +

‖D2‖ ‖(I − γH2)‖∆x̃ k
2 +2 + ‖D2‖∆x̃ k

2 +2 ≤

‖(I − γH2)‖
k
2

(
‖E2,1‖+

k

2
‖D2‖∆x̃2

)
+

∆x̃ k
2 +2 ‖D2‖ ×

(
‖(I − γH2)‖

k
2−1 + · · ·+ ‖(I − γH2)‖+ 1

)
=

‖(I − γH2)‖
k
2

(
‖E2,1‖+

k

2
‖D2‖∆x̃2

)
+

∆x̃ k
2 +2 ‖D2‖ 1− ‖(I − γH2)‖ k

2−1

1− ‖(I − γH2)‖

Therefore, limi→∞ ‖E2,k+1‖ = 0. Similarly, when k is
odd, limi→∞ ‖E2,k+1‖ = 0 also can be derived. ¤

Remark 1. The condition ‖I − γHi‖ < 1 (i = 1, 2)
means that the gain γ can guarantee convergence for all Hi.
Alternatively, we also can choose the switched ILC schemes
as uk+1(t) = uk(t)+γiek(t+1). In this case, the convergence
condition in Theorem 1 becomes ‖I − γiHi‖ < 1.

Remark 2. Switched sequence (7) implies the switch-
ing only occurs once during the whole interval [0, N ], and
the dwell time of two subsystems are [0, m] and [m + 1, N ]
respectively. From the proof of Theorem 1, we know that
the result can also be extended to the arbitrary switching
times of the two subsystems with random small dwell time.

2.2 Multi-subsystem switched process

In this case, the switched system (5) contains multi
subsystems {(A1, B1, C1), · · · , (Al, Bl, Cl)} , and the switch
variable i is given as follows:

i =





1, t ∈ [0, m1]

2, t ∈ [m1 + 1, m2]

...
...

l, t ∈ [ml−1 + 1, N ]

(14)

where 0 = m1 < m2 < · · · < ml−1 < N . Define m0 = 0,
ml = N and

Ui,k = [uk(mi−1), uk(mi−1 + 1), · · · , uk(mi − 1)]T

Yi,k = [yk(mi−1 + 1), yk(mi−1 + 2), · · · , yk(mi)]
T

Using the lifting approach for ILC, the system (5) can be
described as follows:

Yi,k = HiUi,k + Dixk(mi−1) (15)

where

Hi =




CiBi 0

CiAiBi CiBi

CiA
2
i Bi CiAiBi

...
...

CiA
mi−mi−1−1

i Bi CiA
mi−mi−1−2

i Bi

0 · · · 0

0 · · · 0

CiBi · · · 0

...
. . .

...

CiA
mi−mi−1−3

i Bi · · · CiBi




Now, the following theorem can be given.
Theorem 2. For the linear switched system (5) with

the switching sequence (14), when the ILC algorithm (6) is
used, then the output tracking error is convergent if

‖I − γHi‖ < 1, i = 1, 2, · · · , l (16)

Proof. From (15), we can give the following formulation



Y1,k

Y2,k

...
Yl,k


 =




H1

H2

. . .

Hl







U1,k

U2,k

...
Ul,k


 +




D1

D2

. . .

Dl







xk(0)
xk(m1)

...
xk(ml−1)


 (17)
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Define

Yi,d = [yd(mi−1 + 1), yd(mi−1 + 2), · · · , yd(mi)]
T

Ei,k = [ek(mi−1 + 1), ek(mi−1 + 2), · · · , ek(mi)]
T

Ei,k = Yi,d − Yi,k, i = 1, 2, · · · , l

From (8) and (17), we can obtain

Ei,k+1 = (I − γHi)Ei,k + D2∆xk+1(mi−1) (18)

For i = 1, note that ∆xk+1(0) = xk+1(0)− xk(0) = 0, (18)
gives

E1,k+1 = (I − γH1)E1,k

Hence, since ‖I − γH1‖ < 1, we can obtain limk→∞ ‖E1,k‖
= 0, which also leads to limk→∞ ek(m1) = 0 and
limk→∞∆xk+1(m1) = 0.

For i = 2, (18) gives

E2,k+1 = (I − γH2)E2,k + D2∆xk+1(m1)

according to the analysis in Theorem 1, we can obtain
limk→∞ ‖E2,k‖ = 0 according to the condition ‖I − γH2‖
< 1 and limk→∞∆xk+1(m1) = 0. In this analogy,
limk→∞ ‖Ei,k‖ = 0 (i > 2) can also be obtained. ¤

Remark 3. The condition ‖I − γHi‖ < 1 (i = 1, 2,
· · · , l) means the learning gain γ can guarantee conver-
gence for all Hi. Similarly, we also can choose the switched
ILC schemes as uk+1(t) = uk(t)+ γiek(t +1) with the con-
vergence condition ‖I − γiHi‖ < 1. On the other hand,
switching sequence (14) implies the switching only occurs l
− 1 times during the whole interval [0, N ]. From the proof
of Theorem 2, we know that the result can also be extended
to the arbitrary switch times of the multi-subsystems with
random small dwell time.

3 Numerical example
In this section, an example is used to verify our con-

clusions. Let us consider the linear discrete-time switched
system as follows, which contains three subsystems:

{
xk(t + 1) = Aixk(t) + Biuk(t)

yk(t) = Cixk(t)
, i = 1, 2, 3 (19)

where

A1 =

[
0 1

0.125 −0.2

]
, B1 =

[
0
1

]
, C1 = [ 0.1 1 ]

A2 =

[ −0.25 1
0 −0.3

]
, B2 =

[
0
1

]
, C2 = [ −0.2 1 ]

A3 =

[
1 0

0.2 −0.1

]
, B3 =

[
0
1

]
, C3 = [ 0.25 1 ]

The desired repetitive reference trajectory is yd(t) =
sin(8.0(t − 1)/25) and t ∈ [0, 60]. The initial conditions
are given as xk(0) = 0 for all k and u0(t) = 0 for all t. The
ILC scheme is constructed as uk+1(t) = uk(t)+0.5ek(t+1).

3.1 Case 1

In this case, we assume the switching sequence is

i =





1, t ∈ [0, 15]

2, t ∈ [16, 45]

3, t ∈ [46, 60]

Using the super vector formulation, the switched ILC sys-
tem can be represented as




Y1,k

Y2,k

Y3,k


 =




H1

H2

H3







U1,k

U2,k

U3,k


 +




D1

D2

D3







xk(0)
xk(15)
xk(45)




where

U1,k = [uk(0), · · · , uk(14)]T, Y1,k = [yk(1), · · · , yk(15)]T

U2,k = [uk(15), · · · , uk(44)]T, Y2,k = [yk(16), · · · , yk(45)]T

U3,k = [uk(45), · · · , uk(59)]T, Y3,k = [yk(46), · · · , yk(60)]T

and

H1 =




C1B1 · · · 0
...

. . .
...

C1A
14
1 B1 · · · C1B1




H2 =




C2B2 · · · 0
...

. . .
...

C2A
29
2 B2 · · · C2B2




H3 =




C3B3 · · · 0
...

. . .
...

C3A
14
3 B3 · · · C3B3




Using Theorem 2, we have ‖I − γH1‖∞ = 0.6667 < 1,
‖I − γH2‖∞ = 0.7421 < 1, ‖I − γH3‖∞ = 0.6972 < 1.
The convergence condition in Theorem 2 is satisfied. Fig. 1
shows that ‖Ek‖∞ is convergent on the iteration domain.
It also demonstrates the output tracking error is conver-
gent to 0 as iteration number increased. Fig. 2 and Fig. 3
show the output and input variables at the different itera-
tion number. Obviously, system output profiles and control
input profiles are also convergent on iteration domain.

Fig. 1 The ‖Ek‖∞ on the iteration domain



1568 ACTA AUTOMATICA SINICA Vol. 39

Fig. 2 The system output profiles at 6th, 15th, and
40th iteration

Fig. 3 The control input profiles at 4th, 6th, 15th, and
40th iteration

3.2 Case 2

In this case, we assume the switching law α(t) is a ran-
dom sequence, which is produced by a random variable with
the value 1, 2, and 3, as shown in Fig. 4. If α(t) = 1, the
system (19) is (A1, B1, C1), and if α(t) = 2, then system is
(A2, B2, C2), otherwise, the system is (A3, B3, C3).

The results of simulation are shown in Figs. 5∼ 7. It can
be observed that by using the proposed iterative learning
control law, the asymptotic convergence of the output er-
ror can also be guaranteed. Fig. 6 shows that the output
tracking is perfect after 40 iterations. To understand the
effectiveness of iterative learning control, we also give the
control input profiles in Fig. 7. The input profile at 40th it-
eration is close to the desired input profile, which is difficult
to be obtained by other control approaches.

4 Conclusions

The problem of iterative learning control for a class of
linear switched systems has been discussed. Here, the con-
sidered switched system has been assumed to be with ar-
bitrary switching signals in time domain. It has also been
shown that under some conditions, the P-type ILC algo-
rithm can guarantee the asymptotic convergence of the out-
put tracking error between the given desired output and the

actual output through the iterative learning process. The
theoretical analysis is supported by simulations. In the fu-
ture work, we will consider switched systems with arbitrary
switching signals in iteration domain.

Fig. 4 The random switching sequence of α(t)

Fig. 5 The ‖Ek‖∞ on the iteration domain for random
switching sequence

Fig. 6 The system output profiles for random
switching sequence
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Fig. 7 The control input profiles for random
switching sequence
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